168 research outputs found

    Economic Model Predictive Control for Large-Scale and Distributed Energy Systems

    Get PDF

    A Stabilized Structured Dantzig-Wolfe Decomposition Method

    Get PDF
    We discuss an algorithmic scheme, which we call the stabilized structured Dantzig-Wolfe decomposition method, for solving large-scale structured linear programs. It can be applied when the subproblem of the standard Dantzig-Wolfe approach admits an alternative master model amenable to column generation, other than the standard one in which there is a variable for each of the extreme points and extreme rays of the corresponding polyhedron. Stabilization is achieved by the same techniques developed for the standard Dantzig-Wolfe approach and it is equally useful to improve the performance, as shown by computational results obtained on an application to the multicommodity capacitated network design problem

    Nonlinear Programming Techniques Applied to Stochastic Programs with Recourse

    Get PDF
    Stochastic convex programs with recourse can equivalently be formulated as nonlinear convex programming problems. These possess some rather marked characteristics. Firstly, the proportion of linear to nonlinear variables is often large and leads to a natural partition of the constraints and objective. Secondly, the objective function corresponding to the nonlinear variables can vary over a wide range of possibilities; under appropriate assumptions about the underlying stochastic program it could be, for example, a smooth function, a separable polyhedral function or a nonsmooth function whose values and gradients are very expensive to compute. Thirdly, the problems are often large-scale and linearly constrained with special structure in the constraints. This paper is a comprehensive study of solution methods for stochastic programs with recourse viewed from the above standpoint. We describe a number of promising algorithmic approaches that are derived from methods of nonlinear programming. The discussion is a fairly general one, but the solution of two classes of stochastic programs with recourse are of particular interest. The first corresponds to stochastic linear programs with simple recourse and stochastic right-hand-side elements with given discrete probability distribution. The second corresponds to stochastic linear programs with complete recourse and stochastic right-hand-side vectors defined by a limited number of scenarios, each with given probability. A repeated theme is the use of the MINOS code of Murtagh and Saunders as a basis for developing suitable implementations

    Affectation des locomotives et des wagons aux trains de passagers

    Get PDF
    A survey of optimization models for train routing and scheduling -- Routing problems -- Scheduling problems -- Simultaneous locomotive and car assignment at VIA Rail Canada -- Solution methodology -- Extensions -- Computational experiments -- A benders decomposition approach for the locomotive and car assignment problem -- Benders decomposition -- Algorithmic refinements -- Computational experiments -- Simultaneous assigment of locomotives and cars to passenger trains -- A basic model -- Solution methodology -- Computational considerations -- Computational experimentation

    Liner Service Network Design

    Get PDF

    Short-term generation scheduling in a hydrothermal power system.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D173872 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Resource allocation optimization problems in the public sector

    Get PDF
    This dissertation consists of three distinct, although conceptually related, public sector topics: the Transportation Security Agency (TSA), U.S. Customs and Border Patrol (CBP), and the Georgia Trauma Care Network Commission (GTCNC). The topics are unified in their mathematical modeling and mixed-integer programming solution strategies. In Chapter 2, we discuss strategies for solving large-scale integer programs to include column generation and the known heuristic of particle swarm optimization (PSO). In order to solve problems with an exponential number of decision variables, we employ Dantzig-Wolfe decomposition to take advantage of the special subproblem structures encountered in resource allocation problems. In each of the resource allocation problems presented, we concentrate on selecting an optimal portfolio of improvement measures. In most cases, the number of potential portfolios of investment is too large to be expressed explicitly or stored on a computer. We use column generation to effectively solve these problems to optimality, but are hindered by the solution time and large CPU requirement. We explore utilizing multi-swarm particle swarm optimization to solve the decomposition heuristically. We also explore integrating multi-swarm PSO into the column generation framework to solve the pricing problem for entering columns of negative reduced cost. In Chapter 3, we present a TSA problem to allocate security measures across all federally funded airports nationwide. This project establishes a quantitative construct for enterprise risk assessment and optimal resource allocation to achieve the best aviation security. We first analyze and model the various aviation transportation risks and establish their interdependencies. The mixed-integer program determines how best to invest any additional security measures for the best overall risk protection and return on investment. Our analysis involves cascading and inter-dependency modeling of the multi-tier risk taxonomy and overlaying security measurements. The model selects optimal security measure allocations for each airport with the objectives to minimize the probability of false clears, maximize the probability of threat detection, and maximize the risk posture (ability to mitigate risks) in aviation security. The risk assessment and optimal resource allocation construct are generalizable and are applied to the CBP problem. In Chapter 4, we optimize security measure investments to achieve the most cost-effective deterrence and detection capabilities for the CBP. A large-scale resource allocation integer program was successfully modeled that rapidly returns good Pareto optimal results. The model incorporates the utility of each measure, the probability of success, along with multiple objectives. To the best of our knowledge, our work presents the first mathematical model that optimizes security strategies for the CBP and is the first to introduce a utility factor to emphasize deterrence and detection impact. The model accommodates different resources, constraints, and various types of objectives. In Chapter 5, we analyze the emergency trauma network problem first by simulation. The simulation offers a framework of resource allocation for trauma systems and possible ways to evaluate the impact of the investments on the overall performance of the trauma system. The simulation works as an effective proof of concept to demonstrate that improvements to patient well-being can be measured and that alternative solutions can be analyzed. We then explore three different formulations to model the Emergency Trauma Network as a mixed-integer programming model. The first model is a Multi-Region, Multi-Depot, Multi-Trip Vehicle Routing Problem with Time Windows. This is a known expansion of the vehicle routing problem that has been extended to model the Georgia trauma network. We then adapt an Ambulance Routing Problem (ARP) to the previously mentioned VRP. There are no known ARPs of this magnitude/extension of a VRP. One of the primary differences is many ARPs are constructed for disaster scenarios versus day-to-day emergency trauma operations. The new ARP also implements more constraints based on trauma level limitations for patients and hospitals. Lastly, the Resource Allocation ARP is constructed to reflect the investment decisions presented in the simulation.Ph.D
    corecore