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ABSTRACT 

Energy is a critical resource for industry as new environmental policies drive changes. Industrial 
Demand-side Management (iDSM) has been recognized as a promising concept that incentivizes 
active shaping of the industrial load in response to energy market conditions in order to achieve 
bilateral benefits, i.e. the industrial plant reduces the energy bill while the energy supplier reduces 
peak generation hours and increases grid’s reliability. For energy-intensive processing industries, 
such as stainless steel and pulp production the concept appears to be appealing, especially for the 
plants with high level of process flexibility. 

One supporting technology to realize the iDSM strategy is energy-aware scheduling of daily 
operations by the industrial consumers. In this work, the monolithic formulations are developed for 
a batch process, of stainless-steel production and a continuous process of Thermo-Mechanical 
Pulping. For both, an energy-cost optimization is formulated as a generalized Minimum-Cost Flow 
Network model to find the optimal structure of multiple time-sensitive electricity contracts 
including base load, Time-of-Use, day-ahead spot market and onsite power generation, and 
opportunity to sell electricity back to the grid. The scheduling part of the model comprises all 
process constraints and also the minimization of deviation penalties as a result of the committed 
load problem. For the steel problem, general precedence using continuous-time formulation is used; 
for the pulping problem discrete-time Resource-Task Network approach is exploited. All models 
are formulated using Mixed Integer Linear Programming (MILP) and solved using realistic data 
instances from literature and industrial practice. In addition, due to large-scale nature of the steel 
problem, a bi-level heuristic is developed to obtain satisfactory solutions in reasonable times. 

From monolithic models, a novel approach with functionally separated problems of energy-aware 
production scheduling and energy-cost optimization is developed. Such separation is beneficial for 
industrial environments as it increases modularity of the solutions and reduces the effort for 
energy-aspects integration into scheduling. Due to the special problem structure it is possible to use 
the Mean Value Cross Decomposition (MVCD) for solving the total problem as separated models 
of the energy-aware production scheduling problem and energy-cost optimization problem. The 
two optimizers can be modified such that they are a part of the sub-problem of the Benders’ 
decomposition (energy-cost optimizer) and a part of the sub-problem of the Dantzig-Wolfe 
decomposition (energy-aware scheduler). The models exchange two signals: dual information of 
the complicating constraint from the energy-cost optimizer, and the load curve of the scheduler. 
The strategy is investigated in industrial case studies on processes of the steel-making and pulping 
industries. In addition, since the steel scheduling problem is not tractable due to its large size, the 
bi-level heuristic is integrated into the functional decomposition concept. 

The results show that the new approach obtains either optimal or close-to-optimal solutions in case 
of the pulping, or similar solutions as the original bi-level heuristic applied on the monolithic 
formulation for the steel case. The existing limitation of the concept is the lack of convergence 
properties for One-sided Weighted MVCD. However, for industrial use, the approach builds upon 
existing models and obtains very good quality solutions. This fact will contribute to fostering of 
industrial implementations of the both monolithic and functional decomposition strategies. 
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1 INTRODUCTION 

The work done for this dissertation was carried out at ABB Corporate Research Center in 
Ladenburg, within the Process and Production Optimization Research Group (I4). The ABB Group 
is one of the largest engineering conglomerates in the world with primary businesses in power and 
automation. The research group supports the R&D activities of the company in the broad field of 
advanced decision-making support for process industries. 

For the period between October 2011 and October 2014 the research group employed the author as 
a Marie Curie Fellow to contribute to the European Union funded research project ITN Energy-
SmartOps. The project was aiming at augmenting existing automation systems to enable energy-
intensive industries to take advantage of Demand-side Response (DSR) concepts. For process 
plants, one of the approaches to realize the DSR potential benefits is intelligent scheduling of daily 
operations in response to market conditions and incentives given by the volatile energy markets. 
Active shaping of the industrial load brings benefits to both market actors, for example energy bill 
savings on the energy-user side and operational (peak) cost savings on the energy-supplier side. 

The research work has been carried out under scientific supervision of Prof. Dr. Ing. Sebastian 
Engell who is leading the Chair of Process Dynamics and Operations at Technical University of 
Dortmund. At ABB in Ladenburg Corporate Fellow Dr. Iiro Harjunkoski and I4 Group Leader Dr. 
Ing. Guido Sand mentored the technical work. 

1.1 Research motivation 

The topic of electricity demand-side management has been increasingly recognized as an important 
cross-disciplinary aspect of industrial production. It can be considered as one of the tools within the 
umbrella term of “smart grids”. It involves both the electricity supply systems and markets, and 
large-industrial electricity consumers in a more efficient exchange of information that would lead 
to bi-literal benefits. It deals with different time-scales, ranging from Power Management Solutions 
(PMS) supporting very fast demand-response such as direct load control on second- and minute-
wise basis within ancillary reserves markets, to production process planning and scheduling in 
response to e.g. spot markets, covering a period of hours to months. In this work, as it is explained 
later, the focus is on the latter aspect.  

Large-scale energy users might account for the electricity cost even up to 60% of the total raw 
material cost, e.g. as for air separation processes or for stainless-steel production with 20-40% (Ali 
et al. 2007). In developed countries, the reduction of operating costs for process plants is presently 
appealing due to high competitiveness (e.g. from Asian plants) and reduced orders due to the 
changing economic situation (e.g. 2008 global financial crisis). On the other hand, the energy 
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suppliers have different motivations to establish a link with their consumers. Namely, in many 
countries there is increasing importance of environmentally-friendly policies, introduction of 
distributed generation and increased overall energy demand. An important trend of market 
liberalization and tendency to express the true volatile price of electricity generation on the 
customer side also opens up new opportunities. All of these aspects pose new challenges to the old 
electricity grid infrastructure for which operators need to seek new solutions supporting the grid’s 
reliable operation. Involvement of the energy-intensive customers in active shaping of their load 
can provide another means for the Grid Management actors in securing stable and reasonably-
priced delivery of energy. More reasoning for the motivation and benefits of the DSR is described 
in Chapter 2. 

Electricity-demand side management is one of the technologies identified to have the potential to 
support the aforementioned challenges. However, how exactly the industrial plants should realize 
the response to energy-market incentives and who should provide that technology are still open 
questions. The former question is tackled in this work to some extent (see goal and scope in 
Chapter 1.2). For the latter question, among the traditional technology vendors is ABB. The Group 
provides solutions to the power generation and grid management side. At the same time, the 
company also reported many activities in the field of Collaborative Process Automation Systems 
(CPAS) which supports various industries, including energy-intensive process plants (Hollender, 
2010).  

From the industrial plant’s point of view the DSR technology is concerned with a decision-making 
process that supports optimal production shifting in response to the energy-market conditions. 
Therefore, it has to be connected to the planning and scheduling of the daily operations. The 
solutions for large-scale processes are difficult to develop and implement, therefore received 
significant attention from academia over the last decades, e.g. from the Chemical Engineering and 
Process Systems Engineering (PSE) community. Recent advancements in mathematical modeling 
and optimization enable the development of more sophisticated and holistic solutions. However, 
inclusion of more and more aspects to the problem formulation which would satisfy the industrial 
needs give rise to the new scientific challenges – computational limitations, applicability to 
different processes and integration with plant systems. The challenges identified within the scope 
of this work are explained in more details in the beginning of each research chapter, i.e. Chapter 3 
and 4. The industrial DSR technology is still in its early phase of development, however due to its 
potential benefits and interest from both academia and industry (Harjunkoski et al. 2015) it is 
foreseen by many to have noticeable impact on the industrial landscape (Scholtz 2013) in the 
coming decades. 

1.2 Goal, scope and methodology 

To answer the industrial needs of bridging production and energy management at the scheduling 
level, there are two primary goals of the dissertation. They are related to solving challenging 
problems as follows: 

 find a strategy to solve a large-scale steel plant scheduling problem in a reasonable time, 
while optimizing both energy and production cost (system-wide optimal solution) using 
a general precedence continuous-time scheduling approach; 

 develop and test a framework for solving the production scheduling problem separately 
from the electricity purchase and sale optimization – functional decomposition, however 
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still allowing to reach a system-wide optimal (or close to optimal) solution in a 
reasonable time. 

A more detailed description of these goals is given in the introduction section of the corresponding 
chapters 3 and 4 respectively. The first goal translates into the development and testing on real-
world problem examples with the following methodology and contributions: 

 extend the continuous-time scheduling formulation with energy-awareness which 
enables energy-resource use accounting – three different strategies are developed and 
tested to find the best performing one (Hadera et al. 2015); 

 embed optimization of various time-sensitive energy price tariffs into scheduling –a 
generic strategy based on a Minimum-cost Flow Problem (e.g. Ahuja, Magnanti and 
Orlin, 1993; Bertsekas, 1991) is developed and tested; 

 overcome computational intractability to solve instances of industrial size – here bi-level 
heuristic approach are developed and tested. 

The second goal translates into the development and assessment on real-world examples of the 
following contributions: 

 show the potential of convergence to optimality of the developed functional 
decomposition and indicate its theoretical limitations – different variations of Mean 
Value Cross Decomposition will be explored (Holmberg 1992); 

 identify an industrially-relevant framework structure for the exploitation of existing 
state-of-the-art approaches – One-sided Mean Value Cross Decomposition is identified 
as promising and tested on various problem instances (Hadera et al. 2015b); 

 apply the developed concept on different scheduling problem formulations to show its 
flexibility and assess its usefulness – two different time-representation strategies as well 
two different scheduling modeling principles are investigated. 

The scope of the work presented here covers the development of monolithic models for handling 
real-world scheduling and energy-cost optimization problems. These serve as a basis for further 
functional decompositions for the separation of energy contracts optimization from the scheduling 
as shown in Figure 1-1. 

 
 

 
Figure 1-1 Dissertation goal and scope 
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The decomposition needs to follow certain requirements dictated by the industrial practice as 
discussed in Chapter 4.1. It is important to note that the goal of the work is also to test the 
developed approaches on real-world industrial example processes. Outside of the scope is a 
comparison of the industrial approach (explained in Chapter 4.1) with the concepts developed in 
this work. Also assessing the financial benefits of iDSR (see Chapter 2.4 for literature positions 
assessing the benefits) is not within the scope of this dissertation. 

In this work, standard approaches for tackling scheduling problems using Mathematical 
Programing are utilized, as they provide a powerful framework that has been exploited in Process 
Systems Engineering (e.g. Grossmann 2002) in the past years. A real-world problem is formulated 
as mathematical optimization model and solved using specialized algorithms. The optimization 
problem can be modeled using different state-of-the-art approaches. In this work, a standard 
rigorous approach of Mixed Integer Linear Programing (MILP) is utilized for this purpose (e.g. see 
Nemhauser and Wolsey, 1988; Schrijver, 1998), in contrast to such other techniques such as 
Constrained Programming (CP) or Timed Automata (TA) (e.g. see Hentenryck, 1989; Subbiah, 
2012 respectively). In MILP approaches, problem constraints are represented by equations and 
inequalities. In addition, discrete decisions are represented using binary and integer variables, while 
the continuous degrees of freedom are modeled as variables which can take real values. The 
objective of the optimization problem is modeled as a function that depends on the decision 
variables which are a subject of optimization. 

In the course of the dissertation, monolithic MILP models are developed which theoretically can be 
solved to optimality. However, due to the combinatorial complexity of the large-scale industrial 
scheduling problems considered, the practical performance is limited due to computational 
inefficiency. For this reason, heuristic methods are developed which do not guarantee that one 
obtains the optimal solution. In addition, to achieve the goal of the work, several decomposition 
approaches for mathematical optimization are used, such as Benders’ (Benders 1962) and Dantzig-
Wolfe (Dantzig and Wolfe 1960). 

The concepts developed are tested on real-world scheduling problems from industry. Since the 
solution schemes are meant to support the energy-intensive process plants in decision-making, the 
scope of the numerical experiments includes energy-intensive example processes: stainless-steel 
production and Thermo-Mechanical Pulping (TMP). These represent different types of processes. 
The steel plant operates in a batch mode where products are subsequently processed on a number of 
production stages (multistage plants in a Flexible Flowshop environment, see e.g. Pinedo 2012). 
Pulping is a continuous process where certain inputs are transformed into the final product which is 
extracted at a given rate.  

In addition, the scheduling problems of the two industrial processes are developed using two major 
modeling principles (Méndez et al. 2006). The steel process is modeled by a general precedence 
concept which is a rather classical approach where model variables and constraints are matched to 
real process entities with processing units at different production stages using a sequencing concept 
(e.g. Harjunkoski and Grossmann 2001). In contrast, the pulping process is modeled using 
Resource-Task Network (Pantelides 1994) strategy which transforms the real process into variable 
and constraints by representing them in a generic network model with materials, tasks, units and 
utilities. Moreover, the time representations of the two scheduling approaches are also 
fundamentally different. As shown in Figure 1-2, the steel process utilizes the exact continuous-
time approach as opposed to the discrete-time approach of the pulping process. The reasons for the 
choice of the two approaches and the two industrial processes characteristics are discussed in 
Chapter 4.1. 
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Figure 1-2 Types of scheduling formulations and use case processes 

1.3 Dissertation outline 

This thesis consists of five main chapters. Every chapter begins with a short summary and 
explanation of its relation to the goal and scope. 

The second chapter describes the motivation and scope of this dissertation. It explains the main 
drivers for this work which are a part of the challenges related to energy-supply systems and the 
role of industrial consumers. In addition, a part of the literature review related to energy-aware 
scheduling is presented to give a first motivation regarding the scientific research challenge.  

The third and fourth chapters are the core of the research. For both chapters, the related scientific 
challenge is explained in the beginning. In Chapter 3, the first goal of the dissertation is addressed. 
The monolithic model of the stainless-steel case problem is formulated and solved using a heuristic 
strategy. The chapter also explains the energy-cost optimization problem and the solution approach 
using the flow network formulation. The description of these aspects at this point introduces the 
reader into the topic and gives a background for the understanding of the functional decomposition 
concepts developed in the fourth chapter. Chapter 4 starts by explaining the motivation and scope 
of the second goal of the dissertation. Next, a generic conceptual strategy for functional 
decomposition is developed. Furthermore, for testing purposes, the monolithic model of the 
Thermo-Mechanical Pulping process is formulated and solved. The model together with the 
heuristic developed for the steel case are then applied on the functional decomposition concept to 
assess the functional decomposition scheme and its performance and limitations.  

The last chapter summarizes the main conclusions that can be drawn from the research part. The 
limitations of the study and recommendations for future work are discussed at the end.  
  



6 

 

2 CONCEPT MOTIVATION AND BACKGROUND 

This part of the dissertation is a rather general explanation of the main concept related to the goal 
and scope of the research. The purpose of this chapter is as follows: 
 

• give the reader the context to understand challenges and the motivation that call for new 
technologies (Chapter 2.1); 

• explain one of the supporting solution strategies to answer the challenges in the motivation 
part (Chapter 2.2); 

• describe enablers on the process side for realizing the solution strategy and motivation for 
use cases chosen in the research part of the dissertation (Chapter 2.3) 

• give an overview of the technical challenges that are tackled by the scientific community in 
the area of energy-aware scheduling (2.4). 

The chapter gives the reader a general background related to the research part of the dissertation. It 
begins with a description of challenges on the energy-supply side which serves industrial electricity 
consumers. It continues with an explanation concerning one of the strategies to support better 
balancing between energy supply and demand which is seen to have potential to support answering 
the challenges. Next, the important factors on the consumer side that enable the energy intensive 
industries to realize the demand-side response are explained. The last section explains that on the 
plant level the demand-response can be realized with energy-aware production scheduling methods. 
Therefore, a review of approaches for scheduling under energy constraints is presented to give the 
reader an initial perspective on the technical details which follow in the next two research chapters. 

2.1 Challenges in energy supply systems 

In many regions, renewable energy sources contribute a significant share to the overall electric 
power consumption, and due to the volatility of their availability and their privileged role on the 
market, this may cause high fluctuations of the energy cost for the final user. On the grid level, the 
demand should always match the supply, otherwise the grid infrastructure is stressed, possibly 
causing expensive failures. Therefore it is of interest to the supply side of the grid to achieve 
flexibility of the demand, which traditionally was assumed to be inelastic in the short-term. This is 
largely because the consumer of electricity was not getting any incentive signals, which could 
trigger a change of the consumption pattern when shortages or oversupply occur. In recent times, 
smart grid technologies and the liberalization of the energy markets have provided new ways of 
communicating the signals, both for dispatchable (the user is given direct signals to change the 
load) and non-dispatchable (the user decides whether to change the load) strategies (NERC 2007). 
The latter signals are considered in this work in the form of financial incentives and different 
pricing contracts. It has been recognized that both small consumers and retailers should be 
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provided with technical tools to actively and effectively participate in the electricity markets 
(Kirschen, 2003).  

2.2 Industrial Demand-side Response 

Among the identified technologies for supporting an active shaping of the energy use patterns is 
Demand-side Management. It consists of two strategies: Energy Efficiency and Demand-Side 
Response (iDSR) as shown in Figure 2-1. The latter activities involve activities defined as a 
temporary change in electricity consumption in response to market or reliability conditions (FERC 
2006). An overview of the present status, classification of programs and future trends in iDSR is 
described by Baboli et al. (2011). In non-dispatchable iDSR, a consumer, e.g. a steel plant is 
allowed to decide whether it wants to react to a changing situation within the grid, potentially 
gaining financial benefits, or stick to the production plan. This implies the need of proper every-
day scheduling and planning of plant operations, and for making use of incentive and price based 
schemes, such as for example intra-day or day-ahead spot market pricing since changes in the 
prices of energy might significantly affect the profitability as shown for a stainless-steel production 
plant in Hadera et al. (2014). 

 

 
Figure 2-1 Major challenges in energy-supply systems 

Demand-response technology on the production scheduling and planning level has an advantage of 
a potentially low investment cost for the final user, since very often it does not require purchase of 
new equipment. Other selected positive outcomes of a more flexible Demand-side Response that 
are reported in the literature are (NECR 2007; CRA 2005; Todd et al. 2009): 

 Plant level: direct cost savings on the electricity bill; 
 Grid level: increase of reliability, e.g. reduction of outages; 
 Grid level: reduction of expensive peak load hours in the short-term; 
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 Environment: potential emission savings by reducing the grid’s peak generation (only for 
regions with high-emitting peak generation plants); 

 Environment: potential emission savings by enabling the installation of larger renewable 
generation capacities; 

 Market: market-wide wholesale electricity price reduction in the long-term; 
 Market: market performance benefits, e.g. mitigating the suppliers’ ability to raise prices 

significantly above production costs. 

Except for the direct energy bill cost savings at the plant site, quantification of the above benefits is 
difficult and strongly depends on assumptions; however, industrial and academic studies conclude 
that the potential exists (DOE 2006; NERC 2007; DENA 2011). When investigating DSR of 
industrial production, it is important to consider the technical potential of Demand-side Response 
capabilities and not only the total consumption of the process, as pointed out by Paulus and 
Borggrefe (2011). Ideal industrial plants should have large consumers of electric power that operate 
in a preplanned fashion and a degree of process flexibility, both hold true for the steel plant 
considered in this paper. 

Even though the iDSR technology is recognized as beneficial for both the power supplier side and 
for the energy-intensive industry, it should be noted that it cannot compensate long-term deficits or 
surplus of electricity generation in regional grids. 

2.3 Energy-intensive process industry 

For many years now the industrial sector has been accounting for the most energy use globally. 
According to International Energy Agency (IEA) projection, in 2014 industrial delivered global 
energy end-use will account to more than 50% , with transportation, residential and commercial 
sharing the rest (IEA 2013). Among the industrial users are the processes of steel- and pulp-
making. They are considered later in the dissertation as a result of specific interest of the industrial 
research community, but also have their motivation in the identified iDSR potential of these 
processes. According to the German Energy Agency (DENA 2011) the biggest electricity users in 
Germany are steel and paper industry (Figure 2-2). In some regions it is the paper industry which 
uses the most energy among all, such as for example in the case of Sweden, with total energy use 
around 45% (Swedish Energy Agency 2013). 

 

 
Figure 2-2 Electricity consumption share by industrial sector for Germany (DENA 2011) 
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Figure 2-3 Capacity utilization of US Energy-Intensive Industries (based on BGFRS 2013) 

Such energy-intensive industries are potential candidates for realizing iDSR strategies. If it is 
assumed that the goal of the plant managers is to deliver the same amount of final products over a 
certain time horizon, the production schedule can be modified in favor of a lower cost of energy 
procurement, but only when the process-specific constraints are always satisfied, and when at the 
same time the plant faces a certain under-utilization of its production capacity. As shown in Figure 
2-3 the capacity utilization of the US-based energy-intensive primary metal sector has gone down 
by nearly 20% in recent years compared to 1990’s (BGFRS 2013). 

This creates a potential to optimally shift production to times when the consumption of electricity 
is cheaper. This is especially valid for energy-intensive process industries, where the raw material 
and energy cost can account for up to 60% of the total production cost. For the stainless-steel 
manufacturing process, the electricity accounts for about 20-40% of the total raw material cost in 
some countries (Ali et al. 2007). Therefore, for such processes more efficient raw material use has 
a potential to bring significant overall cost reductions. Even if in relative terms the reduction is 
only a few percent, the quantitative amount can be hundred thousands of dollars on a monthly basis 
(see e.g. Hadera and Harjunkoski 2013; Castro et al. 2013). 

Among the energy users accounted as industrial loads there are production processes which are 
recognized to have potential for iDSR implementation as investigated in the studies by Paulus and 
Borggrefe (2011) and Klobasa et al. (2006). The selected processes are shown in Table 2-1. The 
stainless-steel making process is recognized as a suitable candidate for iDSR (Gajic et al. 2014) 
since it has a very energy-intensive EAF production stage (around 85 MW for one furnace as noted 
by Hadera and Harjunkoski 2013) which operates in a batch mode. The pulping process usually 
includes several pulp refiners each of which consumes about 10-30 MW. If the process includes the 
paper machine the load is even more significant. However, the paper machine itself does not have 
much flexibility in load shifting as it should operate with high utilization, thus at this stage the main 
flexibility is the waiting time between production campaigns. In contrast, the pulping process itself 
contains storage tanks which serve as a buffer between the pulping and paper making. This can be 
very advantageous when implementing iDSR principles (Paulus and Borggrefe 2011). Additional 
motivation for choosing the stainless-steel and TMP process is given later in this chapter as well as 
in the scheduling literature review in Chapter 2.4 and also in the introductory Chapter 3.1.1 for the 
steel and 4.3.1 for the TMP case. 
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Table 2-1 Selected industrial processes with iDSR potential 

Industrial sector Process Enabler 

Metals Stainless-steel making Energy- intensive Electric Arc Furnace stage, 
batch process 

Pulp and paper Thermo-mechanical pulping (TMP) 
and paper making 

Energy-intensive refiners and paper machines, 
storage of pulp 

Chemicals Chloralkali electrolysis Energy-intensive electrolysis, but high capacity 
utilization 

Metals Aluminum electrolysis Energy-intensive electrolysis, but high capacity 
utilization 

Metals Primary steel-making Energy- intensive Blast Furnace (BF) stage, but 
high capacity utilization 

Cement Cement milling Energy-intensive rotary machines 

Chemicals Air separation Energy-intensive compressors, energy cost is 
significant raw material cost 

Oil and Gas Liquefied Natural Gas (LNG) Energy-intensive refrigeration 

Mining Winder systems Energy-intensive winder motors, intermediate 
storage of transported material 

Mining Belt conveyor systems Energy- intensive motors for conveyers 

Metals Hot Rolling Mill (HRM) Energy-intensive motors for the rolling 
machine, relatively quick batch process 

 

Apart from the two first processes identified as very good candidates for iDSR there are several 
others, such as for example the electrolysis process of aluminum and chloralkali. Although they 
both have very energy-intensive production (15 MWh/t for aluminum and 2,85 MWh/t for 
chloralkali electrolysis) in order to keep the process efficient high utilization needs to be 
maintained. Therefore, the potential to shift the energy load in time is decreased. Similarly, in the 
primary steel making the Blast Furnace (BF) needs to be operated continuously for several years 
without shut-downs. 

The cement production’s final phase consists of clinker crushing and grounding with additives. The 
mills used for this purpose contain large energy-intensive rotary machines. Some recent studies 
show at least 2% cost reduction by implementation of load shifting strategies (Lidbetter and 
Liebenberg 2013). 

The air separation is an interesting process where the two main raw materials are the air, which is 
for free and the electricity. The latter is used primarily to run oxygen compressor motors and air 
compressor motors (Kruger, 2003). As discussed later in Chapter 2.4, the process has been 
investigated in recent years by a number of studies (e.g. Mitra et al. 2012).  

An LNG plant converts the natural gas into liquid for ease of storage and transportation. A typical 
process consumes around 5,5-6 kWh per kmol of LNG produced (Zargarzadeh et al. 2007) with 
about 40% of operating cost due to energy in the refrigeration section (Hasan et al. 2009).  
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In the mining industry the rock winder systems are energy-intensive and possess certain flexibility. 
The systems are used to transport rock, waste and machinery between the ground surface and the 
mine’s underground levels. The material can be stored temporarily before reaching the surface. A 
more detailed analysis of the potential of the winder systems is presented in Vosloo (2006). 

Another process in the mining industry (and other industries as well) is transportation of material 
by means of belt conveyor systems. These usually have flexibility and relatively energy-intensive 
motors are used as shown for example in Marx and Calmeyer (2004). iDSR potential has also been 
studied as in for example Middelberg et al. (2009), where authors report 66% electricity cost 
savings by proper scheduling of the operations. 

In steel making there is also another energy-intensive stage of Hot Rolling of the steel slabs (AISI 
2005). Here, the slab thickness is reduced by applying mechanical pressure on the product. The 
rolls used to press are driven by energy-intensive motors. The process is carried out in batch 
campaigns of several slabs, during which the rolling of one slab takes only a few minutes. 
Unfortunately, this operating mode is in contrast to the need of a large consistent load that could be 
shifted in time. 

2.4 Scheduling under energy constraints 

The field of scheduling and planning has grown rapidly in the last decades. Pochet and Wolsey 
(2006) present an overview of MILP methods used for production planning. A large number of 
studies have emerged using both time representation approaches: discrete and continuous. For a 
general overview concerning the scheduling problems there are multiple papers available, such as 
for example Floudas and Lin (2004), Méndez et al. (2006), Shaik et al. (2006), Maravelias (2012),. 
Kallrath (2002, 2005) gives an overview of planning and design problems for the process industry 
which are based on MILP approaches. Harjunkoski et al. (2014) focus especially on the industrial 
aspects of the scheduling methods. 

Scheduling of steel plants under energy constraints 

Scheduling of steel plants has been studied quite extensively as well, as it is recognized as one of 
the most difficult industrial scheduling problems. Tang et al. (2001) give an overview of planning 
and scheduling systems for integrated steel plants, including Artificial Intelligence, Expert 
Systems, intelligent search and Constraint Programing methods. In Li et al. (2012) the focus is on 
the last continuous-casting stage where particular operational features have to be addressed and a 
rolling horizon was used. For handling complex process constraints and optimizing traditional 
objectives such as makespan or earliest task completion time, an efficient multi-step decomposition 
approach for the industrial-size scheduling of the melt shop area of a stainless steel plant is reported 
by Harjunkoski and Grossmann (2001) based on MILP and LP models. The latter is improved by 
Harjunkoski and Sand (2008) to extend the flexibility of the formulations. 

In recent years scheduling under energy constraints has gained increasing attention. As suggested 
by Rudberg et al. (2013) energy management is still not treated strategically by process industry 
and there is a need for new methods and tools to answer the energy-related issues. Similar 
conclusions are drawn by Thollander and Ottosson (2010) who particularly investigated foundry 
and pulp and paper industries. Energy has been also recognized as one of the challenges for 
industrial implementation of advanced scheduling solutions (Harjunkoski et al. 2014). Merkert et al 
(2015) present a short overview of the methods and challenges related to industrial scheduling with 
energy constraints. Thus point out that well formulated models combining production planning and 
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energy management aspects guarantee a more efficient and sustainable production that fits well 
within the philosophy of Enterprise-Wide Optimization (Grossmann, 2005). In a study by Ashok 
(2006), a discrete-time formulation is used to schedule a mini steel plant where the operating cost is 
optimized. The operating cost includes the price of power consumption under different tariffs, 
charges for registered maximum demand and additional operating cost due to the shifting of loads. 
Zhang and Tang (2010) introduce a discrete-time scheduling formulation using a Lagrangian 
relaxation algorithm based on the subgradient method. The model includes constraints concerning 
power availability and minimization of the energy cost. In recent years, models based on the RTN 
representation have gained attention as an efficient way to deal with resource consumption. Castro 
et al. (2009) proposed a new strategy for handling variable electricity cost in continuous plants 
using a continuous-time formulation. Comparison of both continuous- and discrete-time RTN 
representations showed that the latter’s computational performance is better for handling industrial-
size instances. The work has been extended by an efficient rolling horizon algorithm in Castro et al. 
(2011) using an aggregate model, where time intervals of the same resource cost are aggregated 
into one interval. A steel plant scheduling problem similar to the one studied in this paper, but with 
response to a single price curve, has been successfully reported by Castro et al. (2013) for a time 
granularity of 15 minutes intervals. 

Nolde and Morari (2010) propose a strategy for the modeling of electricity consumption with time-
dependent prices in continuous-time models based on precedence variables. It was applied to a 
stainless-steel process with parallel Electric-Arc Furnaces. The formulation uses six different 
binary variables to capture the relation of a production task to its placement within a grid of 
uniform time intervals. For these intervals, electricity consumption is individually accounted for, 
which makes it possible to track the process load and to optimize the deviation from a pre-agreed 
consumption curve. Haït and Artigues (2011a) propose an improvement to Nolde and Morari’s 
approach replacing the set of six binary variables by binaries indicating whether or not an event 
takes place before or during a time interval. For the same steel case problem, the resulting 
continuous-time MILP model introduced fewer number of constraints and binary variables. As a 
follow up study on scheduling of a foundry, Haït and Artigues (2011b) proposed a hybrid heuristic 
combining Constraint Programing (CP) for solving the assignment and sequencing problem with an 
MILP model for solving the remaining energy-cost scheduling problem. In addition, the detailed 
scheduling of the Electric Arc Furnace stage and human operator availability were taken into 
consideration. Castro et al. (2014) applies the concept of the six cases of task-time interval relations 
as in Nolde and Morari (2010) to optimize the maintenance of a gas-fired power plant. Using 
Generalized Disjunctive Programming, Castro and co-workers finds a tighter formulation for the 
accounting of electricity consumption. The continuous-time strategy was applied to find a schedule 
under constraints of operator availability and cost, maximizing profits from electricity sales under 
time-sensitive demand and pricing. A steel plant is also considered in a study by Boukas et al. 
(1990), using a hierarchical approach with separation of operation and secondary resource 
scheduling in two steps. Constraints were subject to a global limitation of the power delivered to 
the furnaces. 

Energy considerations in the pulping industry 

In the pulp and paper industry, the traditional major decision regarding scheduling optimization are 
order allocation, run formation and sequencing, trimming and load planning (Keskinocak et al. 
2002). An overview of planning and scheduling methods in the pulp and paper industry is provided 
for example by Malik and Qiu (2008) and Keskinocak et al. (2002). The energy considerations 
were always in the scope of interest for this industry since the production process is energy-
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intensive and in some process types it can generate an energy surplus. Due to this reason, energy 
integration aspects can be found in the pulp and paper scheduling literature. In a study by Santos 
and Dourado (1998), a Genetic Algorithms based approach is proposed for an optimal scheduling 
system for the mass and energy production in a kraft pulp and paper mill. The multi-objective 
optimization aspects include steam and electricity production to optimize energy cost and 
production rate changes. More recently, Waldemarsson et al. (2013) include the production of 
energy related by-products in a broader perspective of the entire supply chain planning of a pulping 
mill. The work considered the possibility to sell energy products (e.g. black liquor, liquid rosin and 
bark) and energy carriers (steam and electricity) on the respective markets. The study concluded 
that with the increasing prices of energy the importance of proper planning that takes energy 
aspects into consideration increases as well. The uncertainty of energy prices is also addressed for 
the pulping industry. Using the TMP case example from Pulkkinen and Ritala (2008), the study by 
Karagiannopoulos et al. (2014) investigates a stand-alone pulp that is a member of a so-called 
balance group which bind together energy users and suppliers. 

A generic energy-cost optimization strategy is presented by Harjunkoski et al. (2012). The model is 
based on a flow network formulation (see e.g. Ahuja, Magnanti and Orlin, 1993; Bertsekas, 1991) 
that is able to accommodate different energy sources and sinks. The objective of the model is to 
minimize the cost under contractual constraints. The approach is used in the steel schedule 
optimization with regard to electricity by Hadera et al. (2015a) and a pulping process in Hadera et 
al. (2015c) . Interestingly, related to the latter two, Rebennack et al. (2010) investigates a utility 
problem that is similar to an industrial energy-intensive consumer problem (e.g. Hadera et al. 2014) 
which consists of load commitment and minimization of purchase and sale of electricity. For the 
utility, the goal of the optimization problem is to determine how much electricity to produce from 
own power plants and how much to buy from external electricity markets in order to satisfy a 
deterministic demand. Another study from a power generation perspective is done by Sarimveis et 
al. (2003). The study investigates a power plant that satisfies electricity and steam requirements for 
a pulp and paper mill. The optimization includes detailed mass and energy balances, plant shut 
downs as well as purchase and selling contracts for electricity. 

Selected energy aspects in literature 

Since energy availability and prices can be treated like any other resource in the scheduling models, 
many of the formulations in the literature use a discrete-time approach. Apart from the steel 
industry, demand-side response strategies have been investigated for other energy-intensive 
processes. Mitra et al. (2012a) propose a discrete-time formulation for process plants with an 
emphasis on switching the operating modes of the plant units. Responding to a single time-
sensitive price curve of electricity the model was successfully applied to air separation and cement 
production processes. The same solution strategy was also applied in the context of optimal 
scheduling of an industrial Combined Heat and Power (CHP) plant (Mitra et al. (2013). 
Underutilization of the CHP plant and its response to time-sensitive electricity prices were 
investigated. 

One interesting line of research concerning the energy aspects in scheduling is the topic of the 
uncertainty of the prices. Optimizing operations with regard to a single time-varying price of 
electricity can be found in Li et al. (2003). The air separation plant scheduling problem with 
partially unknown prices of energy was tackled by Ierapetritou et al (2002). Also for the air 
separation plant, a robust scheduling approach was proposed by Mitra et al. (2012b). The Demand-
side Response has to deal with different time scales. A fast response is required in some iDSR 
schemes, for example in network ancillary services. Here control techniques rather than scheduling 
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might be better suited. As investigated by Vujanic et al. (2012), robust optimization might help 
creating flexible schedules to support the ancillary services of cement plants. 

In a study by Özdamar and Birbil (1999) a hierarchical approach is developed and tested for the 
tiling industry. The model aims at lot sizing and assignment of products to the kilns with the goal 
of energy- and inventory cost reduction. The approach consist of two stages, first, the products and 
the capacity are aggregated over the entire planning horizon. Next, another model is solved with 
detailed lot sizing and loading considerations using a heuristic. 

To sum up, there is a vast literature investigating very different aspects of energy-related 
scheduling and production planning in process industries. However, none of the above mentioned 
studies dealt with pure MILP continuous-time scheduling formulation, a large batch process and an 
as complicated energy-cost related optimization as the problem tackled in Chapter 3.1.3. In 
addition, there is a very limited number of studies that deal with the integration of scheduling and 
energy-cost optimization with functionally separated systems as the concept developed in Chapter 
4. 
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3 ENERGY-AWARENESS IN GENERAL PRECEDENCE 
CONTINUOUS-TIME SCHEDULING 

This chapter is one of the two main research parts of the dissertation. It starts with stating the 
technical challenge behind the models, giving the contextual background of the use case. As the 
scope of the work deals with solving large-scale scheduling problem under energy constraints, a 
decomposition approach is developed since the monolithic models cannot be solved efficiently 
enough to tackle industrial-sized instances. 

The chapter is structured as follows: 

 the research motivation context of the technical challenge (Chapter 3.1.1); 
 the industrial use case and the problem of optimal decision making with regard to energy 

such as optimal purchase, sale and deviation of actual process load from committed 
values (Chapter 3.1.2, 3.1.3); 

 different solution strategies of extending scheduling models (Chapter 3.2.2) to answer 
the posed challenges in the motivation part (Chapter 3.2.3, 3.2.4, 3.4); 

 monolithic and heuristic strategies for stainless-steel use case  process (Chapter 3.3, 
3.52.3). 

The resulting models in this chapter can be employed for the functional separation of continuous-
time scheduling and energy optimization, enabling an iterative scheme. The scheme is presented in 
Chapter 4 and also applied to the second use case of Thermo-Mechanical Pulping. 

3.1 Problem description 

3.1.1 Research challenge and motivation 

The technical problem considered in this chapter relates to the first goal of this work which is to 
find an optimal production schedule of a part of a steel making process that is operated in batch 
mode that minimizes a weighted combination of the electricity bill and the lead times of product 
delivery, while satisfying complex production constraints. In the case considered here, a 
continuous-time based general precedence scheduling approach had already been developed for the 
plant (Harjunkoski and Grossmann 2001, Harjunkoski and Sand 2008, Hadera and Harjunkoski 
2013) which is extended here to include awareness of the cost of electric energy. The goal is to 
enable an energy-intensive process plant to realize its Demand-side Response potential at the 
production scheduling level, finding a compromise between production delays and the cost of 
electricity. The main contribution of this work concerns the development of the following items: 

 a generic strategy for energy-aware scheduling, accounting for time-depending cost of 
energy in general precedence continuous-time scheduling models; 
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 extension of energy-aware scheduling to generic multiple purchase contracts 
optimization; 

 a bi-level heuristic for obtaining good solutions in reasonable times for industrial scale 
combined production scheduling and energy cost minimization problems.  

The benefit of using a continuous-time formulation is the exact timing of the production tasks 
within the scheduling horizon. This is in contrast to discrete-time approaches, which discretize the 
time horizon into discrete time intervals. From industrial practice we consider 5-minute 
discretization steps as the desired level of time granularity. Such small time windows creates very 
large discrete-time models leading to computational limitations. Other studies showed that a 15-
minute discretization (Castro et al. 2013) can still be efficient for solving 24 h scheduling horizon 
with a Resource-Task Network (RTN) based monolithic model approach. However, compared to 
the discrete-time formulation, continuous-time models also have some drawbacks. Due to the 
structure of the pricing contracts, it is much easier to account for the cost of the consumption of 
electricity in discrete-time scheduling models. Extending it to continuous-time formulations is not 
straightforward since the use of electricity has to be accounted for in fixed time intervals in which 
related to the resource prices are constant. 

In the next chapters the purchase optimization of multiple sources of electricity, including the 
possibility to sell the electricity back to the grid is considered. Also, the challenge of responding to 
a committed load curve with penalties incurred for both under- and over-consumption is addressed. 
The combination of these two features has not received much attention in the process scheduling 
literature yet. For the given multi-stage steel plant with parallel machines at each stage, the 
resulting monolithic formulation of the problem is computationally intractable when the scheduling 
decisions (assignment and sequence binaries) are degrees of freedom for the optimization. To 
overcome the computational limitations a simple bi-level heuristic approach is introduced. The 
problem is modeled using mathematical programing with Mixed-Integer Linear Programing 
(MILP) and implemented in the GAMS modeling environment using the CPLEX solver. 

3.1.2 Stainless-steel process 

The industrial problem that is addressed in this work concerns the optimal scheduling of a part of 
the stainless-steel production process. The production starts with the scrap melting phase in an 
Electric Arc Furnace (EAF) to form a so-called heat which is the object of scheduling. The process 
of smelting is carried out by passing large amounts of electricity through electrodes in order to 
form high-temperature electric arc (up to 3500°C) that is capable of melting scrap metal. After a 
full heat is formed in the EAF, the heat is transported to the next stage, the Argon Oxygen 
Decarburization (AOD), where the carbon content of the molten steel is reduced by injecting an 
argon-oxygen gas mixture. In order to ensure specific parameters of the molten steel for the final 
stage of casting, a heat goes through the Ladle Furnace (LF) stage to adjust the chemistry and 
temperature to their specified values. Finally, the heat is casted in the Continuous-casting (CC) 
stage, where specific rules about the sequences of heats apply. The process is shown in Figure 3-1. 

There are several production constraints that have to be satisfied by the scheduling model 
formulation. Two parallel pieces of equipment are considered with non-identical machines at each 
stage. For all stages, except of the CC, processing of a subsequent heat can be carried out only after 
an equipment specific setup has been performed. Between subsequent stages, a heat must be 
transported with some minimum time requirement which differs depending on the two units 
considered. 
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Figure 3-1 Considered Stainless-steel production process 

The time spent by a heat waiting between two subsequent stages is restricted by a maximum 
allowed hold-up time in order to avoid a too-large drop of the temperature of the molten steel. 
Heats of the same heat group are casted subsequently on the CC without waiting times. 

3.1.3 Energy cost 

The above mentioned production process consumes large amounts of electricity, in the considered 
case up to 192 MW. The energy demand for this process must always be met, i.e. the plant is 
assumed to purchase at least the amount of electricity needed to satisfy the load curve that results 
from the production schedule. In this work, demand-side response strategies which preserve the 
total production output over some given time horizon is considered, in the computational studies 
they are considered over one day. The challenge addressed in this work is to determine 
simultaneously an optimal purchase and sales policy for electricity, with complex time- and load-
sensitive purchasing options as shown in Figure 3-2, and a production schedule that defines the 
demand of electricity. 

For the industrial case study the purchasing contracts include: 

 long-term contract (base contract or base load) – constant price, constant amount of 
electricity delivered over time; 

 short-term contract (Time-of-Use or TOU) – two price levels (on-peak and off-peak); 
 spot market (day-ahead) – hourly-varying prices, known 24 hours ahead; 
 onsite generation– constant price with additional start-up costs.  

The long-term contract is agreed upon with a provider usually for a period of 3-12 months. Over 
this time, a certain fixed amount of electricity is available for the production plant at all times. The 
agreed amount must be purchased by the plant. Therefore, in a situation where there is no load 
consumption planned at some time interval, the surplus of electricity must be sold back to the grid. 
Establishing a long-term contract is usually considered profitable for the plant since the provider is 
able to offer a lower price for such a constant delivery over a long period. 

The short-term contract (TOU) usually covers up to 3 months. Therefore, the price offered by the 
supplier is normally higher compared to the long-term contract. Here, it is assumed that the 
contract has two different price levels corresponding to on- and off-peak times. The off-peak price 
is lower than the on-peak price which applies during the daylight period. 

Another contract considered in the case study is the day-ahead spot market. Here, the price follows 
regional fluctuations of electricity availability; therefore, it varies on an hourly basis. 
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Figure 3-2 Electricity bill structure 

Apart from purchase contracts, the plant may have the possibility to produce electricity internally, 
which is subject to additional constraints. A start-up cost needs to be accounted for in the total cost 
of onsite generation for each time the onsite power generation is started up. Also, minimum 
runtime and downtime restrictions apply to avoid frequent start-ups and shut-downs of the power 
plant which lead to an accelerated deterioration of the plant.  

The total electricity bill can be reduced by selling electricity back to the grid. The price of selling 
electricity also differs on an hourly basis, depending on the regional situation in the grid. In the 
case of low availability of electric power, the plant can use the possibility to decrease its internal 
demand, to use the negotiated contracts and to use onsite generation in order to sell the electricity 
with a profit. This might happen especially in regions with heavy industry and at low temperatures 
during winter time. 

The electricity bill, apart from the electricity purchase costs, accounts for the deviation penalties. It 
is often the case that large industrial consumers of electricity make bilateral agreements with 
electricity providers to follow a certain agreed load profile. Both the provider and the plant benefit 
from this. The provider knows in advance a very good approximation of the load levels to be 
balanced with supply of generation which leads to minimization of operating cost. In favor, the 
consumer gets a considerable reduction in the price of electricity from the provider. Therefore, 
often the load deviation problem is related to one single contract with pricing schemes such as for 
example Time-of-Use. For our case, it is assumed that the plant predicts its load consumption for a 
period of 24 h minimum one day before the actual load occurs. This forecast is sent to the energy 
supplier, committing the plant to a certain load profile. If the actual consumption differs from this 
plan the plant is obligated to pay penalties. For the case study, the assumption is made that both 
under- and over-consumption is penalized, but with a penalty-free margin.  
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3.2 Monolithic models development 

3.2.1 Structure of the monolithic model 

The proposed MILP formulation describes a power intense steel making process that produces a set 
of products (heats) ݌ ∈ ܲ on a set of units ݉ ∈  .while satisfying various operational constraints ,ܯ
The plant is assumed to deliver a fixed number of products that are known in advance. The power 
consumption is both unit and product specific. The goal is to compute a one day production 
schedule that minimizes the total (net) cost of electricity and the weighted starting times of the 
tasks (i.e. a throughput related criterion). The electricity purchase includes different options and is 
subject to hourly price-variations. The optimization should determine the optimal amounts to be 
transferred from or to the electricity sources or sinks ݅ ∈ ݏ at any given time interval ܫ ∈ ܵ. The end 
of the last time slot is equal to the scheduling horizon. Penalties due to the deviation from a pre-
agreed load curve are incurred when a certain penalty-free buffer is exceeded and may differ for 
under- and over-consumption. The electricity bill can be reduced by selling the surplus of 
electricity. The monolithic models are described using the notation shown in Table 3-1. Additional 
notation introduced for the bi-level solution heuristic is given in Chapter 3.4.1. 

Table 3-1 Monolithic model notation 

Sets:  

ܲ  heats (products) to be produced 

 heat groups with defined sequence of casting  ܩܪ

 subset of heats p mapped to corresponding heat group hg  (ܲ)ܲܩܪ

,ܩܪ)ܮ ܲ), ,ܩܪ)ܨ ܲ)  subset of heats p cast respectively last or first in a heat group casting 
sequence hg 

 equipment (machines)  ܯ

,ܨܣܧ ,ܦܱܣ ,ܨܮ  subsets of equipment  ܥܥ

ܵ  time intervals 

ܵܶ  production stage 

,ܶܵ)ܯܵ  production stage st mapped to corresponding equipment m  (ܯ

,݁݀݋ܰ ,ܫ  nodes in flow network denoting sources and sinks of electricity  ܬ

 purchase contracts node   (݁݀݋ܰ)ݎݑܲ

 production process electricity demand node  (݁݀݋ܰ)݉݁ܦ

 onsite generation node  (݁݀݋ܰ)݊݁ܩ

 balancing node  (݁݀݋ܰ)݈ܽܤ

 electricity sale sink node  (݁݀݋ܰ)݈݁ܽܵ

 ௜,௝,௦  defined arc between nodes i and j in time slot sܥܴܣ

  

Parameters:  
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߬௣,௠  processing duration of heat p on equipment m 

௠ݐ
௦௘௧௨௣   setup time for machine m 

௠,௠ᇲݐ
௠௜௡   minimum transport time from equipment m to m’ 

௣,௦௧ݐ
௠௔௫   maximum hold-up (waiting) time after stage st 

ܽ௦  pre-agreed (committed) load curve 

߬௦  electricity consumption time slot boundary  

߬  time slot duration (for uniform discrete time steps of energy accounting) 

ℎ௣,௠  specific power consumption of processing heat p on equipment m 

ܿ௦,௜,௝   electricity cost of flow from i to j in time slot s 

௦݂,௜,௝
௠௜௡ , ௦݂,௜,௝

௠௔௫   minimum and maximum flow between nodes i and j 

௠௜௡ݎ , ݀௠௜௡ minimum run- and down-time of onsite generation 

ܿ௦௧௔௥௧   startup cost of onsite generation 

݇  coefficient of delivered power reduction due to startup of onsite generation 

ܿ  coefficient of task start time weight in the objective function 

M big M parameter (large number) 

  

Variables:  

௠,௣ݐ
௦ ௠,௣ݐ,

௙  positive continuous variables of starting and finishing time of heat p on 
equipment m 

௣,௦௧ݐ
௦ ௣,௦௧ݐ,

௙   positive continuous variables of starting and finishing time of heat p at 
stage st 

 ௣,௦௧  positive continuous variables of waiting time of heat p after stage stݓ

 ௦ positive continuous variables of electricity consumed in time slot sݍ

ܺ௠,௣  binary variable, true when heat p is assigned for processing on equipment 
m 

௦ܸ௧,௣,௣ᇲ   binary variable, true when heat p’ is processed after heat p on stage st 

௣ܻ,௦௧,௦
௦ , ௣ܻ,௦௧,௦

௙   binary variable, true when heat p starts or finishes on stage st in the slot s 

௦,௜,௝ܩ   binary variable, true when generation is running in time slot s 

݃௦,௜,௝
௦   pseudo-continuous positive variable denoting if onsite generation start-up 

occurred in time slot s 

௣,௠,௦௧,௦ݕ
௦௔௨௫ , ௣,௠,௦௧,௦ݕ

௙௔௨௫   auxiliary continuous positive variable true when heat p is assigned for 
processing and started or finished processing on stage st in time slot s  

ܽ௣,௠,௦௧,௦ , ܾ௣,௠,௦௧,௦ , 
ܿ௣,௠,௦௧,௦ , ݀௣,௠,௦௧,௦ 

positive continuous variables accounting for processing time of heat p on 
equipment m on stage st spent within a slot s 
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 ௣,௠,௦  positive continuous variable accounting or processing time of heat p on݋
equipment m spent within a slot s in the improved model 

ܾ௦  positive continuous variables of buffer level for allowed deviation from 
committed load in time slot s 

ܾ௦
௢, ܾ௦

௨   positive continuous variables of upper and lower bounds for buffer in time 
slot s 

ܿ௦
௢ , ܿ௦

௨  positive continuous variables of actual over- and under-consumption in 
time slot s 

௦݂,௜,௝  positive continuous variables of flow from node i to j in time slot s 

ܿ௦
௚௘௡   positive continuous variables of cost of onsite generation in slot s 

μ  continuous variable of net electricity consumption cost 

 positive continuous variables of deviation penalties cost  ߜ

 

For the problem described in Chapter 3.1 a monolithic model is developed. It consists of several 
components as shown in Figure 3-3. First, to ensure that all process specific constraints are 
satisfied, a scheduling model is created using the continuous-time general precedence approach 
(Chapter 3.2.2). The use of this approach is motivated by the required level of precision stemming 
from the specification by the industrial end-user. In order to optimize the purchase of electricity 
and to augment the schedule in order to express potential changes of load patterns, a strategy for 
expanding the scheduling model with energy-awareness was formulated (Chapter 3.2.3). This part 
of the monolithic model uses the continuous variable (used in the scheduling part) of task start time 
௠,௣ݐ

௦  in order to find the contribution of a task to the electricity consumption within a given time 
interval ݏ. 

When applying this strategy for all tasks, the total electricity consumption ݍ௦ of the process in a 
given time interval can be computed, which is needed for the optimization of the cost of electricity 
(Chapter 3.2.4). This part computes optimal values in a flow network representing possible flows 
of electricity ௦݂,௜,௝ from sources to sinks. The optimization results in an optimal cost structure of the 
available purchase contracts with the exact amount of the electricity to be bought or sold under 
each contract. The knowledge of the process consumption during the time slots also enables to 
account for potential penalties ߜ paid due to deviations from the pre-agreed load curve, and to 
determine when it is profitable to under- or over-consume electricity. 

The objective function of the monolithic model takes into account the weighted task start times, the 
net electricity consumption cost μ and the penalties ߜ paid for deviations. By choosing the weights 
in the summation, potential losses in the process (e.g. heat losses due to waiting time between the 
stages) or delays of the production can be traded off against the cost of electricity purchase and 
sales.  
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Figure 3-3 Monolithic model structure 

3.2.2 Production scheduling model 

The general precedence scheduling model for the stainless-steel plant used in this study is largely 
based on the model introduced by Harjunkoski and Grossmann (2001). This model was further 
extended to a more flexible formulation introducing stages and multiple machines in Harjunkoski 
and Sand (2008). The scheduling part of the model uses assignment and precedence binaries 
following equations (1-17) from Hadera and Harjunkoski (2013). 

The scheduling model is based on the precedence variables and assignment variables that 
determine which of the parallel machines on each stage shall process a given heat. The general 
precedence ௦ܸ௧,௣,௣ᇲ  is true if a product  ݌ is processed before a product ݌ᇱ on a stage ݐݏ. The 
assignment ܺ௠,௣ is true only when a given product ݌ is processed on machine ݉. The sum Eq. 
(3.1) states that exactly one machine should process a heat per stage.  

∑ ܺ௠,௣௠∈ௌெೞ೟,೘ = ݌∀  1 ∈ ܲ, ݐݏ ∈ ܵܶ (3.1) 

Equation (3.2) defines the finishing time ݐ௠,௣
௙  as the starting time ݐ௠,௣

௦  plus the selected processing 
length ߬௣,௠ .  

௠,௣ݐ
௙ = ௠,௣ݐ

௦ + ܺ௠,௣ ∙ ߬௣,௠  ∀݉ ∈ ,ܯ ݌ ∈ ܲ  (3.2) 

Since a product can be processed only once on a given machine, the unassigned machines get a 
zero starting time Eq. (3.3).  

௠,௣ݐ
௦ ≤ M ∙ ܺ௠,௣  ∀݉ ∈ ,ܯ ݌ ∈ ܲ  (3.3) 

The stage starting and finishing times ݐ௣,௦௧
௦ ௣,௦௧ݐ,

௙  are synchronized with the corresponding machine 
times in Eqs. (3.4)-(3.5).  

௣,௦௧ݐ
௦ = ∑ ௠,௣ݐ

௦
௠∈ௌெೞ೟,೘ ݌  ∈ ܲ, ݐݏ ∈ ܵܶ  (3.4) 
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௣,௦௧ݐ
௙ = ∑ ௠,௣ݐ

௙
௠∈ௌெೞ೟,೘ ݌  ∈ ܲ, ݐݏ ∈ ܵܶ  (3.5) 

The scheduling model handles maximum hold-up times after processing has been completed on a 
given stage, equipment specific setup ݐ௠

௦௘௧௨௣ times and minimum transportation times. The 
processing on the next stage can be done only after the processing of the previous stage has 
finished plus some waiting time ݓ௣,௦௧, which serves here as a slack variable which is determined by 
the optimization. The production flow between subsequent stages is established in Eq. (3.6).  

௣,௦௧ାଵݐ
௦ = ௣,௦௧ݐ

௙ ௣,௦௧ݓ + ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ, ݐݏ < |ܵܶ| (3.6) 

Due to process restrictions, it is necessary to enforce lower and upper bounds for the waiting times. 
The minimum corresponds to the physical possibility of transferring the product to the next stage, 
and it is equal to the minimum transportation time between machines ݐ௠,௠ᇲ

௠௜௡  as stated in (3.7). The 
upper bound ݐ௣,௦௧

௠௔௫  of the waiting time reflects the process constraint that a heat should not cool off 
below a certain level. 

௠,௠ᇲݐ
௠௜௡ ൫ܺ௠,௣ + ܺ௠ᇲ,௣ − 1൯ ≤ ௣,௦௧ݓ ≤ ௣,௦௧ݐ

௠௔௫  
 
݌∀ ∈ ܲ, ݉, ݉ᇱ ∈ ,ܯ ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈ ,ܯܵ ݐݏ} + 1, ݉ᇱ} ∈ ݐݏ    ,ܯܵ < |ܵܶ|  (3.7) 

The precedence of the products is characterized by the fact that either ݌ is processed after ݌ᇱ or ݌ᇱ 
is processed after ݌. Therefore, only one of the two binaries can be true. Eq. (3.8) enforces a correct 
sequencing.  

௦ܸ௧,௣,௣ᇲ + ௦ܸ௧,௣ᇲ ,௣ = ,݌∀    1 ᇱ݌ ∈ ܲ, ݐݏ ∈ ܵܶ, ݌ <  (3.8) ′݌

In order to impose the common practice that the sequence of the products that are casted on a CC 
must propagate back to the other production stages, Eq. (3.9) is introduced.  

௦ܸ௧,௣,௣ᇲ = ௦ܸ௧ାଵ,௣,௣ᇲ ,݌∀   ᇱ݌ ∈ ܲ, ݐݏ ∈ ܵܶ, ݌ < ,ᇱ݌ ݐݏ < |ܵܶ| (3.9) 

The precedence constraint in Eq. (3.10) for other stages than CC restricts that a next heat should be 
processed only after the previous one has finished plus a setup time.  

௠,௣ᇲݐ
௦ ≥ ௠,௣ݐ

௙ + ௠ݐ
௦௘௧௨௣ − (M + ௠ݐ

௦௘௧௨௣)൫3 − ௦ܸ௧,௣,௣ᇲ − ܺ௠,௣ − ܺ௠,௣ᇲ൯ 
 
,݌∀ ᇱ݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈ ,ܯܵ ݌ ≠ ,ᇱ݌ ݐݏ < |ܵܶ|  (3.10) 

At the CC-stage no setup time ݐ௠
௦௘௧௨௣  should occur to ensure continuous casting Eq. (3.11). 

However, a setup must be carried out between the last ܩܪ)ܮ, ܲ) and first ܩܪ)ܨ, ܲ),   heats of 
different heat groups Eq. (3.12).  

௠,௣ᇲݐ
௦ ≥ ௠,௣ݐ

௙ − M൫3 − ௦ܸ௧,௣,௣ᇲ − ܺ௠,௣ − ܺ௠,௣ᇲ൯ 
 
,݌∀ ᇱ݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈ ,ܯܵ ݌ ≠ ,ᇱ݌ ݐݏ = |ܵܶ|  (3.11) 

௠,௣ᇲݐ
௦ ≥ ௠,௣ݐ

௙ + ௠ݐ
௦௘௧௨௣ − (M + ௠ݐ

௦௘௧௨௣)൫3 − ௦ܸ௧,௣,௣ᇲ − ܺ௠,௣ − ܺ௠,௣ᇲ൯   
݌∀ ∈ ,ܩܪ)ܮ ܲ), ᇱ݌ ∈ ,ܩܪ)ܨ ܲ), ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈ ,ܯܵ ݌ ≠ ,ᇱ݌ ݐݏ = |ܵܶ| (3.12) 

Constraint (3.13) ensures that heats of the same heat group are assigned to the same caster. 

ܺ௠,௣ = ܺ௠,௣ାଵ   
݌∀ ∈ ܲ, ݉ ∈ ,ܯ ℎ݃ ∈ ,ܩܪ {ℎ݃, {݌ ∈ ,(ܲ)ܲܩܪ ,ݐݏ} ݉} ∈ ,ܯܵ ݐݏ = |ܵܶ|  (3.13) 
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As the heats are pre-ordered within a casting sequence, Eq. (3.14) ensures that next heat in a 
sequence starts immediately after the previous one has finished.  

௣ାଵ,௦௧ݐ
௦ = ௣,௦௧ݐ

௙ ݌∀   ∈ ,ܩܪ)ܮ\ܲ ܲ), ݐݏ ∈ ܵܶ, ݐݏ = |ܵܶ|  (3.14) 

From technical process requirements, the heat sequence within one heat group is known. The 
precedence of heats within one heat group is enforced and redundant values are eliminated in Eq. 
(3.15). Redundant sequencing variables are eliminated when comparing two identical products in 
Eq. (3.16). 

௦ܸ௧,௣,௣ᇲ = ,݌∀    1 ᇱ݌ ∈ ܲ, ݌ < ,ᇱ݌ ݐݏ ∈ ܵܶ, ℎ݃ ∈ ,ℎ݃}   ,ܩܪ ,{݌ {ℎ݃, {ᇱ݌ ∈  (3.15) (ܲ)ܲܩܪ

௦ܸ௧,௣,௣ᇲ = ,݌∀  0 ᇱ݌ ∈ ܲ, ݐݏ ∈ ܵܶ, ݌ =  ᇱ  (3.16)݌

Since the goal of the production plant is to meet the production targets as soon as possible, 
minimizing the makespan (or tasks completion time) can be specified as an objective function in 
the MILP model. 

3.2.3 Energy-awareness extensions 

In continuous-time models, it is challenging to account for resource consumption. In this work, the 
scheduling model described above is extended to account for the electricity consumption by each 
task within given time intervals of interest. The time grid with intervals in our use case corresponds 
to volatile electricity prices and committed load values. Therefore the length of the intervals is one 
hour. The scheduling model uses continuous task start time variables which are linked to the 
energy-aware part of the model, leading to the computation of the overall electricity consumption 
within a given time interval. Once the model is complemented by energy-awareness, both the 
electricity purchase and the load commitment can be optimized. 

3.2.3.1. Six binaries model 

Strategies for resource consumption accounting in continuous-time based scheduling models have 
been reported in the literature. Nolde and Morari (2010) presented a strategy introducing six 
binaries to capture six different cases (Figure 3-4) of when a task might start or end related to a 
considered time interval within which one is interested to know the electricity consumption from 
the production process. This strategy was later reformulated by Hadera and Harjunkoski (2013) to 
account for parallel machines at each production stage with goals of optimizing for a single price 
curve and load deviation problem. To reduce the model size, the starting and finishing times of 
tasks are replaced with corresponding stage starting and finishing times. The resulting model 
formulation is presented below and later used in the numerical studies to compare its performance 
with the event binaries strategy described in next chapters.  
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Figure 3-4 Electricity consumption for six binaries model 

The literature based extension of energy-awareness for continuous-time scheduling models uses six 
different cases (as shown in Figure 3-4) of how a task can contribute to electricity consumption 
within a considered time slot: 

1. A task is processed entirely within the time slot. 

Processing within a time slot means that stage’s finishing time ݐ௣,௦௧
௙  occurs before the time slot’s 

finishing time ߬௦ and stage’s starting time ݐ௣,௦௧
௦  occurs later than the time slot’s starting time ߬௦ିଵ. 

For this case, the binary variable ܣ௣,௦,௦௧  will be true, thus equations using Big-M formulation are 
written as in Eq.(3.17)- (3.18). The duration of processing within the slot will in this case be equal 
to the processing time of the task itself.  

௣,௦௧ݐ
௙ ≤ ߬௦ + (M − ߬௦)൫1 − ݌∀  ௣,௦,௦௧൯ܣ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.17) 

௣,௦௧ݐ
௦ ≥ ߬௦ିଵ − ߬௦ିଵ(1 − ݌∀  (௣,௦,௦௧ܣ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.18) 

2. A task starts before and finishes within the time slot. 

Second case occurs if stage’s start time ݐ௣,௦௧
௦  occurs before the lower boundary of the considered 

slot Eq. (3.21), however the stage’s finish time ݐ௣,௦௧
௙  is placed within the slot Eq. (3.19)- (3.20). For 

this case, the binary variable ܤ௣,௦,௦௧  will be true. Processing time contribution of the task within the 

slot is equal to the tasks’ finishing time ݐ௣,௠
௙  minus the lower boundary ߬௦ିଵ of the considered time 

slot.  

௣,௦௧ݐ
௙ ≥ ߬௦ିଵ − ߬௦ିଵ൫1 − ݌∀  ௣,௦,௦௧൯ܤ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.19) 

௣,௦௧ݐ
௙ ≤ ߬௦ + (M − ߬௦)൫1 − ௣,௦,௦௧ܤ − ݌∀  ௣,௦,௦௧൯ܣ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.20) 

௣,௦௧ݐ
௦ ≤ ߬௦ିଵ + (M − ߬௦ିଵ)(1 − ݌∀  (௣,௦,௦௧ܤ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.21) 

3. A task starts within and finishes after the time slot. 

Similarly to the second case, the task’s start time ݐ௣,௦௧
௦  occurs within the considered time interval 

Eq. (3.23)- (3.24) and at the same time finishing time ݐ௣,௦௧
௙  is placed after the upper boundary of the 
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slot Eq. (3.22). For this case, the binary variable ܥ௣,௦,௦௧  will be true. The time a task spent within 
the slot will equal to the upper boundary ߬௦ of the slot minus the start time ݐ௣,௠

௦  of the task.  

௣,௦௧ݐ
௙ ≥ ߬௦ − ߬௦൫1 − ݌∀  ௣,௦,௦௧൯ܥ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.22) 

௣,௦௧ݐ
௦ ≥ ߬௦ିଵ − ߬௦ିଵ(1 − ௣,௦,௦௧ܥ − ݌∀  (௣,௦,௦௧ܣ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.23) 

௣,௦௧ݐ
௦ ≤ ߬௦ + (M − ߬௦)(1 − ݌∀  (௣,௦,௦௧ܥ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.24) 

4. A task over-spans the time slot. 

When duration of the task is longer than the time interval itself there might be a case when it over-
spans the interval. This occurs only when the start time of the task ݐ௣,௦௧

௦  is placed before the lower 

boundary of the time slot Eq. (3.26) and at the same time the finish time ݐ௣,௦௧
௙  of task occurs after 

the upper bound of the slot Eq. (3.25). For this case the binary variable ܦ௣,௦,௦௧  will be true. Then, 
the amount of time the task contributed to the time slot will be equal to the length of the time slot 
itself (߬௦ − ߬௦ିଵ).  

௣,௦௧ݐ
௙ ≥ ߬௦ − ߬௦൫1 − ௣,௦,௦௧ܦ − ݌∀  ௣,௦,௦௧൯ܥ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.25) 

௣,௦௧ݐ
௦ ≤ ߬௦ିଵ + (M − ߬௦ିଵ)(1 − ௣,௦,௦௧ܦ − ݌∀  (௣,௦,௦௧ܤ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.26) 

5. A task starts and finishes before the considered time slot. 

Here both the starting time ݐ௣,௦௧
௦   and finishing time ݐ௣,௦௧

௙  takes place before the starting of the 
considered time interval ߬௦ିଵ. For this case, the binary variable ܧ௣,௦,௦௧  will be true when finishing 

time ݐ௣,௦௧
௙  occurs before the considered time slot, as in Eq. (3.27). 

௣,௦௧ݐ
௙ ≤ ߬௦ିଵ + (M − ߬௦ିଵ)(1 − ݌∀  (௣,௦,௦௧ܧ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.27) 

6. A task starts and finishes after the considered time slot. 

Here both the starting time ݐ௣,௦௧
௦   and finishing time ݐ௣,௦௧

௙  takes place after the finishing of the 
considered time interval ߬௦. For this case, the binary variable ܨ௣,௦,௦௧ will be true when starting time 
௣,௦௧ݐ

௦  occurs later than upper bound of the considered time slot, as in Eq. (3.28). 

௣,௦௧ݐ
௦ ≥ ߬௦ − ߬௦(1 − ݌∀  (௣,௦,௦௧ܨ ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.28) 

The big-M value is set to be the end of the scheduling horizon. The formulation is improved 
compared to Nolde and Morari (2010) by introducing second binary in the Big-M equations of 
similar boundary conditions as in Eq. (3.20), (3.23), (3.25), (3.26). To complete the formulation, an 
important constraint ensuring that there is only one of the six binaries true for a task has to be 
enforced, as in Eq. (3.29). 

௣,௦,௦௧ܣ + ௣,௦,௦௧ܤ + ௣,௦,௦௧ܥ + ௣,௦,௦௧ܦ + ௣,௦,௦௧ܧ + ௣,௦,௦௧ܨ = ݌∀  1 ∈ ܲ, ݏ ∈ ܵ, ݐݏ ∈ ܵܶ  (3.29) 

With the help of the binaries being true for respective cases of task-time slot relation, it is possible 
to capture the amount of time a given task was processed in a particular time slot. The task’s 
consumption within the slot can be accounted for by multiplying time spent with a parameter of 
specific electricity consumption of the task. Therefore, with summation of all tasks the total 
electricity consumption in the time slot is captured with Eq.(3.30). The equation is divided by 60 to 
convert the unit from ܹ݊݅݉ܯ into ܹܯℎ. In the equation two problems arise. First, there are two 
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nonlinearities from the product of binary and continuous variable. Second, the equation do not 
account for the fact that one of the machines in the stage does not process a task.  

௦ݍ = ∑ ℎ௣,௠(ܣ௣,௦,௦௧ ∙ ߬௣,௠௣,௦௧,௠∈ௌெೞ೟,೘ + ௣,௦௧ݐ௣,௦,௦௧൫ܤ
௙ − ߬௦ିଵ൯ ௣,௦,௦௧൫߬௦ܥ + − ௣,௦௧ݐ

௦ ൯ + ௣,௦,௦௧(߬௦ܦ −
߬௦ିଵ))/60 ∀ݏ ∈ ܵ  (3.30) 

In order to deal with the latter problem, a set of auxiliary variables can be designed for which those 
tasks not processing a product will have the time contribution to the slot put to zero. That means, 
whenever a product is not assigned to a machine the binaries of respective six cases shall be put to 
zero. For the first case with ܣ௣,௦,௦௧  binary, it can only be true when assignment binary ܺ௠,௣ is true, 
as in Eq. (3.31)-(3.32). Similarly for the ܦ௣,௦,௦௧  binary as in Eq. (3.33)-(3.34). 

ܽ௣,௠,௦௧,௦ ≥ ௣,௦,௦௧ܣ − (1 − ܺ௠,௣)  ∀݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.31)  ܯܵ

ܽ௣,௠,௦௧,௦ ≤ ௣,௦,௦௧ܣ + 1 − ܺ௠,௣)  ∀݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.32)  ܯܵ

݀௣,௠,௦௧,௦ ≥ ௣,௦,௦௧ܣ − (1 − ܺ௠,௣)  ∀݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.33)  ܯܵ

݀௣,௠,௦௧,௦ ≤ ௣,௦,௦௧ܣ + 1 − ܺ௠,௣  ∀݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.34)  ܯܵ

For the other cases of ܤ௣,௦,௦௧  and ܥ௣,௦,௦௧  by formulating the auxiliary variable the nonlinearities can 
be overcome by applying an exact linearization method. The auxiliary variables have the value of 
the time contribution of the respective binary case only both the case binary is true and the 
assignment is true as well. The constraints for the two cases are shown in Eq. (3.35)-(3.42). 

ܾ௣,௠,௦௧,௦ ≥ ௣,௦௧ݐ
௙ − ߬௦ିଵ − (M − ߬௦ିଵ)(2 − ௣,௦,௦௧ܤ − ܺ௠,௣)   

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.35)  ܯܵ

ܾ௣,௠,௦௧,௦ ≤ ௣,௦௧ݐ
௙ − ߬௦ିଵ + ߬௦ିଵ(2 − ௣,௦,௦௧ܤ − ܺ௠,௣)   

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.36)  ܯܵ

ܾ௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)(1 − ௣,௦,௦௧ܤ + ܺ௣,௠)   
݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.37)  ܯܵ

ܾ௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ) ∙ ݌∀  ௣,௦,௦௧ܤ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.38)  ܯܵ

ܿ௣,௠,௦௧,௦ ≥ ߬௦ ௣,௦௧ݐ −
௦ − ߬௦(2 − ௣,௦,௦௧ܥ − ܺ௠,௣)  

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.39)  ܯܵ

ܿ௣,௠,௦௧,௦ ≤ ߬௦ ௣,௦௧ݐ −
௦ + (M − ߬௦)(2 − ௣,௦,௦௧ܥ − ܺ௠,௣)   

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.40)  ܯܵ

ܿ௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)(1 − ௣,௦,௦௧ܥ + ܺ௠,௣)   
݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.41)  ܯܵ

ܿ௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ) ∙ ݌∀  ௣,௦,௦௧ܥ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.42)  ܯܵ

With the help of the auxiliary variables the final constraint for electricity consumption accounting 
can be changed from Eq. (3.30) to the one shown in Eq. (3.43). 

௦ݍ = ∑ ℎ௣,௠(ܽ௣,௠,௦௧,௦߬௣,௠௣∈௉,௦௧∈ௌ்,௠∈ௌெೞ೟,೘ + ܾ௣,௠,௦௧,௦ + ܿ௣,௠,௦௧,௦ + ݀௣,௠,௦௧,௦(߬௦ − ߬௦ିଵ)) ଵ
଺଴

 
ݏ∀  ∈ ܵ  (3.43) 
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3.2.3.2. Event binaries model 

They key idea in the approach developed here is the use of the two event binaries representing 
whether a given task started ( ௣ܻ,௦௧,௦

௦ ) or finished ( ௣ܻ,௦௧,௦
௙ ) in or before or after particular time slot ݏ 

(Figure 3-5).  

Since the boundaries of the time slot ݏ are known, Big-M constraints in Eqs. (3.44)-(3.47) force the 
event binaries to be true in case the start or finish variable takes a value between the time slot’s 
upper bound ߬௦ and lower bound ߬௦ିଵ.  

௣,௦௧ݐ
௦ ≥ ߬௦ିଵ ∙ ௣ܻ,௦௧,௦

௦ ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ  (3.44) 

௣,௦௧ݐ
௦ ≤ ߬௦ + ܯ) − ߬௦)(1 − ௣ܻ,௦௧,௦

௦ ݌∀  ( ∈ ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ  (3.45) 

௣,௦௧ݐ
௙ ≥ ߬௦ିଵ ∙ ௣ܻ,௦௧,௦

௙ ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ  (3.46) 

௣,௦௧ݐ
௙ ≤ ߬௦ + (M − ߬௦)(1 − ௣ܻ,௦௧,௦

௙ ݌∀  ( ∈ ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ  (3.47) 

However, the use of the stage set ݐݏ in the definition of the event binaries does not indicate which 
of the available equipment of this stage is actually processing. Therefore, together with the 
assignment variable ܺ௣,௠ two additional auxiliary pseudo-binary variables ݕ௣,௠,௦௧,௦

௦௔௨௫  and ݕ௣,௠,௦௧,௦
௙௔௨௫  

can be introduced. These are true only in case the respective event binary is true and the assignment 
is true as well Eqs. (3.48)-(3.53). 

௣,௠,௦௧,௦ݕ
௦௔௨௫ ≥ ܺ௠,௣ + ௣ܻ,௦௧,௦

௦ − ݌∀  1 ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.48)  ܯܵ

௣,௠,௦௧,௦ݕ
௦௔௨௫ ≤ ܺ௠,௣  ∀݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.49)  ܯܵ

௣,௠,௦௧,௦ݕ
௦௔௨௫ ≤ ௣ܻ,௦௧,௦

௦ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.50)  ܯܵ

௣,௠,௦௧,௦ݕ
௙௔௨௫ ≥ ܺ௠,௣ + ௣ܻ,௦௧,௦

௙ − ݌∀  1 ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.51)  ܯܵ

௣,௠,௦௧,௦ݕ
௙௔௨௫ ≤ ܺ௠,௣  ∀݌ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.52)  ܯܵ

 

 
Figure 3-5 Event binaries to describe the consumption of electricity in pricing time slots 
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௣,௠,௦௧,௦ݕ
௙௔௨௫ ≤ ௣ܻ,௦௧,௦

௙ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.53)  ܯܵ

The two auxiliary binaries will have indices representing product ݌, machine ݉, stage ݐݏ and time 
slot ݏ. That enables us to introduce continuous variables that are used to capture different cases of 
how a particular task (here a heat processed on a unit) relates to a time slot. As shown in Figure 3-5 
there are four different scenarios. 

1. A task is processed entirely within the time slot 

Processing within a time slot means that the start and finish time of the task must be placed within 
the time slot upper and lower boundary, both event binaries need to hold true. To capture this case 
an auxiliary variable ܽ௣,௠,௦௧,௦ is introduced as described in Equation (3.54)-(3.56). 

ܽ௣,௠,௦௧,௦ ≥ ௣,௠,௦௧,௦ݕ
௦௔௨௫ + ௣,௠,௦௧,௦ݕ

௙௔௨௫ − ݌∀  1 ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.54)  ܯܵ

ܽ௣,௠,௦௧,௦ ≤ ௣,௠,௦௧,௦ݕ
௦௔௨௫ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.55)  ܯܵ

ܽ௣,௠,௦௧,௦ ≤ ௣,௠,௦௧,௦ݕ
௙௔௨௫ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.56)  ܯܵ

2. A task starts before and finishes within the time slot 

For this case the start binary shall be zero for the considered slot. However the finish binary must 
hold true. That combination of the two binaries is enough to capture the time contribution ܾ௣,௠,௦௧,௦ 
of the task, as shown in Equation (3.57)-(3.60). 

ܾ௣,௠,௦௧,௦ ≥ ௣,௠ݐ
௙ − ߬௦ିଵ − (M − ߬௦ିଵ)(1 − ௣,௠,௦௧,௦ݕ

௙௔௨௫ + ௣,௠,௦௧,௦ݕ
௦௔௨௫ )   

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.57)  ܯܵ

ܾ௣,௠,௦௧,௦ ≤ ௣,௠ݐ
௙ − ߬௦ିଵ + ߬௦ିଵ(1 − ௣,௠,௦௧,௦ݕ

௙௔௨௫ )   
݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.58)  ܯܵ

ܾ௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)ݕ௣,௠,௦௧,௦
௙௔௨௫ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.59)  ܯܵ

ܾ௣,௠,,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)(1 − ௣,௠,௦௧,௦ݕ
௦௔௨௫ ݌∀  ( ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.60)  ܯܵ

3. A task starts within and finishes after the time slot 

In this case, the task should start between the lower and the upper bounds of the time slot and finish 
sometime after the upper bound. That means the start event binary is true for the slot and the finish 
event binary is false. The variable ܿ௣,௠,௦௧,௦ is defined by Equation (3.61)-(3.64). 

ܿ௣,௠,௦௧,௦ ≥ ߬௦ − ௣,௠ݐ
௦ − ߬௦(1 − ௣,௠,௦௧,௦ݕ

௦௔௨௫ + ௣,௠,௦௧,௦ݕ
௙௔௨௫ )   

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.61)  ܯܵ

ܿ௣,௠,௦௧,௦ ≤ ߬௦ − ௣,௠ݐ
௦ + (M − ߬௦)(1 − ௣,௠,௦௧,௦ݕ

௦௔௨௫ )   
݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.62)  ܯܵ

ܿ௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)ݕ௣,௠,௦௧,௦
௦௔௨௫ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.63)  ܯܵ

ܿ௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)(1 − ௣,௠,௦௧,௦ݕ
௙௔௨௫ ݌∀  ( ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.64)  ܯܵ

4. A task over-spans the full time slot 

This occurs only when the start time of the task is placed before the lower bound of the time slot 
and at the same time the finish time of the task occurs after the upper bound of the time slot. This 
translates into zero values for both of the event binaries. In addition the start event binary is true in 
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one of the earlier slots before the considered one, and similarly, the finish event binary is true in 
one of the later time slots. The variable ݀௣,௠,௦௧,௦ is defined by the constraints in Equations (3.62)-
(3.66). If the task either started or finished entirely before the considered slot or after the slot it 
does not contribute to the electricity consumption within the slot. 

݀௣,௠,௦௧,௦ ≥ (߬௦ − ߬௦ିଵ) ∙ ቀ∑ ௣,௠,௦௧,௦ᇲݕ
௦௔௨௫௦ᇲழ௦

ଵ + ∑ ௣,௠,௦௧,௦ᇲݕ
௙௔௨௫|ௌ|

௦ᇲவ௦ − 1ቁ   
݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.62)  ܯܵ

݀௣,௠,௦௧,௦ ≤  (߬௦ − ߬௦ିଵ) ∙ ∑ ௣,௠,௦௧,௦ᇱݕ
௦௔௨௫௦ᇲழ௦

ଵ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.63)  ܯܵ

݀௣,௠,௦௧,௦ ≤   (߬௦ − ߬௦ିଵ) ∙ ∑ ௣,௠,௦௧,௦ᇱݕ
௙௔௨௫|ௌ|

௦ᇲவ௦ ݌∀   ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.64)  ܯܵ

݀௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)(1 − ௣,௠,௦௧,௦ݕ
௦௔௨௫ ݌∀  ( ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.65)  ܯܵ

݀௣,௠,௦௧,௦ ≤ (߬௦ − ߬௦ିଵ)(1 − ௣,௠,௦௧,௦ᇱݕ
௙௔௨௫ ݌∀  ( ∈ ܲ, ݉ ∈ ,ܯ ݐݏ ∈ ܵܶ, ݏ ∈ ܵ, ,ݐݏ} ݉} ∈  (3.66)  ܯܵ

The constraints based on the above cases yield the continuous variables  ܾ௣,௠,௦௧,௦, ܿ௣,௠,௦௧,௦, ݀௣,௠,௦௧,௦ 
accounting for how much time a given processing task spent within the considered time slot. Since 
the specific electricity consumption of the processing task is known, a proper summation of a 
product of the continuous variables and machine-specific electricity consumption parameter 
accounts for the total consumption in a given time slot Eq. (3.67). The above described approach 
yields fewer binaries than the one used by Nolde and Morari (2010), where six binary variables are 
used to describe the relation between the task and the time slot. Here only two event binaries are 
needed. 

௦ݍ = ∑ ℎ௣,௠௣∈௉,௠∈ெ ൫ܽ௣,௦,௦௧,௠߬௣,௠ + ܾ௣,௦,௦௧,௠ + ܿ௣,௦,௦௧,௠ + ݀௣,௦,௦௧,௠൯/60  ∀ݏ ∈ ܵ  (3.67) 

A set of tightening constraints can help to speed up the computational performance of the model. In 
Eq. (3.68) and (3.69) restriction is made that for only one slot within the entire time horizon the 
event binary is active. Additionally, it is true only when a task exist, i.e. when a product is assigned 
to be processed on a machine. Eq. (3.70) accounts for total consumption of the schedule to be equal 
to sum of total consumption of those tasks that has been assigned. 

∑ ௣ܻ,௦௧,௦
௦

௦∈ௌ = ∑ ܺ௠,௣௠∈ெ,{௦௧,௠}∈ௌெ ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ  (3.68) 

∑ ௣ܻ,௦௧,௦
௙

௦∈ௌ = ∑ ܺ௠,௣௠∈ெ,{௦௧,௠}∈ௌெ ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ  (3.69) 

∑ ܺ௠,௣ ∙ ℎ௣,௠ ∙௣∈௉,௠∈ெ ௣,௠/60ߨ = ∑ ௦௦∈ௌݍ   (3.70) 

3.2.3.3. Improved event binaries model 

The scheduling models introduced in the previous sections was investigated in Hadera and 
Harjunkoski (2013) and Hadera et al. (2014) with two different energy-aware strategies for 
continuous-time models. In this Chapter an improvement of the original event binaries model is 
formulated. The event binaries allow capturing different cases of how a task can contribute to 
resource consumption in particular time slot of interest with a new strategy as shown in Figure 3-6.  
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Figure 3-6 Task - time slot relations depending on the event binaries 

The improvement of the energy-aware formulation is due to two modifications. Firstly, the 
auxiliary pseudo-binaries ݕ௣,௠,௦௧,௦

௦௔௨௫  and ݕ௣,௠,௦௧,௦
௙௔௨௫  are removed. These two were designed to take the 

value of the event binary, however only for those machine – product combination which was 
assigned to perform a give task (assignment binary ܺ௣,௠ true). The improvement of our work 
embeds the elimination of the not-assigned task inside of constrains for capturing the energy-
awareness, as it will be explained later in explanations of the time-task slot relationship. 

Secondly, the way how the model captures the amount of time a given task spent in a given energy-
related time slot is changed. For a given task that is a combination of a product ݌ and machine ݉ a 
variable ݋௣,௠,௦ can be introduced. It denotes how much processing time a given task spent in a 
particular time slot ݏ, see Figure 3-7 for an example. 

Note that the duration of the task is ݀ଵ + ݀ଶ which corresponds to ∑ ௣,௠,௦௦݋  This single continuous 
variable will replace the four continuous variables ܽ௣,௠,௦௧,௦ , ܾ௣,௠,௦௧,௦ , ܿ௣,௠,௦௧,௦ , ݀௣,௠,௦௧,௦ developed in 
Hadera et al. (2015a).  

 

 
Figure 3-7 Example calculation of the time contribution variable 
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As we are considering uniform time intervals of 1 hour which are related to energy pricing and 
committed load curve, however, it should be noted that changing interval durations for each time 
slot (߬௦ − ߬௦ିଵ) can be still applied in the formulation, unless otherwise stated. 

First, a global constraint (valid for all cases below) is applied enforcing an upper bound for the 
positive variable ݋௣,௠,௦ (Eq. 71). The time contribution of a given task (݌, ݉) to processing within a 
given slot cannot be longer than the length of the slot itself or the total processing time of that task. 
Therefore, the bound has the value of either the length of the time slot (߬௦ − ߬௦ିଵ) or the processing 
time as in Eq. (3.72). 

௣,௠,௦݋ ≥ ݌∀  0 ∈ ܲ, ݉ ∈ ,ܯ ݏ ∈ ܵ  (3.71) 

௣,௠,௦݋ ≤ min {߬௣,௠ , ߬௦ − ߬௦ିଵ } ∙ ܺ௣,௠ ݌∀  ∈ ܲ, ݉ ∈ ,ܯ ݏ ∈ ܵ (3.72) 

We identify four different cases of how the task can contribute to electricity consumption. 

1. A task is processed entirely within the time slot (Y୮,ୱ,ୱ୲
ୱ = 1 and Y୮,ୱ,ୱ୲

୤ = 1) 

The processing contribution ݋௣,௠,௦ to the time slot should be equal to the task processing time ߬௣,௠. 
Moreover, the variable should be accounted only if both event binaries are true, and the task is 
assigned to machine ݉, as in Eq. (3.73). Including the assignment ܺ௣,௠ in both Equation (3.71)-
(3.73) will put the variable ݋௣,௠,௦ to zero in case a task is not assigned. 

௣,௠,௦݋ ≥ ߬௣,௠( ௣ܻ,௦,௦௧
௦ + ௣ܻ,௦,௦௧

௙ + ܺ௣,௠ − ݌∀ (2 ∈ ܲ, ݉ ∈ ,ܯ ݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈  (3.73) ܯܵ

2. A task starts before and finishes within the time slot (Y୮,ୱ,ୱ୲
ୱ = 0 and Y୮,ୱ,ୱ୲

୤ = 1) 

In the second case the duration is the finishing time minus the time slot boundary, as in Equation 
(3.74)-(3.75). Since from the scheduling model it is known that unassigned tasks have starting and 
finishing times (݌ݐ,݉

ݏ , ݉,݌ݐ
݂ ) put to zero the equations remain valid due to the assignment variable in 

the expression ݌ݐ,݉
݂ − 1−ݏ߬ ∙  The big M should take a value of the upper boundary of the last .݉,݌ܺ

time slot, which is equal to the upper boundary of the scheduling horizon.  

௣,௠,௦݋ ≥ ݉,݌ݐ
݂ − ߬௦ିଵ ∙ ݉,݌ܺ − (M − ߬௦ିଵ)(1 − ݏ,ݐݏ,݌ܻ

݂ + ݏ,ݐݏ,݌ܻ
ݏ  )  

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈  (3.74) ܯܵ

௣,௠,௦݋ ≤ ݉,݌ݐ
݂ − ߬௦ିଵ ∙ ݉,݌ܺ + (M + ߬௦ିଵ)(1 − ݏ,ݐݏ,݌ܻ

݂ + ݏ,ݐݏ,݌ܻ
ݏ )  

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈  (3.75) ܯܵ

3. A task starts within and finishes after the time slot (Y୮,ୱ,ୱ୲
ୱ = 1 and Y୮,ୱ,ୱ୲

୤ = 0) 

Similarly to the previous case, the constraints (3.76)-(3.77) can be derived. The expression 
ݏ߬ ∙ ݉,݌ܺ − ݉,݌ݐ

ݏ  captures the exact amount of processing time contribution. 

௣,௠,௦݋ ≥ ߬௦ ∙ ݉,݌ܺ − ݉,݌ݐ
ݏ − (M + ߬௦)(1 − ݏ,ݐݏ,݌ܻ

ݏ + ݏ,ݐݏ,݌ܻ
݂ )  

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈  (3.76) ܯܵ

௣,௠,௦݋ ≤ ߬௦ ∙ ݉,݌ܺ − ݉,݌ݐ
ݏ + (M − ߬௦)(1 − ݏ,ݐݏ,݌ܻ

ݏ + ݏ,ݐݏ,݌ܻ
݂ )  

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈  (3.77) ܯܵ

4. A task over-spans the time slot (Y୮,ୱ,ୱ୲
ୱ = 0, Y୮,ୱ,ୱ୲

୤ = 0 and Y୮,ୱᇱ,ୱ୲
ୱ = 1, Y୮,ୱᇱᇱ,ୱ୲

୤ = 1) 

Here, it is known that the task contribution will be equal to the time slot length for assigned tasks 
(߬௦ − ߬௦ିଵ)ܺ݌,݉. To ensure this time is captured for all the valid slots, one needs to identify the 



33 

slots in between the time slots where an event starts (ݏᇱ) and finishes (ݏᇱᇱ), while ݏᇱ <  .ᇱᇱݏ
Therefore a constraint (3.78a) can be formulated, expressing that for all of the slots with over-span 

∑ ݖ,݉,݌݋
1−′′ݏ
1+′ݏ=ݖ  the processing contribution in each slot (there are (ݏᇱᇱ − ᇱݏ − 1) slots) is equal to the 

length of the slot (߬௦ − ߬௦ିଵ)ܺ݌,݉, however only if both respective event binaries are true 

( ௣ܻ,௦ᇲᇲ,௦௧
௙ + ௣ܻ,௦ᇲ,௦௧

௦ − 1). Since from parallel available machines at each stage only one can be 
chosen to process a given product, the nonlinearity in equation (11a) can be easily eliminated by 
summation over machines, as shown in the constraint (3.78b). Therefore, the final constraint (3.78) 
will ensure in linear inequalities that the processing contribution is ߬1−′′ݏ– ߬

′ݏ  in all slots strictly 

between ݏᇱ and ݏᇱᇱ. Note that replacing the equality constraint with the inequality constraint was 
possible because ߬1−′′ݏ − ௣,௠,௭݋ is the upper bound of the summation of ′ݏ߬   over ݖ between ݏᇱ + 1 
and ݏᇱᇱ − 1 . In addition, if the slot duration is uniform ߬ݏ − 1−ݏ߬ = ߬ it is known that the 
constraint should be employed for ݏᇱᇱ ≤ ᇱݏ + ඃ(max௠∈ௌெೞ೟,೘൛߬௣,௠ൟ)/߬ඇ, which basically defines a 
window of slots between which the task might occur. 

∑ ݖ,݉,݌݋
1−′′ݏ
1+′ݏ=ݖ = ′′ݏ,݌ܻ) ݐݏ,

݂ + ′ݏ,݌ܻ ݐݏ,
ݏ − 1−′′ݏ߬)(1 −   ௣,௠ܺ(′ݏ߬ 

݌∀ ∈ ܲ, ݉ ∈ ,ܯ ,′ݏ ᇱᇱݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈ ,ܯܵ ′ݏ <  (3.78a)  ′′ݏ

∑ ∑ ݖ,݉,݌݋
1−′′ݏ
݉,ݐݏܯܵ∋1݉+′ݏ=ݖ = ݐݏ,′′ݏ,݌ܻ)

݂ + ′ݏ,݌ܻ ݐݏ,
ݏ − 1−′′ݏ߬)(1 −   (′ݏ߬ 

݌∀ ∈ ܲ, ,′ݏ ᇱᇱݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ,ݐݏ} ݉} ∈ ,ܯܵ ′ݏ <  (3.78b) ′′ݏ

( ௣ܻ,௦ᇲᇲ,௦௧
௙ + ௣ܻ,௦ᇲ,௦௧

௦ − 1) ∙ (߬௦ᇲᇲିଵ −  ߬௦ᇱ) ≤ ∑ ∑ ௣,௠,௭݋
௦ᇲᇲିଵ
௭ୀ௦ᇲାଵ௠∈ௌெೞ೟,೘ + M ∙ (2 − ௣ܻ,௦ᇱ,௦௧

௦ − ௣ܻ,௦ᇱᇱ,௦௧
௙ ) 

݌∀ ∈ ܲ, ,ᇱݏ ᇱᇱݏ ∈ ܵ, ݐݏ ∈ ܵܶ, ᇱݏ < ,ᇱᇱݏ ᇱᇱݏ ≤ ᇱݏ + ඃ(max݉∈ܵݐݏܯ,݉൛߬݌,݉ൟ)/߬ඇ (3.78) 

The above constraint can be thought as a tightening constraint as it has no influence on the proper 
accounting of the variable ݋௣,௠,௦, however by creating relatively small number of equations it helps 
to decrease the computational time. 

In all other cases a task does not contribute to the electricity consumption of the considered time 
slot. It means that the task either does not exist or it is processed in some other time slots. The 
constraint (3.79) together with Eq. (3.78) is expressing both situations. 

∑ ݏ,݉,݌݋ = ݉,݌߬ ܵ∋ݏ∙ ݌∀   ݉,݌ܺ ∈ ܲ, ݉ ∈  (3.79) ܯ

With the above constraints the variable ݋௣,௠,௦ will take a value of how much time a given task was 
processing within particular time slot ݏ. Therefore, one can use the variable to account for 
electricity consumption ݍ௦ in a given time slot simply by multiplying ݋௣,௠,௦ with the task’s specific 
electricity consumption ℎ௣,௠, as shown in equation (3.80). The expression is divided by 60 in order 
to convert ܹ݊݅݉ܯ to ܹܯℎ. 

ݏݍ = ∑ ℎ݌,݉ ∙ ܯ∋݉,ܲ∋݌60/ݏ,݉,݌݋ ݏ∀   ∈ ܵ (3.80) 

This above formulation (Eq. 3.71-3.80) and the event binaries definition (Eq. 3.44-3.47) is enough 
to capture the energy use. Using the problem knowledge one might think about tightening the 
model by adding the following set of constraints. Following the original formulation from Hadera 
et al. (2014) the event binaries can be related to the assignment as in Equation (3.81)-(3.82). The 
constraints say that the event binary can hold true only if the task exists (ܺ௣,௠ = 1). 

∑ ݐݏ,ݏ,݌ܻ
ݏ

ܵ∋ݏ = ∑ ݉,ݐݏܯܵ∋݉݉,݌ܺ ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ (3.81) 
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∑ ݐݏ,ݏ,݌ܻ
݂

ܵ∋ݏ = ∑ ݉,ݐݏܯܵ∋݉݉,݌ܺ ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ (3.82) 

Another set of constraints relates the occurrence of the event binaries with the time contribution 
 ௣,௠,௦. For the time horizon, where the task has not occurred yet, the sum of event binaries start is݋
zero as well as is the time contribution (Eq. 3.83). 

∑ ݏ߬/ݏ,݉,݌݋ − ݉,ݐݏܯܵ∋1݉−ݏ߬ ≤ ∑ Yp,s′,st
s

s′≤s ݌∀  ∈
ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ (3.83) 

Similarly for the event binary finish, all of the slots after the one for which the binary holds true 
will put the time contribution to zero (Eq. 3.84). Applying the same thinking, constraints (3.85)-
(3.86) are developed, fixing to zero some of the redundant binary values.  

∑ ݏ߬/ݏ,݉,݌݋ − ݉,ݐݏܯܵ∋1݉−ݏ߬ ≤ ∑ ݐݏ′ݏ,݌ܻ
݂

ݏ≤′ݏ ݌∀  ∈ ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ (3.84) 

∑ ′ݏ,݌ܻ ݐݏ,
ݏ

ݏ<′ݏ ≤ 1 − ∑ ݏ߬/ݏ,݉,݌݋ − ݉,ݐݏܯܵ∋1݉−ݏ߬ ݌∀  ∈

ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ (3.85) 

∑ ′ݏ,݌ܻ ݐݏ,
݂

ݏ>′ݏ ≤ 1 − ∑ ݏ߬/ݏ,݉,݌݋ − ݉,ݐݏܯܵ∋1݉−ݏ߬ ݌∀  ∈

ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ (3.86) 

Another constraint linking the relation between the event binaries might be useful for handling 
large-scale instances. In Eq. (3.87), the fact that if the task event start has not occurred, the event 
finish has not occurred neither is expressed.  

∑ ௣ܻ,௦ᇱ,௦௧
௙௦

௦ᇲୀଵ ≤ ∑ ௣ܻ,௦ᇱ,௦௧
௦௦

௦ᇲୀଵ ݌∀  ∈ ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ (3.87) 

We observed that this constraint helps finding good solutions faster when solving larger instances, 
however for smaller easily tractable instances it slows down the computational performance. This 
might be related to the fact that even though the constraint reduces a bit the search space it is 
creating additional equations to be handled by the solver. 

3.2.4 Energy cost optimization 

3.2.4.1. Minimum Cost Flow Network 

The tracking of the consumption of electricity over the time intervals can be used for optimizing 
the purchase and sales strategy. Once the scheduling model has been extended by the 
corresponding values of electricity consumption in the time slots, the purchase optimization can 
influence the schedule in such way that a mixed criteria (with e.g. task start times as used later) that 
include also the cost of electricity are minimized. The idea for purchase optimization is based on a 
Minimum-cost Flow Network (Ahuja, Magnanti and Orlin, 1993; Bertsekas, 1991) formulation 
with a balancing node for which the sum of all inflows is equal to the sum of all outflows (Eq. 
3.88) as in Hadera et al. (2014; 2015a). The concept of using the formulation to optimize energy 
cost has been reported earlier by Harjunkoski et al. (2012). 
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Figure 3-8 Formulation of the electricity purchase and sale optimization problem 

The inflow nodes represent the possible sources of electricity. The outflow nodes are the process 
demand and the selling of electricity. 

∑ ௦݂,௜,௝ᇱ =௜∈ே௢ௗ௘ ∑ ௦݂,௝ᇱ,௝௝∈ே௢ௗ௘   ∀ (݅, ݆ᇱ), (݆ᇱ, ݆) ∈ ,ܿݎܣ ݆′ ∈ ,݈ܽܤ ݏ ∈ ܵ  (3.88) 

The balancing node is connected with the sink and the source nodes by arcs that are characterized 
by parameters and variables. An arc exists only if there is a cost defined for it. The parameters are 
the minimum and maximum levels of the flows between two given nodes (Eq. 3.89) and the cost 
function. 

௦݂,௜,௝
௠௜௡ ≤ ௦݂,௜,௝ ≤ ௦݂,௜,௝

௠௔௫  ∀ (݅, ݆) ∈ ,ܿݎܣ ݅, ݆ ∈ ,݁݀݋ܰ ݏ ∈ ܵ  (3.89) 

The network is used to identify the most economical flows while satisfying the load from the 
process demand node (Eq. 3.90).  

qs= ∑ fs,i,ji∈Node,j∈Dem   ∀ (݅, ݆) ∈ ,ܿݎܣ ݏ ∈ ܵ  (3.90) 

The onsite generation is modeled using a binary variable ܩ௦,௜,௝  that denotes whether the plant is in 
production mode (Eq. 3.91) and an auxiliary pseudo-continuous variable ݃௦,௜,௝

௦  indicating 
generation start-up (Eqs. 3.92)-(3.93). Here, the Big-M value Mଶ should not be less than the 
maximum flow on the arc between the onsite generation and the balancing node. 

௦,௜,௝ܩ ≤ ௦݂,௜,௝ ≤ Mଶ ∙ ௦,௜,௝ܩ   ∀ (݅, ݆) ∈ ,ܿݎܣ ݅ ∈ ,݊݁ܩ ݆ ∈ ,݈ܽܤ ݏ ∈ ܵ  (3.91) 

௦,௜,௝ܩ − ௦ିଵ,௜,௝ܩ ≤ ݃௦,௜,௝
௦ ≤ ௦,௜,௝ܩ   ∀ (݅, ݆) ∈ ,ܿݎܣ ݅ ∈ ,݊݁ܩ ݆ ∈ ,݈ܽܤ ݏ ∈ ܵ  (3.92) 

0 ≤ ݃௦,௜,௝
௦ ≤ 1 − ,݅) ∀   ௦ିଵ,௜,௝ܩ ݆) ∈ ,ܿݎܣ ݅ ∈ ,݊݁ܩ ݆ ∈ ,݈ܽܤ ݏ ∈ ܵ  (3.93) 

The onsite generation constraints are kept simple by considering a constant generation cost with 
additional start-up cost (Eq. 3.94) and a reduced production rate by a factor ݇ for those time 
intervals where a start-up occurs (Eq. 3.95).  

cs
gen= ∑ fs,i,j∙i∈Node,j∈Gen cs,i,j+cstart∙gs,i,j

s   ∀ (݅, ݆) ∈ ,ܿݎܣ ݏ ∈ ܵ  (3.94) 
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௦݂,௜,௝ = ௦݂,௜,௝
௠௔௫ ∙ ௦,௜,௝ܩ − ݇ ∙ ௦݂,௜,௝

௠௔௫ ∙ ݃௦,௜,௝
௦   ∀ (݅, ݆) ∈ ,ܿݎܣ ݅ ∈ ,݊݁ܩ ݆ ∈ ,݈ܽܤ ݏ ∈ ܵ  (3.95) 

Moreover, a minimum runtime ݎ௠௜௡ and a minimum downtime ݀௠௜௡ are enforced (Eqs. 3.96-3.97). 
The implementation of more detailed constraints that are available in literature would also be 
possible here, including accounting for steam flows and more detailed electricity production rates 
as for example in Mitra et al. (2013). 

∑ ௦ᇱ,௜,௝ܩ
௦ା௥೘೔೙ିଵ
௦ᇲୀ௦ ≥ ௦,௜,௝ܩ)௠௜௡ݎ −   (௦ିଵ,௜,௝ܩ

∀ (݅, ݆) ∈ ,ܿݎܣ ݅ ∈ ,݊݁ܩ ݆ ∈ ,݈ܽܤ ݏ ∈ ܵ, ݏ < |ܵ| − ௠௜௡ݎ + 1  (3.96) 

∑ ௦ᇱ,௜,௝ܩ
௦ାௗ೘೔೙ିଵ
௦ᇲୀ௦ ≤ ݀௠௜௡(1 + ௦,௜,௝ܩ −   (௦ିଵ,௜,௝ܩ

∀ (݅, ݆) ∈ ,ܿݎܣ ݅ ∈ ,݊݁ܩ ݆ ∈ ,݈ܽܤ ݏ ∈ ܵ, ݏ < |ܵ| − ݀௠௜௡+1  (3.97)  

The final net electricity purchase cost (Eq. 3.98) is composed of the cost associated with purchase 
from contracts, the cost of the generation and the revenues from the electricity sold.  

μ = ∑ (∑ ௦݂,௜ᇱ,௝ᇱ ∙ ܿ௦,௜,௝ + ܿ௦
௚௘௡ − ∑ ௦݂,௜,௝ ∙ ܿ௦,௜,௝௜∈ே௢ௗ௘,௝∈ௌ௔௟௘ )௜ᇱ∈ே௢ௗ௘,௝ᇱ∈௉௨௥௦∈ௌ    

∀ (݅, ݆), (݅ᇱ, ݆ᇱ) ∈  (3.98)  ܿݎܣ

3.2.4.2. Load deviation problem 

Another aspect of the energy management situation of the plant is the load deviation problem. It is 
often the case that large industrial consumers of electricity make bilateral agreements with 
electricity providers to follow a certain agreed load profile. Both the provider and the plant benefit 
from this. The provider knows in advance a very good approximation of the load levels to be 
balanced with supply of generation which leads to minimization of operating cost. In return, the 
consumer gets a considerable reduction in the price of electricity from the provider. Therefore, 
often the load deviation problem is related to one single contract with pricing schemes such as for 
example Time-of-Use. Here, it is considered that the plant is assumed to commit to certain hourly 
varying levels of the total energy use. Similar to a situation if all contracts actually come from the 
same provider and the plant commits to some total consumption for all contracts. In case the actual 
consumption deviates from pre-agreed values, financial penalties are incurred. The part of the 
model accounting for the penalties is the set of Eq. (30-32) from Hadera and Harjunkoski (2013). 
For the load tracking error penalties, it is assumed that there is a penalty-free deviation (buffer) ܾ௦ 
that is relative to the committed consumption ܽ௦ and limited by relative upper and lower bounds ܾ௦

௢ 
and ܾ௦

௨ as stated in Eq. (3.99). 

−ܽ௦ ∙ ܾ௦
௨ ≤ ܾ௦ ≤ ܽ௦ ∙ ܾ௦

௢  ∀ݏ ∈ ܵ  (3.99) 

The actual levels of over- and under consumption (ܿ௦
௢ and ܿ௦

௨) are determined by Eq. (3.100).  

௦ݍ = ܽ௦ + ܿ௦
௢ − ܿ௦

௨ + ܾ௦  ∀ݏ ∈ ܵ  (3.100) 

The penalty term  calculating the fines ݌௢,  .௨ for over- and under consumption is given by Eq݌
(3.101). 

 = ௢݌  ∙ ∑ ܿ௦
௢

௦∈ௌ + ௨݌ ∙ ∑ ܿ௦
௨

௦∈ௌ   (3.101) 

The final objective function of the monolithic model in Eq. (3.102) minimizes the net electricity 
cost µ, the deviation penalties and the weighted sum of the task starting times ݌ݐ,݉

ݏ   with ܿ being a 
weighting factor. 

min (μ +  + ܿ ∙ ∑ ௣,௠ݐ
௦

௣∈௉,௠∈ெ )  (3.102) 
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The part of the model that concerns the deviation problem can easily be used in load commitment 
of one particular contract. For example, when changing the variable representing the total 
consumption in a time slot ݍ௦ to the amount drawn from Time-of-Use source ௦݂,௜,௝, where ݅ ∈ ܱܷܶ  
and ݆ ∈  .the committed load problem of the TOU contract is obtained ݈ܽܤ

Later in Chapter 4 the load deviation cost will be considered as production-specific cost as the 
constraints for it are not part of the Minimum-cost Flow network formulation which handles the 
contracts optimization. 

3.3 Industrial case study on monolithic models 

3.3.1 Case study setup 

The assumptions on the constraints of the steel making process include the knowledge of the 
sequences and assignments of products to the last stage, the Continuous-Casting (CC) stage. An 
assumption is made that it is known which products must be processed on one of the casters. 
However, the assignment of the heats to other units in other stages must be determined by the 
optimization. The sequence of the heats that must be processed on a particular caster is known as 
well. However, it is up to the optimization to determine the sequence of those products that can be 
processed on two different CC machines. This assumption reduces the size of the search space. It is 
a reasonable assumption because very often the sequence of the products to be processed is dictated 
by higher level planning solutions (e.g. mill-wide planning) that are directly linked with customer 
orders and knowledge concerning in-house inventory levels. For integrated steel plants, the further 
processing of the steel slabs is carried out in the Hot Rolling Mill (HRM) after the Melt Shops 
section (see e.g. Biondi, Saliba and Harjunkoski 2011). At the HRM section it is important to 
define a sequence of steel slabs to be rolled such that the cost of reheating using natural gas is 
minimized. This challenging optimization problem of coordination between Melt Shop and Hot 
Rolling Mill (Xu et al. 2012) can also determine the sequence of the products on the CC stage. 
Usually, the assignments and the sequences on the casters reflects the quality requirements for 
steel, i.e. one of the casters processes certain high quality types of steel, while the other one might 
not be able to deliver the same qualities. The timing of the tasks to avoid production delays and to 
minimize the cost of energy-related problem is subject of the optimization. For the resulting 
assumptions, all the relevant input data are given and described in Appendix A. 

To tighten the MILP model, the calculation of lower and upper bounds for the task start variables 
can be carried out. For each heat group, two optimization problems are solved: minimizing and 
maximizing the task start time of the first product in the heat group at the CC stage. In this way it is 
possible to check what is the minimum value of the variable when a given heat group finishes as 
soon as possible on the CC. Similarly, it can be calculated what is the maximum value of the 
variable when a given heat group finishes as late as possible on the CC. Based on this knowledge, it 
is possible, using process parameters, to calculate the earliest start times and the latest start times of 
each task at the other stages as shown in Appendix B. The bounds obtained from the above 
optimization are then propagated to the monolithic model and to the heuristic optimization in order 
to impose upper and lower bounds for task start and finish time variables. Finding tighter bounds 
helps to speed up the solution of the MILP model since then many of the energy-related binaries 
can be set to zero. 



38 

3.3.2 Case study results and discussion 

Numerical test has been performed on a 4-core Intel Xeon 2,53GHz with 16GB of RAM using 
GAMS/CPLEX 23.7.3. Using the same problem instances and input data (Appendix A and Table 
3-2) the three strategies for energy-awareness can be tested in order to clearly asses the difference 
in their performance. In the next chapter event binaries models are applied within the bi-level 
decomposition. Note that the base load contract has a fixed amount of delivery for each hour of the 
day, regardless whether the electricity is needed for the production process or not. The electricity 
prices of both day-ahead contract cases, low price (EPEX 2013, Germany/Austria 23/09/2013) and 
high price (EPEX 2013, France 10/02/2012) are taken from a real spot market. The pre-agreed load 
curve comes from a valid production schedule which was computed not considering the energy cost 
in the optimization, but in our case only the lead times optimization (ܿ ∙ ∑ ௠,௣ݐ

௦
௠∈ெ,௣∈௉ , here it is 

assumed ܿ=1). This follows the previous studies (Castro et al. 2013) where the schedule with 
optimized production-specific cost (makespan) served as a basis for the comparison with an 
energy-driven schedule to assess the iDSM benefits. The two first scenarios have a typical 
production target with the day-ahead spot market prices are high and low. In the third scenario the 
production target is lowered to represent underutilized capacity. The fourth scenario is similar to 
the latter, however the pre-agreed load curve is used as for the first two scenarios. This simulates a 
situation where due to for example unexpected equipment break-downs the plant cannot deliver 
planned number of products therefore overcommitted the load curve. 

Table 3-2 Investigated problem instances 

Scenario Horizon Products Electricity sources and sinks 

1 24 h 20 all possible, day-ahead with high prices 

2 24 h 20 all possible, day-ahead with low prices 

3 24 h 16 all possible, day-ahead with high prices 

4 24 h 16 all possible, day-ahead with high prices, overcommitted 
load curve (as in Scenario 1-2 for 20 products) 

Name Model type 

NM 
Monolithic six binaries model (Nolde and Morari 2010, Hadera and Harjunkoski 
2013) 

HM Original monolithic event binaries model (Hadera et al. 2014) 

RM Improved monolithic event binaries model (Hadera et al. 2016) 

BH Bi-level heuristic using original event binaries model (Hadera et al. 2015a) 

BR Bi-level heuristic using improved event binaries model (Hadera et al. 2016) 

 

In Table 3-3 there are the model statistics and economic assessment of optimization runs with 
computation time limit of 600s. The total objective function value (MIP solution) quality is 
described by the value of the total weighted objective function value. As expected, it can be seen 
that the total number of both variables and equations is the least for the improved event binaries 
formulation. In all of the cases, this brings improvements in computational performance for large-
scale monolithic problem, which is in general considered intractable when solving full 24 h time 
horizon for reasonable number of heats. For all of the considered problem instances, the improved 
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model obtained the best solutions, better by around 1-9% compared to the original event binaries 
model. The difference in the solution quality between the event binaries models and the six binaries 
approach was the largest on the smaller problem sizes (Scenario 3-4). This statement holds true for 
the short computational time limit (600s) where the differences of the relative gaps between the 
solutions between the six binaries model and the improved event binaries model is around 10 – 18 
%. For longer solution times, the improvement obtained with the event binaries model is similar. 
By investigating closer the economic assessment it can be noted that for most of the cases solutions 
of similar quality gave similar objective function cost components, for example as for HM1 and 
RM1. Here, in RM1 case the optimization postponed the production which resulted in higher lead 
times, however lower deviation penalties cost.  

In Table 3-4 the same problem instances are run with the computation time limit of 3600s. Here, 
again it can be seen that the proposed formulation improves the upper bound faster compared than 
the two other models. For the two largest instances, the gap is around 9-18% better than the six 
binaries model, and around 2-6% better than the original event binaries model. Only in Scenario 2 
the two event binaries models yield similar solutions. The corresponding economic assessment of 
solutions again shows quite similar cost structures for the instances with similar objective function 
values. One interesting exception is the difference in solutions HM2 and RM2. In the former the 
optimization choose to produce more electricity from the onsite generation, which could be the 
reason for slightly better objective function value. 

In order to further assess the computational performance of the different strategies to introduce 
energy-awareness into the continuous-time scheduling, the models were tested with all assignment 
and sequencing variables fixed to the same values in all instances. In this way the complexity of the 
two approaches differs only in the energy-related binary decisions and the number of linear 
equations in the energy-awareness extension. In Table 3-5 results of optimization runs for the same 
scenarios are shown with stopping criterion of 2% optimality gap. From the results it can be seen 
that the improved formulation outperforms the alternatives in the larger scenarios. For smaller 
instances, the six binaries model performed better. This could be related with particular problem 
data which helped the solver to steer the latter approach towards better solution faster. Naturally, 
again the improved binaries model yielded the least number of continuous variables and equations 
to be solved. 

Based on all the test presented earlier it can be concluded that the proposed energy-awareness 
strategy based on improved binaries model performs best among the three investigated strategies. 
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Table 3-3 Comparison of monolithic models – 600s computation limit 

Scenario 

Model statistics Economic assessment 

Binary vars  Total 
vars 

Equations 
Total cost 

(MIP 
solution) 

Relative 
gap 

Lead 
times 
[min] 

Net 
electricity 
cost [€] 

Electricity 
purchase 

[€] 

Deviation 
penalties 

[€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

NM1 13017 29508 98095 313128 43,78% 60784 149832 161098 102512 172,55 1471,825 912 

HM1 4065 29508 102335 247838 29,30% 51990 133972 151905 61876 173,49 1421,44 952 

RM1 4065 10308 51375 244870 28,30% 53138 143209 151053 48522 223,065 1353,578 952 

NM2 13017 29508 98095 223887 32,30% 61210 119440 98505 43236 1608,917 4 352 

HM2 4065 29508 102335 200038 24,90% 53946 120989 98592 25103 1514,51 95,78 432 

RM2 4065 10308 51375 193348 21,79% 53273 117602 99133 22474 1580,79 91,948 352 

NM3 10181 23428 77136 174227 32,63% 42283 86071 88984 45872 1417,983 54,267 0 

HM3 3229 23428 80528 155226 22,81% 33038 96508 128208 25679 82,604 1241,156 952 

RM3 3229 8068 39760 147701 16,54% 32251 98162 131569 17286 100,554 1270,681 952 

NM4 10181 23428 77136 234643 31,53% 43598 96266 134759 94780 77,207 1266,043 952 

HM4 3229 23428 80528 204173 22,50% 36152 72846 140130 95175 142,48 1318,8 952 

RM4 3229 8068 39760 183590 13,16% 37166 99105,2 133488 47319 77,735 1257,39 952 
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Table 3-4 Comparison of monolithic models – 3600s computation limit 

Scenario 

Model statistics Economic assessment 

Binary 
vars  

Total 
vars Equations 

Total cost 
(MIP 

solution) 

Relative 
gap 

Lead 
times 
[min] 

Net 
electricity 
cost [€] 

Electricity 
purchase 

[€] 

Deviation 
penalties 

[€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

NM1 13017 29508 98095 290708 38,97% 58763 146373 162528 85572 203,72 1466,61 952 

HM1 4065 29508 102335 241136 26,80% 50796 142452 14396 47888 234,22 1349,66 952 

RM1 4065 10308 51375 223028 20,95% 50908 142288 151919 29831 173,397 1425,093 952 

NM2 13017 29508 98095 222167 31,20% 60282 116872 98942 45014 1649,35 16,83 312 

HM2 4065 29508 102335 180023 16,10% 51598 115937 98229 12489 1635,81 56,11 352 

RM2 4065 10308 51375 180236 16,12% 52433 115944 100968 11859 1661,49 74,6227 312 

NM3 10181 23428 77136 156986 24,63% 39444 83531 89620 34012 1547,368 0,597 0 

HM3 3229 23428 80528 146339 17,93% 32753 95840 130217 17746 83,779 1270,351 952 

RM3 3229 8068 39760 146906 15,64% 31879 108889 133085 6137 119,336 1240,033 952 

NM4 10181 23428 77136 221454 27,20% 42269 100104 127986 79081 110,87 1164,93 952 

HM4 3229 23428 80528 180965 12,10% 35396 94723 128534 50846 46,66 1256,92 952 

RM4 3229 8068 39760 175887 9,19% 36053 101195 120442 38639 19,6083 1177,27 952 
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Table 3-5 Comparison of models with fixed scheduling binaries – 2% gap limit 

Model statistics - 2% gap 

Scenario Binary vars Total vars Equations 
Total cost 

(MIP 
solution) 

CPUs 

NM1 12861 29508 98095 195020 64,90 

HM1 3593 29508 102335 194410 62,47 

RM1 3593 10308 51375 194197 8,98 

NM2 12861 29508 98095 166687 7,46 

HM2 3593 29508 102335 166550 6,48 

RM2 3593 10308 51375 166667 3,37 

NM3 10069 23428 77136 129260 7,98 

HM3 2865 23428 80528 135012 24,63 

RM3 2865 8068 39760 135241 11,69 

NM4 10069 23428 77136 174992 39,05 

HM4 2865 23428 80528 174922 56,23 

RM4 2865 8068 39760 174769 58,74 
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3.4 Bi-level heuristic 

3.4.1 Decomposition strategy 

When trying to solve an instance of the problem with significant flexibility in the process, i.e. when 
the optimization is free to assign and to sequence all products, the computational performance of 
the monolithic models from Chapter 3.3 is not sufficient. This is mainly due to large number of 
difficult to solve binary variables in the scheduling formulation and to the loose Big-M constraints, 
which is specific for precedence-based continuous-time models. To overcome the computational 
limitations, a heuristic decomposition strategy is developed.  

For large-scale scheduling problems decomposition techniques have long been recognized as 
possible solution approaches. Starting from fundamental studies by Benders (1962) and Dantzig 
(1963) with row and column generation approaches, strategies have been developed for solving 
problems in an iterative fashion that could not be solved using a monolithic formulation. 
Decomposition approaches can be categorized into approaches that can be shown to converge to 
the true optimum (even if convergence may be slow) and approaches that discard a part of the 
solution space so that optimality cannot be guaranteed (decomposition heuristics). Wu and 
Ierapetritou (2003) presented a number of different heuristic decomposition approaches for 
scheduling problems. For example, one may use time decomposition where the long time horizon is 
divided into several smaller sub-periods with resulting sub-problems. Another important class of 
approaches makes use of Lagrangean decomposition to relax the original problem into a problem 
that is easier to solve, systematically providing a lower bound for the solution. For problems with a 
clear separation of planning level decisions and scheduling level decisions these can be represented 
in a bi-level setup where first in upper level the planning variables are determined and then fixed to 
solve the more detailed lower level scheduling problem. This scheme was used for example by 
Bassett et al. (1996). 

 

 
Figure 3-9 General idea of bi-level heuristic approach 
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Similarly in another example, Erdirik-Dogan and Grossmann (2008) use the bi-level concept for 
continuous multiproduct plants first solving an aggregate model to obtain an upper bound for the 
profit and then solving a scheduling problem to obtain a lower bound. Xu et al. (2012) developed a 
bi-level decomposition scheme for the coordination of a Melt Shop process with Hot Rolling 
section of a stainless steel plant. 

Here, a bi-level scheme is utilized as well. The solution procedure consists of two problems that are 
solved in an iterative manner, as shown in Figure 3-9. First, an aggregate model (upper level ܷܮ) 
that approximates the original monolithic model is solved in order to obtain feasible values of some 
binary decisions. These binary decisions are passed to the full model (lower level ܮܮ) with a 
restriction to keep some of the variables fixed, optimizing the other continuous and binary 
variables, in our case the starting times and the event binaries. The full model should provide a 
feasible schedule and an objective function value which represents an upper bound of the optimal 
value. A new iteration of the algorithm starts by solving the upper problem again, with some new 
restrictions in the form of integer cuts that exclude previous solutions of the full model. The search 
space can be reduced based on the knowledge about the optimal solution provided from ܮܮ. In our 
particular case, since for the full problem with some of the decision variables fixed a feasible 
solution was obtained, at least the combination of the binaries of that solution can be removed from 
 so that new values of these binaries are generated by the upper level model and the new ܮܷ
solution is again refined by the lower level model. The algorithm iterates until stopping criterion is 
met, e.g. until a time limit is exceeded. For the following sections, additional notation specific for 
the decomposition approach is given in Table 3-6. 

Table 3-6 Bi-level heuristic model notation 

Sets:  

ܦ ଴ܻ
௥, ܦ ଵܻ

௥, ଴ܺܦ
௥, 

ଵܺܦ
௥, ܦ ଴ܸ

௥ , ܦ ଵܸ
௥  

dynamic sets used in bi-level heuristic for false and true decision of the 
respective binaries 

Variables:  

ܺ௠,௣
௎௅ଵ , ܺ௠,௣

௅௅  , ܺ௠,௣
௎௅ଶ binary variable in respective models UL1, LL and UL2, true when heat p is 

assigned for processing on equipment m 

௦ܸ௧,௣,௣ᇱ
௎௅ଵ  , ௦ܸ௧,௣,௣ᇱ

௅௅ , ௦ܸ௧,௣,௣ᇱ
௎௅ଶ  binary variable in respective models UL1, LL and UL2, true when heat p’ is 

processed after heat p on stage st 

௣ܻ,௦௧,௦
௦௎௅ଵ, ௣ܻ,௦௧,௦

௦௅௅  , ௣ܻ,௦௧,௦
௦௎௅ଶ binary variable in respective models UL1, LL and UL2, true when heat p 

starts on stage st in the slot s 

Parameters:  

௠,௠ᇱݐ
௠௜௡௎௅ଵ ௠,௠ᇱݐ , 

௠௜௡௅௅   minimum transport time from equipment m to m’ in respective models UL1 
and LL 

௣,௦௧ݐ
௠௔௫௎௅ଵ , ݐ௣,௦௧

௠௔௫௅௅  maximum hold-up time after stage st in respective models UL1 and LL 

 sum of binary variables  ܵܪܴ

 number of neighboring slots to be evaluated  ߙ

  desired optimality gap  ߚ

 iteration number  ݎ
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3.4.2 Upper Level problem 

The upper level problem ܷܮ consists of solving two models ܷ1ܮ and ܷ2ܮ as shown in Figure 3-10. 
 is a simplified model of the original problem and is computed to obtain a good guess of some 1ܮܷ
binary decisions, while ܷ2ܮ is a pre-computation step for the ܷ1ܮ starting from the second 
iteration as explained later. The algorithm starts with solving ܷ1ܮ, which is constructed in such 
way that it represents the full monolithic problem as closely as possible, while at the same time 
reducing the size of the MILP. In the first iteration, ܷ1ܮ is a relaxation of the full problem. The 
main component of the objective function value is the electricity-related cost. It depends directly on 
the load pattern that results from the processing of the tasks. In the stainless-steel production 
process investigated in the case study, the EAF stage consumes about 88% of the total electricity 
needed to deliver one product. Therefore potential changes in the assignments, sequences or 
especially the timing of different products on that stage will have a significant impact on the final 
consumption pattern. Therefore, the energy-intense melting task is included in the upper level 
problem. A rough approximation of the lower level problem can be generated by simply scheduling 
the EAF stage alone, maintaining all energy-related constraints. However, the tasks on the first 
stage cannot be timed arbitrarily and must be sequenced according to the special continuous-
casting constraints on the CC stage. For example, two subsequently casted products should be 
processed within a reasonable time interval in the EAF stage in order to ensure the proper delivery 
of the heats to continuous-casting, while at the same time satisfying all transfer and waiting time 
constraints between the stages. 

 

 
Figure 3-10 Bi-level heuristic algorithm 
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Since the EAF and CC stages together account for around 95% of the total Melt Shop electricity 
consumption, scheduling of these two stages alone should produce a good guess of the values of 
the variables related to the EAF and the CC of the full problem. If the last production stage is 
considered together with the EAF, the casting constraints are not violated and the remaining stages 
of AOD and LF can be scheduled on the lower level. In order to ensure feasibility of the lower 
model concerning decisions for these two stages, the upper level problem needs to account for the 
range of possible delays between processing on the EAF and on the CC stage. The equations of the 
 problem are the same as in the corresponding monolithic model (and in the lower level 1ܮܷ
problem), apart from removing elements and cuts, as follows: 

 

min௎௅ଵ(ݍܧ. 3.102) 

s.t.: 

.ݍܧ (3.1) − (3.16) Scheduling model equations with new sets ܯ and ܵܶ (Chapter 3.2.2) 

.ݍܧ (3.44) − (3.70) or ݍܧ. (3.44) − (3.47), ( 3.71) − (3.80)  Energy-awareness extension (event 
binaries model BH or improved event binaries model BR) with new sets ܯ and ܵܶ (Chapter 3.2.3) 

.ݍܧ (3.88) − (3.98)   Electricity flow network optimization (Chapter 3.2.4.1) 

.ݍܧ (3.99) − (3.101)   Load deviation problem (Chapter 3.2.4.2) 

 New constraints for other iterations than the initial one (Chapter 3.4.4)  ݏݐݑܥ

 

The equipment AOD and LF are eliminated from the equipment set ܯ. The stages 2ݐݏ and 3ݐݏ are 
eliminated from the set of production stages ܵܶ. Therefore, new values of the minimum transport 
times and maximum hold-up times between EAF and CC stage in the upper level problem need to 
be calculated based on the parameters of the full model as shown in Figure 3-11.  

The new ݐ௣,௦௧
௠௔௫௎௅ଵ and ݐ௠,௠ᇱ,஼஼

௠௜௡௎௅ଵ  replace the original ݐ௣,௦௧
௠௔௫  and ݐ௠,௠ᇱ

௠௜௡  from the monolithic model. The 
maximum hold-up time in the full model corresponds to the maximum time after which a heat can 
be processed on CC after finished on EAF as in Equation (3.103).  

 

  

Figure 3-11 Transportation and waiting time between EAF and CC stage in UL1 problem 
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௣ᇱ,௦௧ଵݐ
௠௔௫௎௅ଵ =

 max ୮ ∈୔ {ݐ௣,௦௧ଵ
௠௔௫ } + max ୮ ∈୔ {߬௣,஺ை஽ଵ , ߬௣,஺ை஽ଶ} + max ୮ ∈୔ {ݐ௣,௦௧ଶ

௠௔௫ } + max ୮ ∈୔ {߬௣,௅ிଵ, ߬௣,௅ிଶ} +
max ୮ ∈୔ {ݓ௣,௦௧ଷ

௠௔௫ ′݌∀  { ∈ ܲ  (3.103) 

Similarly, the minimum transportation time between EAF and CC corresponds to the maximum 
possible time between these two in the full problem as in Eq. (3.104).  

ா஺ி,஼஼ݐ
௠௜௡௎௅ଵ = min  ୫ ∈ୗ୑(୉୅୊,୫)

௠ᇱ∈ୗ୑(୅୓ୈ,௠ᇱ)
௠,௠ᇱݐ} 

௠௜௡ } + min ୮ ∈୔{߬௣,஺ை஽ଵ, ߬௣,஺ை஽ଶ} + min ୫ ∈ୗ୑(୅୓ୈ,௠)
௠ᇱ∈ୗ୑(୐୊,௠ᇱ)

௠,௠ᇱݐ} 
௠௜௡ } +

min ୮ ∈୔ {߬௣,௅ிଵ, ߬௣,௅ிଶ} + min  ୫ ∈ୗ୑(୐୊,௠)
௠ᇱ∈ୗ୑(େେ,௠ᇱ)

௠,௠ᇱݐ} 
௠௜௡ }   (3.104) 

In the upper level model ܷ1ܮ, the EAF stage is the first stage, followed by the CC which is the 
second and last production stage. Another modification of the input data of the upper level problem 
concerns the pre-agreed load curve. For the original full problem, the agreed curve is calculated 
based on a pre-defined schedule. For the same schedule, it is possible to eliminate the AOD and LF 
stages to obtain a load curve for the other two stages. 

The second model ܷ2ܮ of the upper level is solved after the lower level ܮܮ problem as shown in 
Figure 3-10. From the latter, most binary decisions are fixed and transferred to ܷ2ܮ, which 
essentially is the same problem as ܮܮ discussed in the next section. However, within ܷ2ܮ the only 
binary decision to be determined by optimization is to find better assignments of heats to EAFs in 
order to pre-compute new assignment decisions on EAFs for the next iteration of ܷ1ܮ. In this way 
the search space of the approximate model ܷ1ܮ is reduced and it no longer is a relaxation of 
original problem in the later iterations, which might prevent finding the optimal solution. However, 
this turned out to speed up the computational time significantly. 

3.4.3 Lower Level problem 

The constraints and sets of the lower level ܮܮ problem are not changed compared to the monolithic 
problem. However, the lower problem is solved with some fixed decisions which improve its 
computational performance, as discussed in details in the next Section. The model ܮܮ serves as an 
evaluation model for the decisions that were determined by the upper level ܷ1ܮ. After fixing some 
decisions, as described in the next section, ܮܮ is solved with a limitation on the solution time to 
avoid spending too much time in closing a small optimality gap. 

3.4.4 Cuts and iterations 

After Since the EAF stage is the most power intensive one, the decisions taken with regard to the 
assignment ܺ௣,௠ to machines of the melting stage are fixed for the ܮܮ problem as in Eq. (3.105), 
which helps to speed up the solving time. Further, for the same reason another variable is fixed, the 
sequence ௦ܸ௧,௣,௣ᇲ  on the casting stage as in Eq. (3.106). In contrast to the process assumptions 
where the sequence in the particular caster is known a priori only for particular caster, here the 
sequence relation of the products between the two casters (which is a degree of freedom of the 
monolithic problem) is fixed. 

ܺ௠,௣
௅௅ = ܺ௠,௣

௎௅ଵ      ∀݌ ∈ ܲ, ݉ ∈  (3.105)  ܨܣܧ

௦ܸ௧,௣,௣ᇱ
௅௅ = ௦ܸ௧,௣,௣ᇱ

௎௅ଵ ,݌∀       ᇱ݌ ∈ ܲ, ݌ ≠ ,ᇱ݌ ݐݏ = |ܵܶ|  (3.106) 
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Since the upper problem should provide a good approximation of the full problem, it would be 
beneficial to use also the energy-related information obtained from it for fixing some decisions in 
the lower level problem. A natural choice is the event binaries. However, since it is expected that 
these have a large impact on the value of the objective function, the kind of fixing needs to be 
carefully chosen. The fixing should still allow for giving flexibility to the model, and at the same 
time reduce the computational time of the full problem. After experimenting with different options, 
a fixing decision is developed: if the upper level problem is solved close to optimality (i.e. the gap 
is lower than ߚ = 2%) the variables of event binary start of the lower level problem ௣ܻ,௦௧,௦

௦௅௅  should 
be true within a neighborhood of the slots for which the binary holds true in the ܷ1ܮ solution as 
shown in Eq. (3.107) where ݏ∗ denotes the time slot when the event binary starts to hold true in the 
  .solution 1ܮܷ

∑ ௣ܻ,௦௧,௦
௦௅௅௦∗ାఈ

௦ୀ௦∗ିఈ = 1, :∗ݏ ݁ݎℎ݁ݓ  ௣ܻ,௦௧,௦∗
௦௎௅ଵ = ݌∀  1 ∈ ܲ, ݐݏ ∈ ܵܶ  (3.107) 

If the upper level problem determined that the start of a product should occur in the ݊ −  ℎ timeݐ
slot, then the start of that product in the ܮܮ solution should occur in one of the time slots within 
(݊ − ;ߙ ݊ +  ,is chosen such that it defines a neighborhood of 3 slots ߙ ,For the particular case .(ߙ
which is a wide range of 7 hours in total. Since the decision of the event start binary has a direct 
impact on the event finish binary, there is no need for further fixing of the latter. 

With the above exchange of information between models ܷܲ1 and ܮܮ the most important degrees 
of freedom in the lower level problem are the timing of EAFs (but also all the other machines) 
while keeping the sequence determined by the upper level.  

In order to update the ܷ1ܮ problem with new assignment decisions on EAFs (Eq. 3.108), the ܷ2ܮ 
problem is solved with fixed decisions of the other binaries, as shown in Eq. (3.109)-(3.111). 

ܺ௠,௣
௎௅ଵ = ܺ௠,௣

௎௅ଶ      ∀݌ ∈ ܲ, ݉ ∈  (3.108)  ܨܣܧ

ܺ௠,௣
௎௅ଶ = ܺ௠,௣

௅௅ ݌∀   ∈ ܲ, ݉ ∈  (3.109)  ܨܣܧ\ܯ

௦ܸ௧,௣,௣ᇱ
௎௅ଶ = ௦ܸ௧,௣,௣ᇱ

௅௅ ,݌∀       ᇱ݌ ∈ ܲ, ݌ ≠ ,ᇱ݌ ݐݏ ∈ ܵܶ  (3.110) 

௣ܻ,௦௧,௦
௦௎௅ଶ = ௣ܻ,௦௧,௦

௦௅௅ ݌∀   ∈ ܲ, ݐݏ ∈ ܵܶ, ݏ ∈ ܵ  (3.111) 

The ܷܲ2 model has very few degrees of freedom since it can only change the binaries related to 
the EAF assignment. In contrast ܷܲ1 is the one where many important decisions can be made since 
this model finds the timing and sequence of products on the most important machines, especially 
on the EAF. The latter are then fixed at the lower level. 

In the proposed approach, cuts imposed in each iteration are related to the scheduling decisions 
(ܺ௠,௣, ௣ܸ,௣ᇲ,௦௧) and the energy-awareness ( ௣ܻ,௦௧,௦

௦ ). Of course the latter ones are strongly related to 
the former since it is the timing of a task start which links both. In the case when ܮܮ is not proven 
to have a desired level of optimality, it can be suspected that the decisions obtained from it might 
not be good enough to later cut off the neighborhood of the obtained solution of event binary start 
variables from the solution space of ܷ1ܮ. Therefore, if for a particular iteration the desired 
optimality level is not obtained in the ܮܮ problem, the cut for the ܷ1ܮ involves only removing a 
particular solution of ܮܮ, which means a particular combination of the binaries ܺ௠,௣, ௣ܸ,௣ᇲ,௦௧ , ௣ܻ,௦௧,௦

௦  
obtained in ܮܮ as there is no need of evaluating that solution again in new iteration in the upper 
level problem. The cut is achieved by the constraints shown in Eq. (3.112-3.113), similar to those 
reported (Balas and Jeroslow 1972) and successfully used in the literature (Iyer and Grossmann 
1998) for the elimination of existing binary solutions. In case where ܮܮ is solved to optimality 
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stronger cut can be enforced by removing also the neighborhood of the event binary start as shown 
in Eq. (3.114), following the fixing in Equation (3.107) coming from the ܷ1ܮ.  

ܵܪܴ = ∑ ௣ܻ,௦௧ଵ,௦
௦௎௅ଵ

௣∈௉,௦∈ௌ + ∑ ܺ௠,௣
௎௅ଵ

௠∈ெ,௣∈௉ + ∑ ௦ܸ௧ସ,௣,௣ᇲ
௎௅ଵ

௣,௣ᇲ∈௉,௣ஷ௣ᇱ   (3.112) 

∑ ௣ܻ,௦௧ଵ,௦
௦௎௅ଵ

(௣,௦)∈஽௒భ
ೝ − ∑ ௣ܻ,௦௧ଵ,௦

௦௎௅ଵ
(௣,௦)∈஽௒బ

ೝ + ∑ ܺ௠,௣
௎௅ଵ

(௠,௣)∈஽௑భ
ೝ − ∑ ܺ௠,௣

௎௅ଵ
(௠,௣)∈஽௑బ

ೝ +
∑ ௦ܸ௧ସ,௣,௣ᇲ

௎௅ଵ
(௣,௣ᇲ)∈஽௏భ

ೝ − ∑ ௦ܸ௧ସ,௣,௣ᇲ
௎௅ଵ

(௣,௣ᇲ)∈஽௏బ
ೝ ≤ ܵܪܴ − 1   

ܦ ଴ܻ
௥ = ,݌)} |(ݏ ௥ܻ,௣,௦௧ଵ,௦

௦௎௅ଵ = ܦ ,{0 ଵܻ
௥ = ,݌)} |(ݏ ௥ܻ,௣,௦௧ଵ,௦

௦௎௅ଵ = ଴ܺܦ ,{1
௥ = {(݉, ௥,௠,௣ܺ|(݌

௎௅ଵ = ଵܺܦ ,{0
௥ =

{(݉, ௥,௠,௣ܺ|(݌
௎௅ଵ = ܦ ,{1 ଴ܸ

௥ = ቄ(݌, ᇱ)ቚ݌ ௦ܸ௧ସ,௣,௣ᇲ
௎௅ଵ = 0ቅ, ܦ ଵܸ

௥ = ,݌)} |(ᇱ݌ ௦ܸ௧ସ,௣,௣ᇲ
௎௅ଵ = ݌ ,{1 ≠  (3.113)  ′݌

∑ ௣ܻ,௦௧ଵ,௦ᇲାఊ
௦௎௅ଵ

(௣,௦ᇱ)∈஽௒భ
ೝ − ∑ ௣ܻ,௦௧ଵ,௦ᇱାఊ

௦௎௅ଵ
(௣,௦ᇱ)∈஽௒బ

ೝ + ∑ ܺ௠,௣
௎௅ଵ

(௠,௣)∈஽௑భ
ೝ − ∑ ܺ௠,௣

௎௅ଵ
(௠,௣)∈஽௑బ

ೝ +
∑ ௦ܸ௧ସ,௣,௣ᇲ

௎௅ଵ
(௣,௣ᇲ)∈஽௏భ

ೝ − ∑ ௦ܸ௧ସ,௣,௣ᇲ
௎௅ଵ

(௣,௣ᇲ)∈஽௏బ
ೝ ≤ ܵܪܴ − 1   

ߛ ∀ ∈ ;ߙ−) ,(ߙ+ ߙ = ܦ ,3 ଴ܻ
௥ = ,݌)} |(ᇱݏ ௥ܻ,௣,௦௧ଵ,௦ᇱ

௦௎௅ଵ = ܦ ,{0 ଵܻ
௥ = ,݌)} |(ᇱݏ ௥ܻ,௣,௦௧ଵ,௦ᇱ

௦௎௅ଵ = ଴ܺܦ ,{1
௥ =

{(݉, ௥,௠,௣ܺ|(݌
௎௅ଵ = ଵܺܦ ,{0

௥ = {(݉, ௥,௠,௣ܺ|(݌
௎௅ଵ = ܦ, ,{1 ଴ܸ

௥ = ,݌)} |(ᇱ݌ ௦ܸ௧ସ,௣,௣ᇱ
௎௅ଵ = ܦ ,{0 ଵܸ

௥ =
,݌)} |(ᇱ݌ ௦ܸ௧ସ,௣,௣ᇲ

௎௅ଵ = ݌ ,{1 ≠  (3.114) ′݌

The algorithm performs the iterative steps as shown in Figure 3-10. The upper level problem ܷ1ܮ 
is not a strict mathematical relaxation, therefore one cannot use the objective function to 
systematically close the gap between the lower and the upper bounds, as it was the case for 
example in Iyer and Grossmann (1998). In the later iterations, ܷ1ܮ is not a relaxed problem of the 
monolithic model because it considers the assignment of the EAFs as fixed and as long as this 
fixing is not optimal the solution from the upper level problem is not a valid lower bound. The 
assignments coming from ܷ2ܮ to ܷ1ܮ are used to speed up the computation time of solving ܷ1ܮ, 
which most of the times is not solvable to near-optimal solutions in short times, thus giving weak 
solutions without the fixing. It is reasonable to use the fixing also because of its much lower 
importance on the objective function compared to the degrees of freedom that the ܷ1ܮ is handling, 
namely timing and sequencing. 

Therefore, the solution of ܷ1ܮ does not provide an increasing lower bound. At the same time the 
lower level problem ܮܮ and ܷ2ܮ provide upper bounds as a feasible solution of the monolithic 
problem is obtained - the latter is always at least as good as the one from ܮܮ. Since the proposed 
algorithm does not guarantee to converge to the optimal solution, the most reasonable stopping 
criterion for the iterative execution is the total time spent on computations or the desired number of 
iterations, which is acceptable for industrial practice as long as the algorithms yields good quality 
solutions in reasonable computation times. 

3.5 Industrial case study on bi-level heuristic 

The bi-level heuristic was tested on the same problem instances as the monolithic model. In the 
decomposition scheme, some modifications of the input data are needed, due to the elimination of 
the AOD and LF stages as explained earlier. All relevant data is given in Appendix A.  

Since the heuristic approach does not guarantee to provide systematically a better upper bound with 
each iteration the best solution of ܷ2ܮ among all iterations is considered to be the bi-level 
algorithm’s solution. For the economic assessment, the best solution of ܷ2ܮ’s model among all of 
the iterations is reported. The results of the heuristic decomposition approaches (BH and BR) based 
on the event binaries model reported in Table 3-7 shows that the heuristic is always able to find 
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better quality solutions within given time limit compared to the best monolithic strategy (RM). 
Especially for larger problem sizes the gain in the solution quality is more visible. Both heuristic 
approaches based on the event binaries models perform similarly and obtain solutions of around 9 
%. For Scenarios 1 and 4, the improved binaries model performed slightly better. The similar 
performance is related with the way how the heuristic algorithm is designed – both models are 
based on the same rough approximation at the upper level, which is the key factor in general 
performance of the heuristic. The ultimate gap of the heuristic solutions is more than likely better 
than the solution from the monolithic model, however it is difficult to find a best bound or the 
optimal solution that would prove it. The cost structure of similar quality solutions, e.g. BH4 and 
BR4, are very similar as well. 

Very good results of the heuristic decomposition are achieved already in the first iteration. Often 
after up to 3 iterations the best solution is found. In Figure 3-12 the evolution of objective function 
values for all models in Scenario 1 is shown. It can be observed that the ܷ1ܮ values in each 
iteration of the algorithm are constant, even though due to the cuts each iteration finds different 
solution from all the previous ones. This is due to the fact that a slight change in the timing and 
assignment or sequence of products (while satisfying the cuts) is very likely to give the same 
objective value since there are many similar solutions in ܷ1ܮ. However, when solving the more 
detailed ܮܮ model the values are changing in each iteration in response to the different decisions 
taken in ܷ1ܮ. For the same reason, the objective function value of ܮܮ can improve in further 
iterations since there are AOD and LF stages added as well as the new load deviation curve. Here it 
can be noted that the solution quality is not expected to improve significantly in further iterations as 
the bi-level solution method is based on the idea that the upper level should provide a very good 
rough schedule already in the first iteration. The objective function value of ܷ2ܮ always improves 
the solution from ܮܮ slightly by finding a better assignment on EAF units. It should be also noted 
that for Scenario 2 and 4 the objective function value of ܷ1ܮ is lower than ܮܮ and ܷ2ܮ, however 
this is not true for Scenario 1 and 3. The reason that higher values might appear in approximated 
 due to the changed pre-agreed 2ܮܷ and ܮܮ is larger deviation penalties paid than in detailed 1ܮܷ
load curve. A general behavior of the algorithm very similar to the one shown in Figure 3-12 was 
observed for all of the investigated scenarios. 
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Figure 3-12 Objective function value change in each iteration for all models of BH1 

One clear drawback of the proposed approach that can be noticed is that there is no clear indication 
of which iteration will be the best one, i.e. since there is guarantee of the systematic improvement 
of the objective function the best solution might be found at any iteration.  

Interestingly, even though the improved binaries model (BR) is more efficient compared to the 
original event binaries model (BH) it does not yield noticeably better results when employed in the 
heuristic scheme. It can be suspected that since the improved model is faster it might allow for 
more total number of iterations in the algorithm, which might increase the chances of getting a 
better solution compared to the original event binaries model. This seems to be the case for 
Scenario 3 and 4 where the better performing BR model returned 5 iterations, while BH only 3 and 
4 respectively. 

In general, based on the investigated approaches it can be concluded that the bi-level heuristic is 
able to provide satisfactory solutions when solving realistic problem instances. 
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Table 3-7 Bi-level decomposition heuristic results - 600s computation limit 

Scenario 

Model statistics Economic assessment 

Binary 
vars 
UL2 

Total 
vars 
UL2 

Equations 
UL2 

MIP 
solution 

UL2 

MIP 
solution 

LL 

MIP 
solution 

UL1 

Relative 
gap 

Lead 
times 
[min] 

Net 
electricity 
cost [€] 

Electricity 
purchase 

[€] 

Deviation 
penalties 

[€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

No. of 
iterations 

(best) 

RM1 4065 10308 51375 244870 - - 28,30% 53138 143209 151053 48522 223,065 1353,578 952 - 

BH1 1458 29508 102335 193845 193888 227293 9,89% 46176 147087 156853 582 176,349 1456,514 952 5(5) 

BR1 1458 10308 51375 193667 193832 227293 9,30% 46576 146259 157031 832 179,396 1457,204 952 5(3) 

RM2 4065 10308 51375 193348 - - 21,79% 53273 117602 99133 22474 1580,790 91,948 352 - 

BH2 1458 29508 102335 165196 165285 160707 9,09% 45472 119443 101531 281 1512,868 196,161 392 5(3) 

BR2 1458 10308 51375 165196 165402 160707 9,09% 45613 119338 103838 245 226,833 1521,583 352 5(4) 

RM3 3229 8068 39760 147701 - - 16,54% 32251 98162 131569 17286 100,554 1270,681 952 - 

BH3 1276 23428 80528 134588 134749 169197 9,87% 30626 103057 133980 904 133,033 1243,566 952 3(1) 

BR3 1276 8068 39760 134577 134592 169197 9,87% 30885 102839 134108 853 133,759 1243,567 952 5(1) 

RM4 3229 8068 39760 183590 - - 13,16% 37166 99105 133488 47319 77,735 1257,390 952 - 

BH4 1276 23428 80528 176006 176244 153727 8,71% 35289 98990 123190 41727 13,130 1228,590 952 4(3) 

BR4 1276 8068 39760 173873 173873 153726 8,61% 31987 99814 126177 42070 79,791 1228,357 952 5(3) 
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3.6 Conclusions and remarks 

In this chapter a new strategy for embedding energy-awareness into a continuous-time scheduling 
approach has been showed. It enables optimizing production schedules of energy-intensive plants 
under consideration of time-sensitive prices of electricity (Chapter 3.2.4.1) and load commitment 
penalties (Chapter 3.2.4.2). The proposed three different approaches were compared on the same 
input data. The numerical experiments (Chapter 3.3) show that the use of the new event binaries is 
more efficient. However, both monolithic models cannot be solved within the available 
computation times for large-scale industrial problem instances. Therefore, a bi-level 
decomposition-based heuristic was developed (Chapter 3.4) to obtain good quality results in 
reasonable computation times.  

The proposed solution scheme benefits from the exact timing of the tasks by the continuous-time 
scheduling representation. The model is able to capture complex price structures and to optimally 
determine the exact amount of electricity to be purchased and sold. The flexible part of the 
purchase optimization can be further extended by more complex dependencies between the 
contracts. The model might help assess different price levels of negotiated contracts, as well as 
reduce the risk associated with volatile electricity markets. An important restriction is that the plant 
needs to make commitments on the electricity amounts to be bought and sold on the day-ahead 
markets. Even more important factors are the disturbances and the technical capability to 
implement the optimized schedule. 

To further address the limitations of the model concerning computational performance for large 
instances, a scheduling horizon of several days could be investigated with a rolling horizon 
approach. Decisions for longer time windows should be done with higher level short- and long-
term planning solutions, taking into account different factors than those considered by the 
scheduling level. Further work could also deal with improvements of the developed algorithm 
towards a more rigorous scheme. 
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4 FUNCTIONAL DECOMPOSITION OF PROCESS SCHEDULING 
AND ENERGY-COST OPTIMIZATION 

This chapter investigates and suggests solution approaches on how to tackle the main goal of the 
dissertation – integration of process scheduling and energy-cost optimization with functionally 
separated models of energy-aware scheduler and flow network optimizer. The chapter describes the 
development of a general framework and application to two different example processes. The 
different use cases are chosen in such a way that they differ not only in terms of the industrial 
process but also in generic principles of the scheduling modeling. The resulting structure of the 
chapter relates to the dissertation’s goal and scope as follows:  

 technical goal behind the functional separation is explained first as well as the motivation 
for the chosen use cases (Chapter 4.1); 

 selected decomposition approaches are investigated (Chapter 4.2.1) to find a possible 
formal decomposition concept for functional separation of scheduling problems from 
energy cost optimization problems (Chapter 4.2.2); 

 the generic framework developed as above is applied to the Thermo-Mechanical Pulping 
(TMP) example process (Chapter 4.3); 

 in Chapter 4.4, based on recommendations from the TMP case study, the decomposition 
framework is applied to the stainless-steel process and the bi-level heuristic scheme 
investigated previously in Chapter 3. 

For each use case different approach variations are investigated. Based on the industrial case study 
results conclusions and recommendations concerning the best performing approaches are 
highlighted. 

4.1 Research challenge and motivation 

One of the main goals of this work is to develop an approach that provides an iterative solution 
based upon a functional separation of process scheduling problems from energy cost optimization. 
The two separated problems should still serve their functions; the scheduler should provide a 
feasible schedule and the energy optimizer should find the best purchase and sale structure of 
contracts as shown in the leftmost (sequential) and rightmost (iterative) approach in Figure 4-1.  
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Figure 4-1 Production scheduling and energy-cost optimization integration concepts 

The framework for the integration concept while keeping the models separated needs to be based 
on some information exchange between the two. This is in contrast to the approach reported in 
Chapter 3 where the steel problem has been formulated as a monolithic model (approach 2 in 
Figure 4-1) and solved by a MILP-based heuristic procedure. In this chapter, the goal is to find 
such a strategy for the separated problems that: 

 converges to a system-wide optimum (approach 2 and 3 in Figure 4-1) in contrast to the 
one-way approach (approach 1 in Figure 4-1) of solving a scheduling problem with its 
production specific cost and then solving the flow network problem to find the optimal 
purchase and sales structure with energy specific cost; 

 finds good quality solutions in reasonable times - preferably optimal, or at least as good as 
the corresponding monolithic formulation of the problem; 

 solves the flow network problem using a fixed load curve from the scheduling problem;  
 is generic enough to accommodate different scheduling approaches and industrial process 

types; 
 if needed, involves energy-aware scheduling approaches as they have recently gained 

attention in literature resulting in successfully reported approaches (see Chapter 2.4). 

The above directions on the behavior of the solution scheme are motivated by the benefits of 
keeping the two problems separated while still getting a system-wide optimal solution, which is the 
core research challenge. Therefore, the suggested functional separation serves as an integration 
strategy for the two problems. In addition, the benefits of such a  functional separation are: 

 keeping the models separated makes it easier for the industries to integrate production and 
energy management systems since  

o potentially existing solutions of both scheduling and energy purchase systems 
installed at the plant can be re-used;  

o both scheduling and energy purchase systems, if already existing, need not to be 
integrated as one monolithic solution (potentially less effort in integration); 

 separation also benefits from modularity of the separated solutions, which can be provided 
by different system solution suppliers, in contrast to the monolithic integration which 
would potentially require one single supplier; 

 the separated models can potentially benefit from improved computational times (easier to 
solve two separated problems than a single monolithic one). 
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In the following chapters the integration concept of functional separation is developed and tested 
on industrial processes. This is done for two different case studies. In addition to the stainless-steel 
process introduced in Chapter 3 a Thermo-Mechanical Pulping (TMP) process utilizing a discrete-
time Resource-Task Network modeling approach will be investigated. The reason for this is the 
following: 

 the two models fundamentally differ in the time representation of the scheduling models; 
the steel case is continuous-time while the TMP model is discrete; 

 the cases also differ in scheduling modeling approaches; the steel case is based on general 
precedence variables, while the TMP case utilizes a Resource-Task Network (RTN) 
representation (see Chapter 4.3 for more details for the latter); 

 the two differ in the industrial process type, the steel case is a batch process with fixed 
number of products that need to be processed at all stages within a given time horizon, 
while the TMP case is a continuous process with storage possibility and external source of 
final products supply; 

 due to the above point the steel process has a fixed electricity consumption that has to be 
distributed optimally over the time horizon, while the TMP process might choose to 
decrease its total electricity consumption by final product supply from an external source at 
additional cost; 

 the steel case problem is a large-scale problem for which a heuristic approach has to be  
used to obtain satisfactory results while the TMP model is tractable when solved with 
monolithic approach. 

In the following chapter, the concepts of functional separation will be investigated, based on the 
directions drafted above. 

4.2 Functional decomposition with Mean Value Cross 
Decomposition (MVCD) 

In the following chapters, selected decomposition approaches for tackling optimization problems 
are described. The explanations are supported by generic examples. The solution approach 
identified in Chapter 4.1 was found when exploiting the special problem structure of the monolithic 
problem of scheduling with energy-cost optimization. The solution scheme involves two 
decomposition approaches, Benders’ decomposition and Dantzig-Wolfe decomposition in the 
iterative framework of Mean Value Cross Decomposition. 

4.2.1 Selected decomposition approaches 

Benders’ and Dantzig-Wolfe’s decompositions 

An important systematic decomposition scheme initially developed to tackle large-scale Linear 
Programming (LP) problems was proposed by Benders (1962). So-called Primal (or Benders’) 
decomposition exploits a special block structure of a mathematical program to generate new 
constraints and progress towards the optimal solution. The special structure called Dual Block 
Angular occurs when the system consists of a number of semi-independent subsystems, linked by a 
set of so-called coupling (or complicating) variables. In addition, each subsystem also has its own 
local variables. The Benders’ decomposition-based approaches usually divide a complex large 
problem into two levels, master and sub-problem(s), as shown in Figure 4-2.  
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Figure 4-2 Benders' decomposition scheme 

The relaxed master problem contains the complicating variables and the local variables some of 
which are relaxed. After solving the master problem the solution provides a lower bound (for a 
minimization problem) and gives the value of the complicating variable to the sub-problem(s) 
where it is treated as fixed. In this way, often the sub-problem is a restricted original problem, thus 
providing feasible solutions in every iteration. In addition, some problems are trivially separable 
when fixing the complicating variable – as shown later the problems considered in this dissertation 
are such cases of trivial separation after fixing the complicating variables. The solution of the sub-
problem is an upper bound of the original problem. When iteratively solving both problems, 
designing efficient cuts and ensuring that from the sub-problem a feasible solution is obtained 
(possibly with a heuristic feasible solution finder), the method is proved to converge to optimality 
in a finite number of iterations (Geoffrion 1972). Benders’ decomposition approaches are widely 
used to solve large-scale MILP scheduling problems, e.g. integrated planning and scheduling in 
Iyer and Grossmann (1998), Erdirik-Dogan and Grossmann (2008), Li and Ierapetritou (2009).  

Apart from the Benders’ variable decomposition, various other constraint decomposition 
techniques were developed, such as the Dantzig-Wolfe Decomposition (Dantzig and Wolfe, 1960), 
Column Generation (Ford and Fulkerson, 1958) and Lagrangean Decomposition (Geoffrion 1974). 
The Dantzig-Wolfe method (Figure 4-3) can be applied to problems with a special Primal Block 
Angular structure, where a number of independent (local) constraints occur with additional 
common coupling (complicating) constraints. Complicating constraints bind the local variables 
together. This structure appears in many large-scale industrial optimization problems, as pointed 
out in a review by Grossmann and Biegler (2004). In the variable (Primal) decomposition, fixing of 
the primal coupling variables separates the problem into sub-problems. In contrast, the constraint 
(Dual) decomposition relaxes the complicating constraints and penalizes their violation by 
Lagrangean multipliers (dual or price variable) in the objective function, which then decomposes 
the relaxed problem into sub-problems (Létocart et al. 2012). 

In Lagrangean Decomposition the coupling constraints are dualized to create sub-problems, which 
provide (all together) a lower bound to the original problem. The restricted master problem gives 
the upper bound, however, often it does not return a feasible solution, therefore some techniques 
(e.g. Lagrangean heuristics, Geoffrion 1974) are employed to overcome this problem (e.g. Jackson 
and Grossmann, 2003). 
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Figure 4-3 Dantzig-Wolfe decomposition scheme 

The information exchange between the master and the sub-problem is the dual variable, which 
needs to be updated at each iteration. Some techniques have been investigated to improve the 
method, for example the sub-gradient method (Fisher 1981) as being effective for certain class of 
problems. It is reportedly less efficient for sub-problems with discrete-variables (Wu and 
Ierapetritou 2005). 

Cross Decomposition 

An approach using both of the above aforementioned strategies of Benders’ and Dantzig-Wolfe 
decomposition was developed by Van Roy (1980, 1983) and applied to solve a capacitated location 
MILP-type problem (Van Roy, 1986). In the study, a Cross Decomposition is presented which 
iterates between sub-problems of both previously mentioned decomposition techniques. The 
Benders’ master problem in this scheme is replaced by the Lagrangean relaxation of the original 
problem and the dual master problem is replaced by the Benders’ sub-problem. The solution 
algorithm mainly iterates between the Primal and Dual sub-problems, however for every iteration a 
convergence test on both exchanged sets of information is required. If any of the tests fails, it is 
required to solve the master problem and then return to the sub-problem phase. The exchanged 
information are a variable ݕത fed from the dual sub-problem to the primal sub-problem, and the dual 
variable μത which is obtained from the primal and transferred to the dual sub-problem. The primal 
and dual sub-problems give respectively an upper and lower bound of the original problem and 
both also generate cuts for their respective master problems. A generic Cross Decomposition 
scheme is shown in Figure 4-4. One of the drawbacks of using such a decomposition scheme is the 
fact that every primal and dual variable needs to be stored for use in the master problem. Also 
solving the master problems is usually troublesome. However, once the bounds from sub-problems 
converge towards the same value, the original problem is solved to optimality (Holmberg, 1994a). 
Furthermore, under special structures, Cross Decomposition solves an MILP problem in a finite 
number of iterations (Holmberg, 1997). Holmberg (1990) investigates solving LP, MILP and NLP 
problems discussing Cross decomposition and its limitations. 
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Figure 4-4 Cross Decomposition scheme 

Mean Value Cross Decomposition and its variations 

An interesting development from the Cross Decomposition approach is the Mean-Value Cross 
Decomposition (MVCD) scheme by Holmberg (1992 and 1994b). This decomposition does not 
involve the difficult master problems and iterates only between the sub-problems, however, using a 
mean value calculation of the exchanged information – referred to here as signals. It was initially 
developed as a decomposition scheme for tackling LP (Holmberg, 1992) and later convex nonlinear 
problems (Holmberg and Kiwiel, 2006). For LP problems, it was proven to converge to the optimal 
solution (Holmberg, 1994b). Holmberg (1997) showed that when applying MVCD to MILP 
problems the method yields the same bound as the Lagrangean dual. The latter can be a stronger 
bound than the corresponding LP relaxation. Therefore, in Holmberg (1998) the method is used in 
a branch-and-bound algorithm. In contrast to the Cross Decomposition, in MCVD the dual solution 
of the primal sub-problem is augmented by its mean values which are used as input to the dual sub-
problem and similarly for the primal solution of the dual sub-problem. An effect of the mean value 
for MILPs is that primal feasibility may never be achieved. The MCVD has neither a primal nor 
dual master problem in its solution algorithm. The decomposition iterates only between the primal 
and dual sub-problems as shown in Figure 4-5. The mean value can be calculated using Eq. (4.1) 
which is shown for a signal ݕ. 

௜ݕ = ଵ
௜

෤ݕ ௜ିଵ + ௜ିଵ
௜

 ௜ିଵ  (4.1)ݕ

In the above, variable ݕ෤ ௜ିଵis the value of ݕ෤ obtained in the last iteration, while ݅ is the number of 
iterations. Holmberg and Kiwiel (2006) suggest that it could be beneficial in some cases to directly 
use the obtained ݕ as in Eq. (4.2). A disadvantage of the last approach (4.2) for updating the 
variables is that the sub-problems can no longer be solved in parallel, as in the former approach 
(4.1). 

௜ݕ = ଵ
௜

෤ݕ ௜ + ௜ିଵ
௜

 ௜ିଵ  (4.2)ݕ

Holmberg (2004) mentions that the advantage of the MVCD approach is a better primal problem 
controllability and availability of information from the primal and dual. In Holmberg (2001) the 
method is shown to be less memory consuming compared to Cross Decomposition, therefore it 
seems to be interesting for large-scale problems where it is not essential to find the exact optimal 
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solution. Unfortunately, there is no general proof of finite convergence to optimality for MILP 
problems (Holmberg, 1997) – the MILP-MVCD converges to the bound of the Lagrangean dual (to 
the dual gap error). If integer constraints are applied, MVDC might return infeasible values due to 
mean value alteration of feasible values of the exchanged variables. Holmberg (1998) overcame 
this using a heuristic modification which uses one of the signals directly, without calculating its 
mean value. This improved the practical performance and gave rise to so-called One-sided Mean-
value Cross Decomposition (OSMVCD), which will also be investigated more closely in the later 
case studies. Another modification of the Cross Decomposition reported by Holmberg and Kiwiel 
(2006) is the Weighted Mean-value Cross Decomposition (WMVCD), which has been proven to 
converge for nonlinear convex problems. The only difference with MVDC is the updating scheme; 
instead of the mean value a weighted mean value is used, as in Eq. (4.3), where the mean value 
calculation comes from Eq. (4.1). This modification strengthens the importance of the last received 
signal. 

௜ݕ = ෤ݕ௜ߜ ௜ିଵ + (1 −  ௜ିଵ  (4.3)ݕ(௜ߜ

where: 

௜ߜ = ఉାఊ
ఉ௜ାఊ

  (4.4) 

∑ ௜ߜ = ∞ஶ
௜ୀ଴   (4.5) 

The parameters for ߚ and ߛ are set ܽ ݅ݎ݋݅ݎ݌, Holmberg and Kiwiel (2006) showed that the best 
values for ߚ and ߛ are respectively 1 and 3 for the problems studied. In the above equations, ߜ௜ is a 
weight value which moves towards zero with each iteration i. 

The convergence properties for different decomposition approaches are given in Table 4-1. The 
one-sided versions of the MVCD (or WMVCD) decomposition cannot guarantee convergence 
properties. However, they provide some advantages as it will be discussed later. To summarize, for 
the MILP problems which are the subject of this work, in the MVCD both Benders’ and Dantzig-
Wolfe’s sub-problems are expected to give solutions below optimum (dual gap distance from 
optimum). Since WMVCD has identical convergence properties as MVCD for NLP problems it 
can be expected that for MILP problems the WMVCD should have the same properties for MILP 
as MVCD, even though there is no formal proof for it. 

 

 
Figure 4-5 Mean Value Cross Decomposition scheme 
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Table 4-1 Convergence properties of different MVCD decomposition approaches 

 MVCD WMVCD OSMVCD 
OSWMVCD 

LP 
Optimum  

(Holmberg, 1994b) 
Optimum  

(Holmberg and Kiwiel, 2006) 

No convergence 
proofs 

NLP 
(with convex sets and 

functions) 

Optimum  
(Holmberg and Kiwiel, 2006) 

MILP 
Lagrangean dual bound 

(Holmberg, 1997) 
No convergence proofs 

 

4.2.2 Functional decomposition development 

As explained and motivated in Chapter 4.1 the aim is to develop a framework for functional 
separation of the production scheduling and energy-cost optimization. In the scheme, some 
information should be exchanged and certain constraints shall be kept separated from the others 
(flow network cost optimization separated from the scheduling problem). In case of the scheduler, 
the available output information is a schedule with corresponding electricity consumption pattern. 
For the energy optimizer, the electricity consumption is a fixed input. In the following sections it is 
shown that when decomposing the monolithic model, the standard sub-problems of Benders’ and 
Dantzig-Wolfe decomposition yield respectively the desired energy-aware scheduling model and 
energy optimizer. Next, in treating the models in such form, Mean-Value Cross Decomposition can 
be applied for solving the monolithic model. The information exchanged between the models will 
then be the schedule, the energy purchase strategy with corresponding dual information which is 
available as a mathematical characteristic of the formulated problem. 

4.2.2.1. Monolithic model formulation and Benders’ decomposition 

Let us define a simple monolithic problem of scheduling with optimization of energy cost (e.g. as 
described in 3.2.1 for the steel case or later in Chapter 4.3.2 for the pulping case) in the following 
general form: 

,݂)ݖ ݊݅݉ (ݕ = ଵܥ 
்݂ + ଶܥ

 (4.6)  ݕ்

subject to 

ଵ݂ܣ + ݔଵܦ ≤ ܾଵ – flow network constraints  (4.7) 

ݍଶܣ + ݕଶܦ ≤ ܾଶ – production scheduler constraints  (4.8) 

ݍܫ − ଷ݂ܣ = 0 – complicating constraint  (4.9) 

ݔ ∈ ܺ, ݕ  ∈ ܻ, ݍ  ∈ ܳ, ݂ ∈ ,ܨ ݍ ≥ 0, ݂ ≥ 0  (4.10) 
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Figure 4-6 Dual-Block Angular structure of the monolithic formulation 

In the above let us assume that x and y represent collectively the variables specific to the energy 
purchase model and energy-aware scheduler respectively. Let ܺ and ܻ represent all bounds and 
variable types -continuous and integer requirements respectively for variables ݔ related only to the 
energy problem and variables ݕ only to the scheduling problem. ܫ is an identity matrix. The energy 
purchase and sale optimization model consists of constraints representing the Minimum-cost Flow 
Network, while the other set of constraints is the scheduling model together with energy-awareness 
and committed load problem constraints. Eq. (4.9) is written separately from the others as it is a 
special complicating constraint of the monolithic model (so-called consensus constraint). It links 
the two variables ݂ (flow of electricity amount within the minimum-cost flow network) and ݍ 
(electricity amount consumed by the production process accounted in the scheduling problem) 
which are present in Eqs (4.7) and (4.8). ܣଷ݂ represents all the electricity amounts needed to satisfy 
the process demand - flow from the balancing node to the process demand node. Any value change 
of any variable in Eq. (4.9) causes a change in the respective part of the monolithic model (Eq. 4.7 
or 4.8), thus of the values of the objective function components in Eq. (4.6), either the flow 
network’s specific cost ܥଵ

்݂ or production specific cost ܥଶ
 Here it is important to note that the .ݕ்

load deviation problem is considered to be integrated into the scheduler’s problem – the load 
deviation cost are a part of the production specific cost therefore load deviation constraints occur in 
the scheduling problem. It is also possible to move the load deviation equations and deviation 
penalties component of the objective function value to the flow network optimization problem. 
However, here it is chosen to include it as the production specific cost since it is the scheduler 
which can directly influence the load pattern and thus the penalties cost.  

When experimenting with numerical studies we discovered that the load deviation constraints 
actually help to speed up computation times for the scheduling problem, especially for larger 
instances with increased flexibility (less constrained problem with many possible feasible 
solutions). It could be because the load deviation constraints improve computation times by 
tightening the model and guiding the MILP branch and bound solver. 

The constraints of the monolithic model result in a finite number of extreme points (bounded 
solutions) due to the bounds of the physical variables, such as storage, flow limits, capacities etc. 
Therefore, the decomposition schemes shown in Chapter 4.2 can be applied, as they require the 
assumption of bounded feasible solution regions. Since the monolithic problem has the Dual-Block 
Angular structure (Figure 4-6) one can apply the Benders’ decomposition by fixing the variable ݍ 
in the monolithic model. Then the primal sub-problem is formulated as: 

min୤,୶,୷ ℎ(݂, ,ݕ (തݍ = ଵܥ
்݂ + ଶܥ

 (4.11)  ݕ்

subject to 

ଵ݂ܣ + ݔଵܦ ≤ ܾଵ – flow network constraints  (4.7) 

തݍଶܣ + ݕଶܦ ≤ ܾଶ – production scheduler constraints with fixed ݍത  (4.12) 
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തݍܫ − ଷ݂ܣ = 0 – complicating constraints with fixed  ݍത  (4.13) 

ݔ ∈ ܺ, ݕ  ∈ ܻ, ݍ ∈ ܳ, ݂ ∈ ,ܨ ݍ  ≥ 0, ݂ ≥ 0  

The only change in the above model is that the values of the variable ݍ = തݍ ≥ 0 are fixed. The 
formulation now becomes trivially decomposable into two sub-problems Eq. (4.14) and Eq. (4.17) 
which can be solved in parallel. The flow network optimizer thus solves: 

(തݍ)ெிேܨ = min୤,୶ ଵܥ
்݂   (4.14) 

subject to 

ଵ݂ܣ + ݔଵܦ ≤ ܾଵ – flow network constraints  (4.7) 

തݍܫ − ଷ݂ܣ = 0 – complicating constraints with fixed  ݍത   (4.13) 

ݔ ∈ ܺ, ݍ ∈ ܳ, ݂ ∈ ,ܨ ݍ  ≥ 0, ݂ ≥ 0  

The other part of the sub-problem contains the production specific constraints: 

(തݍ)ா௉ௌܨ = min୷ ଶܥ
 (4.15)  ݕ்

subject to 

തݍଶܣ + ݕଶܦ ≤ ܾଶ – production scheduler constraints with fixed ݍത  (4.12) 

ݕ ∈ ܻ, ݍ ∈ ܳ, ݍ ≥ 0  

It is important to note that the dual cost of the complicating constraint in the original sub-problem 
(4.11) is exactly the same as the dual cost of the complicating constraint (4.13) in the decomposed 
sub-problem (4.14), if ݍത is fixed. The objective function value of the original problem (4.11) is 
equal to adding the decomposed sub-problems objective function values together: 

∗ܨ = ெிேܨ + ா௉ௌܨ  (4.16) 

The problem (4.14) is actually the flow network optimizer used in the industrial setting mentioned 
in the goal and scope Chapter 4.1. In contrast, the production scheduler from (4.15) is equipped 
with knowledge concerning electricity consumption in a given time slot, which is fixed. In practice 
that would mean that the model would be minimizing the production specific cost for a certain 
given consumption curve, which may not be feasible as discussed later. 

The master problem of the Benders’ decomposition gives a lower bound of the original problem. 
The problem is constructed by solving the primal sub-problem (4.11) and obtaining the extreme 
points μ௞ (Lagrangean multipliers) from the marginal cost of the constraint (4.12): 

 (4.17)  ݓ ݊݅݉

subject to  

ݓ ≥ (ݍ)ெிேܨ + (ܾଶ − ݇∀   μ(௞)்(ݍଶܣ ≥ 1, ݇ ∈  (4.18)  ܭ

ݍ ∈ ܳ, ݍ ≥  0. (4.19) 

The master problem (4.17) consists of similar variables as the monolithic problem, with the 
addition of dual variables in the new constraint (4.18). In the usual Benders’ scheme, for each new 
iteration ݇ between the master and the sub-problem, a new constraint will be generated in (4.18). A 
solution of the master problem sets the value of the coupling variable ݍത used in the sub-problem. In 
practice all found extreme points have to be stored while iterating, which can become a major 
limitation for large-scale problems.  
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Figure 4-7 Primal-Block Angular structure of the monolithic formulation 

In addition, the duals present in Eq. (4.18) could be difficult to extract. The master problem is not 
similar to any of the initial problems related to the industrial state-of-the-art (leftmost in Figure 
4-8), therefore if not needed it would be desirable not to involve the master problem in this form in 
the iterative scheme. 

4.2.2.2. Dantzig-Wolfe decomposition 

The other decomposition scheme can be applied if the original problem has Primal-Block Angular 
structure (Figure 4-7). The Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960), starts with 
applying Lagrangean relaxation on the complicating constraint (4.9) of the monolithic model with 
corresponding ߣ being a Lagrangean multiplier. The sub-problem is formulated by setting the 
multiplier to a fixed value ̅ߣ as in Eq. (4.20). 

min{(ܥଵ
் − ത்ߣ

݂(ଷܣ + ଶܥ
ݕ் + ത்ߣ

 (4.20)   {ݍ

Subject to 

ଵ݂ܣ + ݔଵܦ ≤ ܾଵ – flow network constraints (4.7) 

ݍଶܣ + ݕଶܦ ≤ ܾଶ – production scheduler constraints (4.8) 

ݔ ∈ ܺ, ݕ  ∈ ܻ, ݍ  ∈ ܳ, ݂ ∈ ,ܨ ݍ ≥ 0, ݂ ≥ 0. 

We can notice that the above sub-problem can be further trivially decomposed in the same manner 
as the Benders’ sub-problem. From Eq. (4.20) two partial sub-problems are obtained. First, the 
energy cost (flow network) optimization part (4.21):  

min{(ܥଵ
் − ത்ߣ

 ଷ)݂}   (4.21)ܣ

subject to 

ଵ݂ܣ + ݔଵܦ ≤ ܾଵ – flow network constraints (4.7) 

ݔ ∈ ܺ,   ݂ ∈ ,ܨ ݂ ≥ 0. 

Second, the production cost optimization part in Eq. (4.22): 

min{ܥଶ
ݕ் + ത்ߣ

 (4.22)  {ݍ

subject to 

ݍଶܣ + ݕଶܦ ≤ ܾଶ – production scheduler constraints  (4.8) 

ݕ ∈ ܻ, ݍ  ∈ ܳ, ݍ ≥ 0. 
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The flow network part (Eq. 4.21) uses the dual variable of the complicating constraint and flow 
network constraints. The production part (Eq. 4.22) is simply a production scheduling model with 
energy-awareness, load commitment constraints and penalization by the dual ̅ߣ of the consumption 
curve in the objective function. It can be seen as a scheduling model with response to a single 
energy price curve, which is widely considered in many publications (see Chapter 2.4). Fixed 
marginal cost values are treated here as parameters and convey the information of how much the 
objective function value in the energy cost optimization model would change in response to a 
change in consumption. 

As mentioned before, the load penalties are considered to be included in the cost of the production 
scheduler. However, by moving the load deviation constraints into the flow network problem one 
could obtain the dual variable which would not only express the cost of the purchase and sale but 
also cost of deviation penalties. In this way, the production scheduler without load deviation 
included could respond to the load penalties problem by inducing the dual information in its 
objective function. 

Further on, the master problem of the Dantzig-Wolfe decomposition, which gives an upper bound, 
is formed by considering the convex combination of the solutions (extreme points) from the dual 
sub-problems. Fixed values of ݂(௞), ݕ(௞) and ݍ(௞) correspond to the solutions found by the sub-
problems in iteration ݇. This combination is applied to the objective function and the complicating 
constraint in the original problem to form the dual master problem as in Eq. 4.23. 

݉݅݊ {∑ ൫ܥଵ
்݂̅(௞) + ଶܥ

(௞)ߣത(௞)൯ݕ்
௞ஹଵ }    (4.23) 

subject to 

∑ ൫ܣଷ݂̅(௞) − (௞)ߣത(௞)൯ݍ = 0௞ஹଵ   (4.24) 

∑ (௞)ߣ = 1௞ஹଵ (௞)ߣ  ≥ 0, ∀݇ ≥ 1  (4.25) 

The solution idea of Dantzig-Wolfe decomposition is to solve the sub-problem and get the extreme 
points ݂(௞), ݕ(௞) and ݍ(௞). Next, these are stored and used in the master problem, which returns 
the dual value (Lagrangean multiplier) ߣ(௞) for each iteration. The latter is fixed and used as an 
input ̅ߣ in the sub-problem. The master problem here again constitutes an undesired model as it 
includes both the flow network and production scheduling variables. 

4.2.2.3. Desired iterative structure with Mean Value Cross Decomposition 

As a result of both decomposition schemes, interesting sub-problems can be obtained: representing 
separately the flow network problem (as a partial sub-problem of the Benders’ decomposition) and 
the energy-aware scheduling problem (as a partial sub-problem of the Dantzig-Wolfe 
decomposition). The latter comprises of load deviation constraints and the response to a single 
electricity price curve. These two decompositions can be combined in a Mean Value Cross 
Decomposition (MVCD; Holmberg 1992) scheme without using the master problems as shown in 
Figure 4-8, where the dual information of the complicating constraint is denoted by µ. The MVCD 
might be modified with different signal alteration schemes to form different decomposition types as 
discussed later. The idea of using mean values originates from the Brown-Robinson method 
(Brown, 1949; Robinson, 1951). 
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It is important to note that in order to achieve convergence of the algorithm, an upper and lower 
bound from the complete sub-problems (respectively Benders’ and Dantzig-Wolfe) need to be 
compared. If for a given iteration the complete sub-problems yield the same value for the bounds 
(zero gap) the original monolithic problem is solved to optimality. However, in order to obtain a 
solution from one complete iteration (a feasible solution to the monolithic problem) it is enough to 
run only the partial sub-problems, as shown in Figure 4-9. 

With the desired setup different iterative schemes can be constructed by changing the way how the 
signals are altered in each iteration (altered signals are denoted as ݍ௧

ᇱ  and ܥܯ௧
ᇱ in Figure 4-9). 

Among these the following are selected to be investigated further: 

 Mean Value Cross Decomposition (MVCD) – both signals are altered by calculating their 
mean value (Holmberg 1992, 1994b, 1997); 

 Weighted Mean Value Cross Decomposition (WMVCD) – both signals are altered by 
calculating their weighted mean (Holmberg and Kiwiel 2006); 

 One-sided Weighted Mean Value Cross Decomposition (OSWMVCD) – only one of the 
signals is altered by calculating a weighted mean, the other is used directly without any 
changes (Holmberg 2004); 

 Heuristic Cross Decomposition (HCD) – both values are used directly, without any 
changes. 

 

 
Figure 4-8 Industrial approach for the iterative framework based on decompositions 



67 

  
Figure 4-9 Iterative framework based on Mean Value Cross Decomposition 

WMVCD has been experimentally shown to obtain better solutions faster for MILP problems (e.g. 
Holmberg and Kiwiel, 2006), even though it has not been proven that the method converges to 
optimality. Besides WMVCD, for numerical experiments, it is chosen to consider OSWMVCD for 
the following reasons. Firstly, the solution of complete sub-problems of the Benders’ 
decomposition would require to solve the production part with altered mean value load variable ݍ௧, 
which could potentially result in infeasibility. To overcome this, some rounding to the nearest 
feasible values could be introduced, however according to Holmberg (1998) this creates a duality 
gap and the controllability of the solution is decreasing. Secondly, the energy-aware production 
scheduling model returns the time-sensitive load curve which is always feasible for the flow 
network, therefore it would not be desired to alter it before sending to the flow network problem, as 
the latter would return the dual variables for potentially infeasible load pattern. Therefore, it makes 
sense to use OSWMVCD which alters by the weighted mean value only the signal coming from the 
energy purchase optimization. This is also an approach suggested by Holmberg (1998) as a 
promising way to overcome the signal infeasibility. In this way, the load pattern of the production 
model will response to a slow change (since the signal alteration considers previous values) in the 
energy cost. In order to see if it would be profitable to use both signals directly a heuristic approach 
is investigated, hereafter called Heuristic Cross Decomposition. In all of the above approaches it is 
important to note that in order to observe convergence the objective function values of the 
complete sub-problems (complete Benders’ and complete Dantzig-Wolfe) have to be taken into 
account. However, to obtain the solution, it is sufficient to iterate only between partial sub-
problems. Hereafter, such setting is called an industrial approach (as in Figure 4-8). This strategy 
would be very desirable since it does not require a lot of changes compared to the traditional 
industrial state-of-the-art models, except of extending the production model with energy-
awareness, such as in Chapter 3.2.3 for the steel case. 
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Interpretation of Mean Value Cross Decomposition 

Benders’ and Dantzig-Wolfe decomposition techniques can be regarded as price and resource 
directive driven methods. The Mean Value Cross Decomposition methods is a mixed 
decomposition that applies both price and resource directives simultaneously (other mixed 
decomposition methods are discussed in literature e.g. early works of Aoki 1971, Heal 1971, Obel 
1978). In Cross Decomposition (Van Roy, 1983) a subproblem receives both prices of some 
resources and allocation levels of some other resources. However, the two directives are used in an 
alternating fashion, not at once such as in MVCD. In addition, it is difficult to formulate a master 
problem that would update both prices and allocation in an advantageous way while still being 
computationally tractable. 

MVCD, in the separable case, has been shown by Holmberg (1992) to correspond to a two-person, 
zero-sum, finite matrix game. In the game the players find the best counter strategy based on the 
mean values of all previously used strategies of the other player. In the demand-side management 
scheme it is also visible that the problem of coordinating the scheduling with energy-cost 
optimization can be seen as a game where two players compete on resource (how much electricity 
to use in different time periods) and its price (marginal cost of electricity). 

4.3 Application to the discrete-time RTN model of the Thermo-
Mechanical Pulping case 

Due to the reasons stated previously in Chapters 2.3 and 4.1 it is chosen to investigate the 
developed functional separation scheme on a Thermo-Mechanical Pulping process example. The 
process has a certain flexibility and contains a production stage with a large electrical load. A 
Resource-Task Network (RTN) discrete-time approach was chosen to formulate the MILP model. 
The RTN framework can utilize both the discrete- and continuous-time approaches (see for 
example Castro, Barbosa-Póvoa and Matos, 2003), however here the first one is chosen to 
differentiate from the strategy used to solve the steel case. The RTN approach has been recognized 
as a promising method for solving some of the industrial scheduling problems under energy 
constraints (Merkert et al., 2015) due to its flexibility in handling utilities and its compact, tight 
formulation. Moreover, there are cases of successful implementation of RTN based scheduling for 
solving industrial, large-scale problems such the one at the Dow Chemical Company where the 
RTN approach was used to tackle optimization of several multipurpose production facilities 
(Wassick and Ferrio, 2011). The discrete-time representation is used because it is enough for the 
pulping case to approximate the production with uniform one-hour time intervals. What is also 
important, the discrete-time approach will differentiate from the continuous-time approach 
presented for the steel case, providing more thorough assessment of the iterative scheme, since it 
represents a completely different nature of the modeling strategy. According to Harjunkoski et al. 
(2014) there are two major modeling approaches usually used for scheduling problems. In the first 
one (used for the steel case) model variables and constraints are matched to real problem entities in 
a sequencing production environment, with a set of stages and units at each stage. The second 
approach converts real life settings into variables and constraints by representing them in a more 
generic network model based on materials, tasks, units and utilities. The most common 
representations of the second approach are State-task Network (STN) and Resource-task Network 
(RTN). The latter has been chosen here as it emerged as one of the most important scheduling 
modeling approaches in last decades. 
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Figure 4-10 Typical integrated mill production stages 

4.3.1 Thermo-Mechanical Pulping process 

The second industrial process that is investigated in order to apply and test the strategies developed 
within the goals of the dissertation is Thermo-Mechanical Pulping (TMP).  

The process lies at the heart of the paper production supply chain, which starts when the raw 
materials for the process are extracted in the forest where trees are cut into logs and chopped at 
chip mills to form wood chips. Next, sometimes together with re-usable byproducts such as 
sawdust, pulp waste or agricultural residues, wood chips are fed to the pulping mills that produce 
different types of pulp. The pulp is usually put into storage tanks from where it can be either sold as 
a product or fed to the paper machines to produce paper rolls of various sizes (Malik and Qiu, 
2008). The type of paper produced does not change the basic process. A typical integrated pulp and 
paper production mill process is shown in Figure 4-10, where energy-intensive stages are indicated. 

The most important stage of the pulp making can be done by the two different processes of thermo-
mechanical or chemical process. The type of production varies and depends on the characteristics 
of the wood used, for example which type of trees is used and the geographical location where the 
tree was growing. In the chemical pulping process, the lignin in the wood is removed from the 
cellulosic fibers via chemicals. In the mechanical process the lignin is not removed but is derived 
from the cellulosic fibers in refiners. Mechanical pulping is about 50 % cheaper, however, the 
chemical pulping provides higher strength properties and due to energy production of by-products 
(black liquor production), it can generate more energy than it needs for producing pulp (Bajpai 
2012). At the mechanical pulping stage the fibers are separated by applying mechanical energy on 
the wood, which breaks the bounds between fibers to create single fibers and fiber fragments. The 
lignin is not removed but is maintained to achieve high yield and better strength properties. Among 
the existing techniques for mechanical pulping there is the Thermo-Mechanical Pulping. It is used 
to produce such end products like newsprint, printing paper and tissue paper. The most used raw 
material for TMP is softwood. Apart from the wood, a large amount of energy is used in the form 
of steam and electricity, therefore the latter is an essential factor of the total production cost 
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(Pulkkinen and Ritala, 2008). For the TMP process, the pulp is not always bleached, especially if 
the final product is newsprint (Bajpai 2012).  

Before the final stage of paper making a stock preparation stage is needed. This stage consists of 
mixing different pulp, dilution and adding of chemicals, which results in that the raw stock is 
converted into a slurry form, called finished stock (furnish). This slurry is then pumped into the 
paper machine that forms the paper by removing the water from the furnish (Bajpai 2012). The 
paper making stage is also a very energy intensive process which by itself is an interesting subject 
of research, including the optimal cutting of paper to meet customer demand at minimum trim loss 
(Harjunkoski et al., 1996). 

For the purpose of the industrial case study it is chosen to investigate a stand-alone TMP mill with 
several pulp refiners and one storage tank, following studies of Pulkkinen and Ritala (2008) and 
Karagiannoloulos et al. (2014). Since it is not an integrated mill, the paper machine is excluded. 
However, that stage could be thought as expressed in a form of certain demand for pulp, as in 
Figure 4-11. The scheduling problem to answer in the TMP case is to determine how many of the 
refiners should run in which of the time slots. Note that it is not considered which refiners should 
run as there is only one pulp type to be produced and here it is assumed that the considered refiners 
are all identical and running in parallel. 

Therefore, the amount processed by one refiner in each time slot is the same for all, as well as 
electricity consumption, start-up and shut-down costs. After the pulp is produced, it goes to a 
storage tank, with minimum and maximum capacity constraints, from where it can be drawn in 
order to satisfy the deterministic demand. The plant is assumed to have the option of buying the 
pulp from external sources at an in advance known price, which is also a realistic assumption, thus 
allows the mill to have additional degree of process flexibility that could be exploited by the 
industrial Demand-side Management strategy. This is an interesting differentiator from work 
reported on the steel case by for example Sun et al. (2013) and Hadera et al. (2015a) where the 
process is assumed to have to deliver fixed amount of products with deterministic total electricity 
consumption. 

 

 
Figure 4-11 Pulp and paper production process with considered stages 
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The optimization goal is to determine how to distribute the consumption over time while satisfying 
production constraints and minimizing energy cost. For the considered TMP case, buying pulp 
from an external source, the optimization strategy should enable the model to lower the amount of 
produced pulp when the electricity prices become high and instead buy more from the external 
source.  

4.3.2 Monolithic model 

The purpose of the monolithic model development is to serve as a basis for the development of the 
models involved in the Cross Decomposition scheme and also to provide optimal solutions for 
quality assessment of the solutions obtained from the decomposition scheme.  

The RTN approach used here is based on the STN developed by Kondili et al. (1993) which shapes 
the mathematical scheduling formulation by consideration of states for products between tasks. The 
STN was extended by Pantelides (1994) to develop RTN by considering the entities in a problem as 
limited resources that are being consumed or produced by tasks. The main idea behind the RTN 
approach is to have a uniform description of all resources. The resources are not only limited to raw 
materials, but are any materials and equipment used in production by processing tasks. The tasks 
transform the input resources into another (new) resources (Pantelides, 1994).  

As the RTN modeling approach views entire processes as bipartite graphs with resources and tasks 
as nodes, identification of both is the first step in the modeling. Secondly, one needs to properly 
capture the relation of resources to tasks (consumption and production). Once this is done the 
superstructure of the problem can be drawn, which enables to derive so-called structural parameters 
helping to model interactions of resources during task execution. The structural parameters are then 
used in a general balance equation which captures if there is an excess of a resource ܴ௜,௧ available 
or not. The excess resource can be consumed or produced in batch (denoted on superstructure 
drawing with dashed arrows), continuous (solid arrows) or instantaneous manner (dashed arrows).  

An RTN model characterizes tasks by two sets of variables, ௜ܰ,௧( ഥܰ௜,௧,௧ᇲ) denoting start of task ݅ at 
event point ݐ (ending at ݐ′) and ߦ௜,௧(ߦ௜̅,௧,௧ᇱ) denoting the amount handled by the task. In addition 
there are five sets of structural parameters to give total resource consumption/production in 
proportion to amount handled by the task as explained in Table 4-2. Typically these parameters 
take a value of -1 or 1. The interaction with system surroundings can occur discretely with inputs, 
represented by ∏௜௡, and outputs, represented with ∏௢௨௧ . 

Table 4-2 Structural parameters of RTN-based modeling 

௥,௜  discrete interaction of resource r linked to variable ௜ܰ,௧ߤ  for the start of the task i 

௥,௜  discrete interaction of resource r linked to variable ௜ܰ,௧ߤ   for the end of the task i 

  ௜,௧ for the start of the task iߦ ௥,௜   discrete interaction of resource r linked to variableݒ

 ௜,௧ for the end of the task iߦ ௥,௜   discrete interaction of resource r linked to variableݒ

 ௜,௧ߦ ௥,௜   continuous interaction of resource r during task ݅, linked toߣ

 

For the RTN modeling, an one hour discretization step is used as it corresponds to the energy-
related pricing information and at the same time satisfies the process requirements for exactness, 
for example the refiners should not be switched on and off more than once in an hour. The 
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optimization should select how many refiners should run at each time interval. Due to quality and 
cost reasons, the refiners are assumed to produce at fixed full rate or not at all (Pulkkinen and 
Ritala 2008). To keep the model simple, it is assumed that the plant processes one type of pulp 
which is realistic and follows for example Karagiannoloulos et al. (2014). The objective function of 
the model minimizes the operating cost consisting of production cost (start-up and shut-down of 
refiners) and electricity cost. Following Karagiannoloulos et al. (2014), however, it is possible to 
include other factors such as e.g. operator availability cost. 

In Figure 4-12 the resulting superstructure of the considered case is shown. The tasks are 
represented by rectangles while resources are represented by circles. Continuously produced or 
consumed resources are the raw material ܴܯ and ݌݈ݑ݌௜௡௧, whereas the resource of bought pulp 
 .is the final product resource, i.e (݌݂) is consumed discretely. The last material resource (௘௫௧݌݈ݑ݌)
the pulp ready to satisfy the demand. Each pulping task uses an equipment resource ݉, a refiner. 
The storage tank ݏ and dummy equipment ܾ for the buying task complete the list of the equipment 
resources. An important utility resource is the electricity ܷݐ, modeled following Castro et al. 
(2009) and Sun et al. (2013). All the resources have connection to a task. The continuous pulping 
tasks consume ܴܯ to produce ݌݈ݑ݌௜௡௧. The batch task of pulp buying consumes discrete resource 
 ௜௡௧. The latter is fed to the hybrid task of storage, i.e. the݌݈ݑ݌ ௘௫௧ to produce discrete resource݌݈ݑ݌
task continuously consumes ݌݈ݑ݌௜௡௧ to produce final pulp ݂݌ and sends it back to storage 
discretely, to satisfy demands in batches. This strategy for treating the storage tank was introduced 
by Castro et al. (2009). The hybrid task uses the variable ߦ௜,௧

∗  to capture the processed amount that 
is continuously sent to storage. For keeping track of the amount kept in the tank, available 
immediately before the end of a time slot, the excess resource variable ܴ௥,௧

௘௡ௗ  is introduced, which is 
also used for determining the initial amount  available in the storage (Castro et al. 2009). Further, 
the input from the system surrounding is the maximum amount of electricity that can be consumed 
in a time slot and the output is the demand of products for each time slot. Initially available 
resources (ܴ௥,௧

଴ ) are given except of rm and ݌݈ݑ݌௘௫௧ which are considered as variables for the 
optimization. The equipment 1ܳܧ,   .are available at the beginning of the time horizon 3ܳܧ and 2ܳܧ

 
Figure 4-12 Pulping case RTN superstructure  
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The formulation notation is shown in the Table 4-3. The model constraints follow. 

Table 4-3 RTN monolithic model notation 

Sets:  

ܴ  set of resources  

  set of production tasks  ܫ

ܶ  time intervals  

1௠ܳܧ ⊆ ܴ  equipment resources: refiners m 

2௦ܳܧ ⊆ ܴ  equipment resources: storage tank s 

3௕ܳܧ ⊆ ܴ  equipment resources: buying resource b 

ܯܴ ⊆ ܴ  raw material resources  

௘௫௧݌݈ݑ݌ ⊆ ܴ  externally bought pulp 

௜௡௧݌݈ݑ݌ ⊆ ܴ  pulp resources  

ܷܶ ⊆ ܴ  utility resources (electricity) 

ܶܥ ⊆ ܴ  continuous resources (pulp, external pulp, raw material) 

ܲܨ ⊆ ܴ  final product resources  

஼ܫ ⊆   continuous tasks (pulping)  ܫ

஻ܫ ⊆  buying task  ܫ

ௌܫ ⊆  storage (stock preparation) task  ܫ

  

Parameters:  

݈௠௔௫  maximum capacity volume of storage tank [m3] 

݈௠௜௡  minimum required volume of pulp in storage tank [m3] 

݈௜௡௜௧  initial volume in the stock preparation tank [m3] 

 production rate of one refiner in one time slot [m3]  ݑ

௠௔௫ݑ   maximum production output of all refiners in one time slot [m3] 

ܾ௠௔௫   maximum allowed amount of pulp that can be bought externally in any time slot 
[m3] 

ܿ௦௧௔௥௧   start-up cost of refiners[€] 

ܿ௘௡ௗ   shut-down cost of refiners [€] 

∏௥,௧
௜௡   resource input to the system (electricity) in time slot t [MW] 

∏௥,௧
௢௨௧   resource output from the system (pulp) in time slot t – pulp demand[m3] 

ܿ௧
௣௨௟௣  market price for pulp in time slot t [€/m3] 

 ௘௟  power consumption of one refiner in one time slot [MW]݌
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Variables:  

௜ܰ,௧  binary, execution of task i in time t 

௜,௧ߦ   continuous, non-negative variable, amount handled (processed) by task i in time t 

௜,௧ߦ
∗   continuous, non-negative variable, amount continuously sent to storage by task i 

during time slot t 

ܴ௥,௧  continuous, non-negative variable, amount of resource r available at time t  

ܴ௥,௧
௘௡ௗ   continuous, non-negative variable, amount of resources r available immediate 

before the end of time interval t 

ܴ௥,௧
଴   continuous, non-negative variable, amount of initial resources available at the 

beginning of the time horizon 

݊௧
௥௘௙   integer, non-negative variable, number of refiners producing pulp during time slot t 

௧݌݈ݑ݌
௘௫௧  continuous, non-negative variable, amount of pulp bought externally and delivered 

to the storage in time slot t  

௧݌݈ݑ݌
௜௡௧   continuous, non-negative variable, amount of pulp made internally and delivered to 

storage during time period t 

 ௧  consumed electricity in time period t [MWh]ݍ

݊௧
௦௧௔௥௧   continuous, non-negative variable, number of refiners starting their operation during 

time slot t 

݊௧
௘௡ௗ   continuous, non-negative variable, number of refiners stopping their operation 

during the time slot t 

ܿ௥௘௙   cost of start-up and shut-down of refiners 

ܿ௘௫௧௣௨௟௣  cost of buying pulp from external source 

 load deviation penalties cost  ߜ

μ  net electricity cost of selling and buying electricity 

 

The objective function of the problem is to minimize the cost of: net electricity cost (similarly as 
the variable μ in the steel case described in Chapter 3.2.4), penalties for load deviation ߜ (as 
variable ߜ in the case of steel described in Chapter 3.2.4), cost of pulp bought, startup and shut-
down cost of refiners, as shown in Equation (4.26). 

݉݅݊(ܿ௘௟ + ߜ + ܿ௘௫௧௣௨௟௣ + ܿ௥௘௙)   (4.26) 

The core of the RTN formulation is the excess resource balance equation, shown in Equation 
(4.27).  

ܴ௥,௧ = ܴ௥,௧
଴ |௧ୀଵ + ܴ௥,௧ିଵ

௘௡ௗ |௥∈ோೃಾ∪ ோ೛ೠ೗೛∪ோಷು + ܴ௥,௧ିଵ|௥∈ோಶೂభ∪ ோಶೂమ∪ ோಶೂయ∪ ோಶೣ೟೛ೠ೗೛ + ∑ ௥,௜ߤ) ௜ܰ,௧௜∈ூ +
௜,௧ߦ௥,௜ݒ ௥,௜ߤ +  ௜ܰ,௧ିଵ) + ∑ ௥,௜ߤ) ௜ܰ,௧ |௧ୀଵ)௜∈ூೄ + Π௥,௧

௜௡  |௥∈ோೆ೅ − Π௥,௧
௢௨௧  |௥∈ோಷು      

ݎ∀ ∈ ܴ, ݐ ∈ ܶ  (4.27) 
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The structural parameters help to add (production) or take away (consumption) the resource 
amount for given times interval. For the first time slot, the initial amount value ܴ௥,௧

଴ |௧ୀଵ is taken 
into consideration, however not for the remaining time slots since the value of the previous time 
slots is available. To note, this is not applied for the resource of electricity, since otherwise the 
resource availability would propagate from one time to another (Castro et al., 2009). Instead, the 
utility is supplied by the variable Π௥,௧

௜௡  |௥∈ோೆ೅  denoting external input to the system. For handling 
the continuous resources, Equation (4.28) is completing the previous balance equation by 
considering the amount of resource available and processed in a given time.  

ܴ௥,௧
௘௡ௗ = ܴ௥,௧ + ∑ ௜,௧௜∈ூ೎ߦ௥,௜ߣ + ∑ ൫ݒ௥,௜ߦ௜,௧ ௜,௧ߦ௥,௜ߣ +

∗ ൯௜∈ூೞ + ∑ ൫ݒ௥,௜ߦ௜,௧൯ ௜∈ூಳ    

ݎ ∀ ∈ ܴோெ ∪  ܴ௣௨௟௣೔೙೟ ∪ ܴி௉ , ݐ ∈ ܶ  (4.28) 

It can be noted that from this equation the volume of the tank is captured by ܴ௥,௧ for resource of the 
final product, as it consists of the amount available in the previous time slot (ܴ௥,௧ିଵ

௘௡ௗ  or ܴ௥,௧
଴ |௧ୀଵ in 

case of the first time slot), the amount taken to satisfy the final product demand (Π௥,௧
௢௨௧), the amount 

being produced (∑ ௜,௧ߦ௥,௜ߣ)
∗ )௜∈ூೞ ) and bought (∑ ௜∈ூಳ (௜,௧ߦ௥,௜ݒ) ). To enforce a proper balance of the 

 .௜௡௧ resource in the last time period constraint (4.29) is added݌݈ݑ݌

ܴ௥,௧
௘௡ௗ = ݎ∀  0 ∈ ௜௡௧݌݈ݑ݌ , ݐ = |ܶ|  (4.29) 

Using the variable of resource excess, the upper bound of all equipment resources is enforced, to 
represent the equipment individually.  

ܴ௥,௧
௠௔௫ = ݎ∀  1 ∈ ܴாொଵ ∪ ܴாொଶ ∪ ܴாொଷ  , ݐ∀ ∈  ܶ  (4.30) 

To achieve no intermediate storage of ݌݈ݑ݌௜௡௧ between the refiners and the tank and to send the 
final product directly to storage, no excess resource is enforced with Eq. (4.31). 

ܴ௥,௧
௠௔௫ = ݎ∀  0 ∈ ܴ௣௨௟௣೔೙೟ ∪ ܴி௉ , ݐ ∈  ܶ  (4.31) 

Another constraint ensures that there is enough final pulp in the storage tank to satisfy the demand 
for it (Equation 4.32). Even though the resource balance equations enforce the fact that the demand 
is always satisfied by the pulp available in the storage tank an additional constraint is formulated 
(4.32) that in a way serves as a safety buffer level. 

ܴ௥,௧
௘௡ௗ ≥ ௥,௧ߎ

௢௨௧ ݎ∀   ∈ ܴி௉ , ݐ ∈ ܶ  (4.32) 

Since the storage tank is subject to a capacity limitation, Eq. (4.33) defines an upper limit on the 
amount kept in the tank (݈௠௔௫). In addition, the minimum desired tank level can be set here as well 
by enforcing the lower bound with the desired parameter (݈௠௜௡)  

݈௠௜௡ ≤  ܴ௥,௧
௘௡ௗ ≤ ݈௠௔௫ ݎ∀   ∈ ܴி௉ , ݐ ∈ ܶ  (4.33) 

Another constraint in Eq. (4.34) restricts the amount handled by the hybrid task such that it does 
not exceed the sum of the initial volume, amount produced and maximum amount of pulp bought. 

௜,௧ߦ  + ௜,௧ߦ
∗ ≤ ൫݈௜௡௜௧ + ܾ௠௔௫ + ௠௔௫൯ݑ ∙ ௜ܰ,௧  ∀݅ ∈ ௌܫ ݐ∀   , ∈ ܶ  (4.34) 

Equation (4.35) enforces proper amounts handled by the continuous tasks of refiners, being either 
equal to the production rate or zero otherwise. 

௜,௧ߦ = ݑ  ∙ ௜ܰ,௧    ∀݅ ∈ ௖ܫ , ݐ ∈ ܶ  (4.35) 
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For the task of buying pulp from the external source, it should be limited by the desired level ܾ௠௔௫ , 
as in Equation (4.36). 

௜,௧ߦ  ≤  ܾ௠௔௫ ∙ ௜ܰ,௧  ∀݅ ∈ ஻ܫ , ݐ ∈ ܶ  (4.36) 

A few redundant but helpful variables which can track resource amounts are introduced next. These 
will not have any noticeable influence on the solution quality or performance, but will return 
variables that can be compared easily with the ones from Karagiannoloulos et al. (2014). To 
capture the number of refiners running at a given time interval the variable ݊௧

௥௘௙  is given by the 
sum of all executed continuous tasks as in Eq. (4.37). To capture the pulp produced from the 
refiners and pulp bought variables in Eqs (4.38-4.39) are introduced. 

݊௧
௥௘௙ = ∑ ௜ܰ,௧௜∈ூ೎ ݐ∀   ∈ ܶ  (4.37) 

௧݌݈ݑ݌
௜௡௧ = ∑ ௜,௧௜∈ூ಴ߦ ݐ∀   ∈ ܶ  (4.38) 

௧݌݈ݑ݌
௘௫௧ = ∑ ௜,௧௜∈ூಳߦ ݐ∀   ∈ ܶ  (4.39) 

The important equation for obtaining the amount of electricity that is consumed by the system at a 
given time interval Eq. (4.40) is performed for each time slot. 

௧ݍ = ௘௟݌ ∙ ∑ ௜ܰ,௧௜∈ூ಴ ݐ∀   ∈ ܶ  (4.40) 

Following the model from Karagiannoloulos et al. (2014), to capture the number of refiners starting 
up or shutting down, the constraint (4.41) is used. It accounts for the number of the refiners running 
in the previous time interval, number of the refiners starting up in the current time slot, and number 
of refiners shutting down in the slot. It is assumed that there is no running refiners at the beginning 
of the scheduling horizon and the optimization is free to choose which ones should run at the end of 
the horizon. 

݊௧
௥௘௙ =  ݊௧ିଵ

௥௘௙ + ݊௧
௦௧௔௥௧ − ݊௧

௘௡ௗ ݐ∀   ∈ ܶ  (4.41) 

Lastly, all production costs given in the objective function can be accounted. The cost of the pulp 
bought from external sources is given in Equation (4.42) by considering its price ܿ௧

௣௨௟௣.   

ܿ௘௫௧௣௨௟௣ =  ∑ ܿ௧
௣௨௟௣ ∙ ௧݌݈ݑ݌ 

௘௫௧்
௧ୀଵ   (4.42) 

The cost for startup and shut downs of refiners is simply accounted by Equation (4.43). 

ܿ௥௘௙ =  ∑ ൫ܿ௦௧௔௥௧ ∙ ݊௧
௦௧௔௥௧ + ܿ௘௡ௗ ∙  ݊௧

௘௡ௗ൯்
௧ୀଵ   (4.43) 

We assume that for the considered production process the energy cost optimization problem has the 
same structure as for the previously described steel case. The plant has the option to choose from 
multiple contracts and onsite generation, and has the possibility to sell electricity back to the grid. 
In addition, the load deviation problem is considered. Therefore, one can apply the same equations 
as for the steel case, Eqs (3.88) - (3.98) from Chapter 3.2.4, in order to optimize the energy-related 
cost (purchase/sale cost and load deviation penalties). Note that the TMP scheduling model also 
has the variable accounting for the electricity consumption in a time slot (ݍ௧), which is the only 
requirement for the minimum-cost flow network in order to find the optimal purchase/sale structure 
and the only variable needed for the load deviation response extension. Adding the energy-
optimization network distinguishes the problem to be handled from the problem in 
Karagiannoloulos et al. (2014), who consider one single price curve of electricity cost. 
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4.3.3 Framework structure and case study setup 

In Chapter 4.2 it was shown that for a monolithic production scheduling problem with energy cost 
optimization based on the Minimum-cost Flow Network it is possible to use a special problem 
structure in order to arrive at a decomposition approach consisting of two functionally separated 
problems. Application of the decomposition strategy to the Thermo-Mechanical Pulping case 
(Chapter 4.3.2) results in the following two problems. First, production scheduler with production 
specific costs, load deviation response and optimization of single energy price curve – scheduler of 
Dantzig-Wolfe sub-problem as in Eq. (4.44). 

ߜ)݊݅݉ + ܿ௘௫௧௣௨௟௣ + ܿ௥௘௙ + ௧ݍ ∙  തതതതത௧)  (4.44)ܥܯ

subject to 

.ݍܧ (4.27 − 4.43)  – production scheduling constraints (Chapter 4.3.2)  

.ݍܧ (3.99 − 3.101)  – load deviation problem (Chapter 3.2.4.2) 

Secondly, the energy model to optimize the purchase and net sale cost, under the assumption of a 
given load distribution – flow network Benders’ sub-problem as in Eq. (4.45). 

݉݅݊(μ)  (4.45) 

subject to 

௜݂ହ,௝଻,௧ = ݐ∀  ത௧ݍ ∈ ܶ  (4.46) 

.ݍܧ (3.88 − 3.89), (3.91 − 3.98)  – flow network constraints (Chapter 3.2.4.1) 

The above mentioned two models are partial sub-problems of Cross Decomposition. To test the 
convergence behavior, the objective function values of the complete sub-problems are needed 
(Figure 4-9). The remaining parts are formulated following the two decomposition approaches. 
First, production scheduler with regular production specific costs, load deviation response and 
fixed load curve – scheduler of Benders’ sub-problem as in Eq. (4.47). 

ߜ)݊݅݉ + ܿ௘௫௧௣௨௟௣ + ܿ௥௘௙)  (4.47) 

subject to 

.ݍܧ (4.27 − 4.43)  – production scheduling constraints (Chapter 4.3.2) 

.ݍܧ (3.99 − 3.101)  – load deviation problem (Chapter 3.2.4.2) 

where ݍ௧ = ݐ∀  ത௧ݍ ∈ ܶ 

Secondly, the energy model to optimize the purchase and net sale cost, under the assumption of a 
given load distribution – flow network Benders’ sub-problem as in Eq. (4.48). 

݉݅݊(μ − ௜݂ହ,௝଻,௧ ∙  തതതതത௧)  (4.48)ܥܯ

subject to 

.ݍܧ (3.88 − 3.89), (3.91 − 3.98)  – flow network constraints (Chapter 3.2.4.1) 

As previously stated, the information signals exchanged between sub-problems (either partial or 
complete) are: 

 the schedule’s load curve (ݍ௧) created by the production model and sent to the flow 
network model; 
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 flow network’s marginal cost curve (ܥܯ௧) from constraint (4.49) that is sent to the 
production model. 

These signals can be used directly or they can be augmented according to the different 
decomposition approaches, as explained in Chapter 4.2.  

The iterative algorithm needs to be initialized, for this purpose the production scheduling model is 
solved first. It can be solved using no energy-awareness while optimizing only production-specific 
cost. Another option is to use the energy-aware model with response to an arbitrary price curve, for 
example a historical marginal cost profile or a price of the contract that is expected to have the 
highest influence on the purchasing structure (i.e. expected to be exploited the most). As noted by 
Holmberg (1997), it is important to come up with first signal such that it has a reasonable 
magnitude, otherwise the Mean Value Cross Decomposition scheme might not be effective. Based 
on experience, the initial scheduler’s problem is solved using the day-ahead spot market price 
(ܿ௜ଷ,௝ହ,௧) in place of the ܥܯ curve which is used in the next iterations (Eq. 4.49). 

ߜ)݊݅݉ + ܿ௘௫௧௣௨௟௣ + ܿ௥௘௙ + ௧ݍ ∙ ܿ௜ଷ,௜ହ,௧)  (4.49) 

subject to 

.ݍܧ (4.27 − 4.43)  – production scheduling constraints (Chapter 4.3.2) 

.ݍܧ (3.99 − 3.101)  – load deviation problem (Chapter 3.2.4.2) 

The production model solved with the marginal cost curve in each iteration will augment its load 
curve (schedule) such that it will move the load towards less expensive time intervals (assuming 
that there is no significant disadvantageous influence on the production specific cost). The flow 
network model in each iteration will find the best purchasing and selling strategy for a given load 
(schedule). The solution consists of two parts, the schedule and the corresponding optimal 
purchasing and selling structure. However, in contrast to the simple industrial approach (leftmost in 
Figure 4-1), where a schedule is generated without any energy-awareness and then sent to the flow 
network model, in the Mean Value Cross Decomposition approach the schedule is generated using 
the knowledge on the direction to move the load in time such that it is beneficial to the welfare of 
the overall system which consist of both, energy cost and production costs. 

As mentioned earlier, when applying the iterative decomposition framework, two approaches can 
be taken (Figure 4-9): considering  the complete sub-problems to prove convergence or considering 
partial sub-problems which is enough to find a feasible solution to the monolithic problem. For the 
TMP process (Chapter 4.3.4), it is chosen to show the convergence on only one variation of the 
Mean Value Cross Decomposition: One-sided Weighted Mean Value Cross Decomposition. The 
reasoning behind this choice is that within the complete Benders’ sub-problem the production 
scheduler needs to be solved with augmented mean values of the load curve. This is likely to result 
in infeasibility (production scheduling model is solved assuming a fixed load curve which might be 
infeasible). Therefore, the load curve should be sent directly without its mean value calculation. 
Weighted mean value (instead of regular mean) is chosen as it has been noted as faster converging 
by Holmberg and Kiwiel (2006). In contrast to the convergence test model, when considering the 
industrial approach where only parts of the complete Benders’ and Dantzig-Wolfe sub-problems 
are considered, it is possible to alter both signals.  

Since the original monolithic model could be solved in reasonable computation times it is possible 
to obtain the optimal solution. This can be compared to the industrial approach using the iterative 
framework. The latter does not produce upper and lower bounds but only a feasible solution, which 
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can be compared to the optimal one from the monolithic model. This is also one of the motivation 
points for the TMP case study, which in contrast to the steel case is considered to be solvable 
within reasonable computation times for the problem instances.  

The case study is designed such that for different solution approaches (monolithic model, 
convergence test and industrial approach) five problem instances are tested as shown in Figure 
4-13. Different prices of day-ahead spot market (EPEX 2013) are considered in the scenarios, 
similarly to the steel problem in Chapter 3.5. For the industrial approach, the four variations of the 
Mean Value Cross Decomposition identified earlier are tested.  

The overview of the test instances is given in Table 4-4. Scenario 1 serves as a base case with a 
time horizon of five days and full electricity contracts portfolio similar to the one used in the steel 
case, but with modifications on the flow capacities. Detailed input data and modifications 
compared to the steel case input data made specifically for the TMP problem instances are 
described in Appendix C. In Scenario 2 higher day-ahead market prices are considered, which 
should result in high amounts of electricity to be sold back to the market (exploitation of negotiated 
contracts, i.e. base load and TOU). To consider a case with very high capacity utilization and very 
low process flexibility the number of refiners to be used is set to 3 in Scenario 3. Scenario 4 takes 
no penalties for load deviation and no revenues from electricity sale and in addition it considers the 
base load contract to be flexible – the lower bound of the flow from its node in the flow network is 
set to zero therefore there is no strict condition to draw electricity from this contract at a fixed rate 
in all time slots. Scenario 5 is similar to the base case and a two week time horizon is considered 
here. 

 

 
Figure 4-13 Structure of the TMP case study experiments with Cross Decompositions 
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Table 4-4 Description of the TMP test cases 

Scenario Time 
horizon 

No. of 
refiners 

Electricity sources and sinks 

1 120 h 5 all possible, day-ahead with Germany 2013 prices 

2 120 h 5 all possible, day-ahead with France 2012 prices 

3 120 h 3 all possible, day-ahead with Germany 2013 prices 

4 120 h 5 all possible, no deviation penalties, no revenues for selling 

5 336 h 5 all possible, day-ahead with Germany 2013 prices 

Name Model type 

RTN Monolithic RTN model 

CRTN Convergence test model based on One-Sided Weighted Mean Value Cross 
Decomposition 

IMV Industrial approach with Mean Value Cross Decomposition 

IWMV Industrial approach with Weighted Mean Value Cross Decomposition 

IOWMV Industrial approach with One-sided Weighted Mean Value Cross Decomposition 

IHCD Industrial approach with heuristic Cross Decomposition (direct signals) 

 

With the above explained numerical experiment setup the problem instances are solved and 
discussed in the next section.  

4.3.4 Case study results and discussion 

All the test instances have been solved using GAMS/CPLEX 24.1.2 with default solver settings on 
a Personal Computer with Intel® Core™ i5-2400 CPU @ 3.10 GHz and 4 GB RAM. The input 
data is described in Appendix C. It is important to note that the shut-down and start-up cost 
representing the production-specific cost are scaled down. This is done to balance the production 
and energy costs, similarly to the idea of the cost weight coefficient (ܿ) reported for the steel case 
problem in Eq. (3.102) in Chapter 3.2. Detailed results obtained from the investigation of the 
approaches presented in the next pages are shown in Appendix D, unless otherwise stated. 

4.3.4.1. Monolithic model results 

First the monolithic model is investigated (Chapter 4.3.2) that provides the optimal solution of the 
problem instances. The knowledge of the optimal MIP value will be useful particularly for the 
industrial approach model types since for this approach there is no convergence check nor clear 
termination criteria for the algorithm. The model statistics are shown in Table 4-5, while the 
solution structure is reported in Table 4-6.  
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Table 4-5 RTN: Model statistics for the monolithic RTN models 

Scenario Binary 
variables 

Total 
variables Equations 

Optimal 
MIP CPUs Nodes Iterations 

RTN1 960 6374 5402 219637,2 1,141 205 1608 

RTN2 960 6374 5402 -623600 1,096 326 2218 

RTN3 720 5652 4922 320072,83 0,798 0 678 

RTN4 960 5773 5041 122869,17 340,926 867023 2204369 

RTN5 2688 17822 15122 615072,76 8817,443* 8229912 68916891 
* terminated at 0,02% gap (due to memory limitations) 

 

Table 4-6 RTN: Model results for the monolithic RTN models 

Scenario 

Economic assessment flow network 

Total 
consumption 

[MWh] 

Economic assessment scheduler 

Costs Quantities Costs Quantities 

Net 
electricity 
cost [€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

RTN1 167909 179837 46287 34360 1875 302 560 720 3817 250 38578 12900 10410 5 

RTN2 -676568 702010 1670930 292352 0 8044 4792 10830 3806 250 39118 13600 10380 5 

RTN3 155541 168420 47238 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 

RTN4 114559 114559 0  0 3630 0 0 0  3795 250 0  8060 10350 5 

RTN5 471146 504543 129604 96208 5250 861 1568 2016 10703 0 108276 35650 29190 0 
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It can be observed that for scenarios 1-3 the solution is found in less than 1 CPUs, however for 
Scenario 4 and 5, optimal solution is reached after 6 and 146 minutes, respectively. Here it is 
important to note that for both cases a very good solution (proved to be less than 0,5% from 
optimality) is obtained already in few seconds. However, further proving optimality is time 
consuming for these scenarios. For Scenario 4, where the problem is less constrained due to no 
deviation penalties, there could be several similar solutions existing in the search space and thus the 
solver explores a high number of nodes before finally reaching optimality. In Scenario 5, the large 
computational effort is due to the much larger problem size (time horizon of 14 days instead of 5 or 
less in the other scenarios). For all test instances involved in the Mean Value Cross Decomposition 
approaches, the computation time was limited to 180 s, unless otherwise stated, in order to avoid 
large computational time in scenarios 4 and 5. Increasing the time limit would not change 
noticeably the solution since the solutions obtained within these limits are close to the optimal 
solution as it will be shown later. 

4.3.4.2. Convergence test with complete sub-problems 

For the convergence test using the One-sided Weighted Mean Value Cross Decomposition (unless 
otherwise stated) the signal of the dual from EFN model can be altered using two variants of the 
mean value calculation as previously shown in Equation (4.1) and (4.2) for the mean value 
calculations in Chapter 4.2.1, respectively called later option 1 and option 2. Further, as suggested 
by Holmberg and Kiwiel (2006) the parameters for weighted mean calculation are β=1 and γ=3. 
For all problem instances, the initialization of the production part model (initialization in Figure 
4-9) is done using day-ahead market prices instead of Marginal Cost curve. The production part 
could also be solved alone i.e. without any response to energy price, however for the considered 
problem nature is it beneficial to distribute the load according to a good guess of a possible 
Marginal Cost in the first iteration. For all convergence cases, the Dantzig-Wolfe’ sub-problem 
provides a valid lower bound following the Lagrangean theory. The Benders’ sub-problem 
provides a valid upper bound since the solution is always feasible due to no alteration of the valid 
load curve coming from the Dantzig-Wolfe’s sub-problem. 

 

 
Figure 4-14 CRTN: Iteration results of Scenario 1 
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In Figure 4-14 results of convergence test for Scenario 1 are shown. It can be observed that the 
upper and lower bound close the gap at the optimal solution value. For both options of the mean 
value calculations, the upper bound yields the same results. It can also be noted that option 2 
performs slightly better due to stronger move towards optimality of the lower bound. With option 2 
the optimality is very close after 3 iterations (takes 13 iterations in total to reach exact optimality), 
while with option 1 it takes 5 iterations to almost close the gap (20 iterations in total). 

Detailed results of the optimization runs are reported in Table 4-7-Table 4-8 and also Table D-1 -
Table D-2. For both options, it can be noted that the optimal value of the upper bound is found 
faster than the lower one. This behavior might be related to the fact that the models solved at the 
lower bound are larger and have more flexibility, since the production scheduling model there is 
solved with regards to the Marginal Cost curve. In contrast to the upper bound problems where the 
production scheduling model is given a load distribution, therefore is much easier to solve. It can 
be also noted that although each single model of the iterative framework is solved faster than the 
monolithic model the total time needed to solve all the sub-problems until optimum is longer. The 
size of all four models involved in the decomposition scheme is shown in Table 4-9 together with 
comparison of all other decomposition variations discussed later. Naturally, all of the models 
within the decomposition scheme are smaller than the monolithic model. The scheduling problems 
are always larger than the flow network’s problems. In Table 4-8, where the structure of the 
optimal solution is shown it can be observed that the decomposition found a solution with the same 
objective function value as the monolithic model, however the structure of the solution is slightly 
different. Since the objective function has different components, the level of one component here is 
leveraged by a change in the level of another components. In this case, the decomposition chose to 
more from the day-ahead market, buy less from TOU contract and sell more back to the grid 
compared to the solution of the monolithic model. However, in both solutions the net electricity 
cost is the same as well as the production specific costs. 
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Table 4-7 CRTN-opt1: Iteration results for Scenario 1 

Iteration 

MIP CPUs Gap 

Bender’ sub-problem 
Dantzig-Wolfe sub-

problem   
Bender’ sub-

problem 
Dantzig-Wolfe sub-

problem   
Bender’ sub-problem 

Dantzig-Wolfe sub-
problem   

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

1 51858 167797,69 198330,59 21877,85 0,614 0,581 1,314 0,567 0% 0% 0% 0% 

2 51728 167909,2 197751,35 21877,85 0,644 0,478 1,566 0,782 0% 0% 0% 0% 

3 51728 167909,2 197751,35 21897,85 0,683 0,560 1,238 0,574 0% 0% 0% 0% 

4 51728 167909,2 197736,68 21903,56 0,639 0,464 1,189 0,548 0% 0% 0% 0% 

5 51728 167909,2 197732,49 21905,71 0,631 0,569 1,161 0,481 0% 0% 0% 0% 

6 51728 167909,2 197730,92 21906,66 0,682 0,581 1,187 0,518 0% 0% 0% 0% 

7 51728 167909,2 197730,22 21907,14 0,642 0,473 1,291 0,597 0% 0% 0% 0% 

8 51728 167909,2 197729,87 21907,40 0,611 0,715 1,291 0,552 0% 0% 0% 0% 

9 51728 167909,2 197729,68 21907,55 0,623 0,609 1,188 0,502 0% 0% 0% 0% 

10 51728 167909,2 197729,57 21907,64 0,639 0,468 1,308 1,293 0% 0% 0% 0% 

11 51728 167909,2 197729,50 21907,70 0,709 0,585 1,171 0,577 0% 0% 0% 0% 

12 51728 167909,2 197729,46 21907,74 0,633 0,572 1,315 0,565 0% 0% 0% 0% 

13 51728 167909,2 197729,43 21907,77 0,871 0,565 1,152 0,572 0% 0% 0% 0% 

14 51728 167909,2 197729,41 21907,79 2,136 0,574 1,361 0,576 0% 0% 0% 0% 

15 51728 167909,2 197729,40 21907,80 0,682 0,575 1,297 0,545 0% 0% 0% 0% 

16 51728 167909,2 197729,39 21907,81 0,658 0,645 1,180 0,586 0% 0% 0% 0% 

17 51728 167909,2 197729,38 21907,82 0,619 0,474 1,212 0,570 0% 0% 0% 0% 

18 51728 167909,2 197729,37 21907,82 0,648 0,679 1,352 0,587 0% 0% 0% 0% 

19 51728 167909,2 197729,37 21907,83 0,651 0,558 1,247 0,493 0% 0% 0% 0% 

20..30 51728 167909,2 197729,37 21907,83 0,629 0,578 1,328 0,575 0% 0% 0% 0% 
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Table 4-8 CRTN-opt1: Model results for Scenario 1 

Iteration 

Economic assessments EFN 
Total slot 
consumpt

ion 
[MWh] 

Economic assessments PP 

Costs Quantities Costs Quantities 

Net cost [€] 
Electricity 

purchase [€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold Electricity 
[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties [€] 

Start-End Cost  
[€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

1 167798 280611 50886 34360 5100 225 560 796 3817 250 38578 13030 10410 5 

2..30 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 

 Upper bound Lower bound             

1 219655,69 219629,20             

2 219637,20 219629,20             

3 219637,20 219634,53             

4 219637,20 219636,06             

5 219637,20 219636,63             

6 219637,20 219636,88             

7 219637,20 219637,01             

8 219637,20 219637,08             

9 219637,20 219637,12             

10 219637,20 219637,14             

11 219637,20 219637,16             

12 219637,20 219637,17             

13 219637,20 219637,18             

14 219637,20 219637,18             

15 219637,20 219637,19             

16 219637,20 219637,19             

17 219637,20 219637,19             

18 219637,20 219637,19             

19 219637,20 219637,19             

20..30 219637,20 219637,20             
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Table 4-9 Model sizes for all decomposition scenarios 

Model Scenario 

Total variables Equations Binary variables 

Bender’s sub-problem Dantzig-Wolfe sub-problem Bender’s sub-problem 
Dantzig-Wolfe sub-

problem 
Bender’s sub-problem 

Dantzig-Wolfe sub-
problem 

scheduler 
flow 

network 
scheduler 

flow 
network 

scheduler 
flow 

network 
scheduler 

flow 
network 

scheduler 
flow 

network 
scheduler 

flow 
network 

CRTN 

1 

4817 1441 4938 1321 3725 1561 3726 1441 840 120 840 120 
IMV - 1441 4938 - - 1561 3726 -  120 840  
IWMV - 1441 4938 - - 1561 3726 -  120 840  
IOWMV - 1441 4938 - - 1561 3726 -  120 840  
IHCD - 1441 4938 - - 1561 3726 -  120 840  
CRTN 

2 

4817 1441 4938 1321 3725 1561 3726 1441 840 120 840 120 
IMV - 1441 4938 - - 1561 3726 - - 120 840 - 
IWMV - 1441 4938 - - 1561 3726 - - 120 840 - 
IOWMV - 1441 4938 - - 1561 3726 - - 120 840 - 
IHCD - 1441 4938 - - 1561 3726 - - 120 840 - 
CRTN 

3 

4215 1441 4216 1321 3245 1561 3246 1441 600 120 600 120 
IMV - 1441 4216 - - 1561 3246 - - 120 600 - 
IWMV - 1441 4216 - - 1561 3246 - - 120 600 - 
IOWMV - 1441 4216 - - 1561 3246 - - 120 600 - 
IHCD - 1441 4216 - - 1561 3246 - - 120 600 - 
CRTN 

4 

4456 1201 4457 1081 3484 1441 3485 1321 840 120 840 120 
IMV - 1201 4457 - - 1441 3485 - - 120 840 - 
IWMV - 1201 4457 - - 1441 3485 - - 120 840 - 
IOWMV - 1201 4457 - - 1441 3485 - - 120 840 - 
IHCD - 1201 4457 - - 1441 3485 - - 120 840 - 
CRTN 

5 

13793 4033 13794 3697 10421 4369 10422 4033 2352 336 2352 336 
IMV - 4033 13794 - - 4369 10422 - - 336 2352 - 
IWMV - 4033 13794 - - 4369 10422 - - 336 2352 - 
IOWMV - 4033 13794 - - 4369 10422 - - 336 2352 - 
IHCD - 4033 13794 - - 4369 10422 - - 336 2352 - 
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Table 4-10 CRTN: Iteration results for Scenario 2 

Model type Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe’s sub-problem   Benders’ sub-problem 
Dantzig-Wolfe sub-

problem   
Benders’ sub-problem 

Dantzig-Wolfe sub-
problem   

scheduler flow network scheduler flow network scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

CRTN-op1 
1 51858 -673378 198330,59 -962128 0,633 0,742 1,269 0,437 0% 0% 0% 0% 

2..30 52968 -676568 338528 -962128 0,634 0,442 1,125 0,467 0% 0% 0% 0% 

CRTN-op2 
1 51858 -673378 198330,59 -962128 0,634 0,455 1,416 0,457 0% 0% 0% 0% 

2..30 52968 -676568 338528 -962128 0,648 0,469 1,414 0,469 0% 0% 0% 0% 

 

Table 4-11 CRTN: Model results for Scenario 2 

Model 
type 

Iterat
ion 

Economic assessments EFN 
Total 
slot 

consu
mption 
[MWh] 

Economic assessments PP 

Upper 
bound 

Lower 
bound 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Genera
tion 
Cost 
[€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generat

ion 
[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-
End 
Cost  
[€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

CRTN-
op1 & 
opt2 

1 -673378 451870 1675550 292352 0 4733 4792 10885 3817 250 38578 13030 10410 5 -621520 -623600 

2..30 -676568 451870 1675550 292352 0 4733 4792 10885 3806 250 39118 13600 10380 5 -623600 -623600 
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Figure 4-15 CRTN: Iteration results of Scenario 2 

In Figure 4-15, results for Scenario 2 are shown. Both options for calculating the mean value yield 
the same results. The lower bound finds optimal value at the first iteration, while the upper bound 
closes the gap at the second one. This behavior is probably related to the input data, i.e. for this 
particular scenario it happened that the Marginal Cost signal from EFN model gave very good 
indication, which allowed to use the negotiated contracts to buy electricity and sell it with very 
high profit compared to the production specific cost. The computation time of the models involved 
in the two iterations leading to optimality showed very similar values as for Scenario 1. Note that 
the optimal lower bound was found with the first iteration. This is probably why the upper bound 
converged in the next iteration. 

When solving Scenario 3, which is the smallest instance of the monolithic model, the upper and 
lower bounds hit directly the optimal solution at the first iteration (Figure 4-16) with computation 
time of any model being under 2s. The lower bound obtained in the first iteration directly hits the 
optimum. This is related to the fact that the process flexibility does not really allow for much load 
changes since only 3 refiners are available for delivery of the same pulp amount as in the all other 
cases which consider 5 refiners. Detailed results of Scenario 3 for all of the investigated model 
types are shown in Table 4-12 (model statistics) and Table 4-13 (solution structure). 

 

 
Figure 4-16 CRTN: Iteration results of Scenario 3 
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Table 4-12 Iteration results for Scenario 3 of all model types 

Model 
type 

Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe sub-problem Benders’ sub-problem 
Dantzig-Wolfe sub-

problem 
Benders’ sub-

problem 
Dantzig-Wolfe sub-

problem 

scheduler flow network scheduler flow network scheduler 
flow 

network 
scheduler 

flow 
network 

scheduler 
flow 

network 
scheduler 

flow 
network 

CRTN-
op1 

1 164530 155541,83 298313,98 21757,85 0,460 0,417 0,495 0,592 0% 0% 0% 0% 

2..30 164530 155541,83 298313,98 21757,85 0,605 0,562 0,736 0,526 0% 0% 0% 0% 

CRTN-
op2 

1 164530 155541,83 298858,48 21757,85 0,492 0,474 0,614 0,728 0% 0% 0% 0% 

2..30 164530 155541,83 298313,98 21757,85 0,594 0,466 0,625 0,496 0% 0% 0% 0% 

IMV 
1 - 155541,83 298858,48 - - 0,422 0,662 - - 0% 0% - 

2..30 - 155541,83 298313,98 - - 0,482 0,639 - - 0% 0% - 

IWMV 
1 - 155541,83 298858,48 - - 0,582 0,688 - - 0% 0% - 

2..30 - 155541,83 298313,98 - - 0,476 0,676 - - 0% 0% - 

IOWMV 
1 - 155541,83 298858,48 - - 0,513 0,771 - - 0% 0% - 

2..30 - 155541,83 298313,98 - - 0,524 0,811 - - 0% 0% - 

IHCD 
1 - 155541,83 298858,48 - - 0,393 0,471 - - 0% 0% - 

2..30 - 155541,83 298313,98 - - 0,371 0,536 - - 0% 0% - 
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Table 4-13 Model results for Scenario 3 of all model types 

Model type Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound 
Lower 
bound 

Costs Quantities Costs Quantities 

Net cost [€] 
Electricity 

purchase [€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

CRTN-op1 
1 155542 311000 48182 34360 5600 225 560 751 3564 34750 126890 2890 9720 695 320071,83 320071,83 

2..30 155542 311000 48182 34360 5600 225 560 751 3564 34750 126890 2890 9720 695 320071,83 320071,83 

CRTN-op2 
1 155541,83 311000 48181,74 34360 5600 225 560 751 3564 34750 126890 2890 9720 695 320071,83 320071,83 

2..30 155541,83 311000 48181,74 34360 5600 225 560 751 3564 34750 126890 2890 9720 695 320071,83 320071,83 

IMV 
1 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 

2 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 

IWMV 
1 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 

2..30 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 

IOWMV 
1 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 

2..30 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 

IHCD 
1 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 

2..30 155541,83 168420,53 47238,7 34360 1604 335 560 735 3564 34750 126890 2890 9720 695 320071,83 - 
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Figure 4-17 CRTN: Iteration results of Scenario 4 

Scenario 4 is an instance which is not as easy to solve using the monolithic model as Scenarios 1-3. 
Results are shown in Figure 4-17, which indicate no convergence for this problem instance. Both 
the lower and the upper bound do not reach the optimal value, although the best upper bound value 
is only 0,3% from the optimal value, while the lower bound is even closer. The structure of the 
algorithm’s best solution such as the flow network contracts is also very similar to the optimal 
monolithic solution. 

The lack of optimality might be related to three main reasons. First, there is a computational limit 
set to 180s for which the production scheduling models at the lower bound fail to solve the problem 
to optimality in some iterations. However, the solutions usually have an optimality gap of 0,08% 
(or less), which is practically a negligible error. After tests with selected examples solved to 
optimality the behavior is the same. Therefore, the optimality gap is not the reason for non-
convergence. Secondly and more importantly, this particular problem may not reach the optimum 
due to the duality gap of the lower bound problem due to Lagrangean relaxation. When exchanging 
the dual information in Mean Value Cross Decomposition in MILPs there is always a potential 
error of the duality gap since the Dantzig-Wolfe’s sub-problem is used with the relaxed constraint 
in the objective function (Holmberg, 1997). Especially by investigating closer the convergence 
process for a larger number of iterations (Figure 4-18) it can be observed that the lower bound 
seems to reach a constant value – probably the dual gap, while the upper bound is less stable. 
Thirdly, the upper bound does not converge nor stabilize itself also due to no mean value 
calculation of the previous solution on the load signal. Although, for practical applications One-
sided MVCD shows very good results, there is no guarantee of upper bound or lower bound 
convergence (to optimality or to the dual gap error) when using One-sided Weighted Mean Value 
Cross Decomposition. 
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Figure 4-18 CRTN-opt2: Iteration results of Scenario 4 for 150 iterations 

To investigate further the behavior of the decomposition scheme for this particular scenario two 
strategies can be employed, as suggested in studies by Holmberg (1997) for MILP problems and 
Holmberg and Kiwiel (2006) for NLP problems: 

 feasibility repair heuristic – use the mean values on load variable (ݍ௧) and then round the 
variable to the closest feasible values; 

 relaxation of integer variables – relax some of the integer variables to overcome the 
infeasibility problem of the mean value calculation on load variable. 

The first approach is more suitable for practical purposes as it can produce a feasible schedule for 
which an optimal flow network structure can be obtained. However, since here the focus is to check 
the convergence properties, the additional problem of the flow network is not solved.  The second 
approach would not produce a feasible schedule, but the convergence to the dual gap should be 
observed since both the upper and lower bound are still mathematically valid.  

The feasibility repair is applied to the scheduler of Benders’ sub-problem. A simple Eq. (4.50) 
replaces Eq. (4.40). It forces the number of running refiners to express as closely as possible the 
augmented load (ݍ௧

ᇱ) in a feasible manner. This is done by rounding the quotient of the weighted 
mean load value (option 2) and the electrical consumption of one refiner (all refiners are identical) 
to the nearest integer value. 

∑ ௜ܰ,௧௜∈ூ೎ = ௧ݍ൫݀݊ݑ݋ݎ
ᇱ/݌௘௟൯  ∀ݐ ∈ ܶ (4.50) 

In Figure 4-19 it can be observed that the Benders’ sub-problem returns cyclically higher and lower 
values than the optimal solutions or the lower bound. This is due to the infeasible weighted mean 
value of the load curve in the flow network model of the complete sub-problem. It can be noted 
that the behavior of the algorithm is not stable and does not seem to be stabilizing even after 150 
iterations. The figure reports the upper bound as a summation of production costs from the 
Dantzig-Wolfe’s scheduler (pulp buying cost and start-up/shut-down cost) and electricity cost that 
comes from a flow network solved with fixed load resulting from the Dantzig-Wolfe’s sub-
problem. In this way for each iteration a feasible upper bound is constructed (upper bound – 
iteration). Additionally, for better clarity, the best upper bound found among all previous iterations 
is drawn as a staircase line. The best objective function value found in iteration 43 is 123054,5 
which is only 0,15% from optimality (see Table D-11 in Appendix D for more details). 
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Figure 4-19 CRTN-opt2: OWMVCD with feasibility repair heuristic - results of Scenario 4 

A drawback of the feasibility repair heuristic strategy is that in practice it would be difficult to 
know when to stop the algorithm since it does not converge. 

In the second approach, some of the integer variables linked to the load curve should be relaxed to 
allow infeasible augmented values. In general, finding the right values to relax in a complex MILP 
model can be a major challenge. For the considered problem, the variable representing the 
execution of the pulping task in refiners has direct influence on the load, therefore it can be relaxed 
as follows (4.51): 

௜ܰ,௧ ∈ ܴ, 0 ≤ ௜ܰ,௧ ≤ ݐ∀  1 ∈ ܶ, ݅ ∈ ௖ܫ   (4.51) 

The Benders’ sub-problem becomes feasible for any mean value resulting from the Dantzig-
Wolfe’s sub-problem. For Scenario 4, the relaxation gives the behavior as shown in Figure 4-20. 

 

 
Figure 4-20 CRTN-opt2: OWMVCD with relaxed integers - results of Scenario 4 
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Figure 4-21 CRTN: Iteration results of Scenario 5 

The corresponding results in Table D-12 show a relatively fast convergence of both sub-problems 
to a stabilized range of values around 121440 for the upper bound and 121370 for the lower bound. 
After the 15th iteration the difference between the bounds oscillates in a range of around 20-200. 
Lack of precise convergence of both bounds to one single value could be explained by the fact that 
not all of the integer variables are relaxed as in the proved case (Holmberg 1997). The value of the 
dual gap seems to be around 1% below the optimal solution. The objective function values in the 
second iteration can be explained by the algorithm’s response to the initialization step.  

As shown by Holmberg (1997) the mean value strategy applied on both sub-problems can be 
expected to achieve very good results. The final solution is infeasible, however a heuristic strategy 
could be further applied to find a feasible schedule which would reduce the duality gap. More 
general conclusions with regard to the behavior and convergence properties of the decomposition 
scheme are discussed later in Chapter 4.3.4.7.  

In the last instance of Scenario 5 both bounds reach the optimal solution within few iterations. This 
is similar to Scenario 1 and could be related to the fact that both instances have the same input data, 
however just the size (scheduling horizon) differs. The iteration results are shown in Figure 4-21. 

The above test instances show the convergence behavior of the developed decomposition scheme. 
However, to get a feasible solution only the partial problems of the two decomposition schemes can 
be solved as shown later for the “industrial approach”. In any of the following approaches, 
whenever a mean value is calculated the option 2 is used as it showed slightly better performance 
in the convergence tests. 

4.3.4.3. Industrial approach with MVCD 

The industrial approach solves only the two interesting parts of the sub-problems as explained 
earlier (Chapter 4.3.3). On both signals (load curve and Marginal Cost curve), the mean value is 
calculated before solving the partial sub-problems. Detailed results of all problem instances (except 
Scenario 3 which has been reported earlier) solved using MVCD with a limitation to 30 iterations 
limitation is shown in Table D-15-Table D-22. The algorithm’s solution for Scenario 1 is shown in 
Figure 4-22. The solution of each iteration (called later as decomposition solution) consists of the 
summation of both objective function values of partial sub-problems as explained earlier. Based on 
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the scheduler’s problem, which provides a load curve, an additional solution of the corresponding 
flow network can be computed. Summation of both objective functions provides a valid upper 
bound. It can be observed that for Scenario 1 the optimal upper bound calculated based on the 
decomposition solution is found already in iteration 2. 

Decomposition solution value of the iterations other than initial happen to yield lower than optimal 
values due to infeasible mean values of the load curve that can be used in solving the flow network 
problem and its cost. It can be observed that with each iteration the decomposition slows down in 
the move towards the optimal solution and does not reach it in 30 iterations. However, it should be 
noted that for all of the following cases with such behavior it looks that the optimality could be 
reached when performing a sufficiently large number of iterations, since the objective function 
always improves with new iteration. This is related to the nature of the mean value calculation and 
relatively slow influence of the current signal. Similar convergence behavior is seen for Scenario 2 
in Figure 4-23. An optimal upper bound is found already in the second iteration of the algorithm. 

For Scenario 3 again the decomposition yields the optimal solution with the first iteration as in the 
previous decomposition variations.  

 

  
Figure 4-22 IMV: Iteration results for Scenario 1 

 

 
Figure 4-23 IMV: Iteration results for Scenario 2 
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Figure 4-24 IMV: Iteration results for Scenario 4 

 

 
Figure 4-25 IMV: Iteration results for Scenario 5 

Next, the case of Scenario 4 (Figure 4-24), which does not yield optimum in the convergence test, 
does not reach the optimal solution in the industrial approach. The solutions better than the optimal 
solution (below the optimality line) are clearly those for which one of the partial models – flow 
network – received an altered signal (altered load curve), which in general not achievable by the 
real process (not feasible), thus the objective function value may became better than the monolithic 
optimal. The iterations oscillate due to cyclically similar relative signal values. Again for this case 
there are some partial model instances which are not solved to optimality within the 180s limitation 
as can be seen in the detailed results in Table D-19 - Table D-20, however this is not the reason for 
the decomposition’s lack of optimality in this scenario as the obtained solution were almost exactly 
the same as the optimal solution. In this particular setting the infeasibility of the load curve given to 
the flow network problem could also contribute to slow convergence behavior. However, it can be 
expected that the duality gap plays the biggest role in that. It should be noted that still the solution 
closest to optimality which is found in iteration 20 is only 0,13% far from optimality, but the 
solution is infeasible. The last instance of Scenario 5 presented in Figure 4-25 shows similar 
behavior to Scenario 1 and also does not reach the optimum in 30 iterations.  
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4.3.4.4. Industrial approach with Weighted MVCD 

Iteration results for the Weighted Mean Value Cross Decomposition (WMCD) approach using the 
partial sub-problems of Benders’ and Dantzig-Wolfe’s decomposition are shown in Figure 4-26 - 
Figure 4-28. As expected, the decomposition solution performs better than the Mean Value Cross 
Decomposition. In general, the behavior of both are similar, however the decomposition solution in 
WMCD approach yields the optimal solution much faster due to a stronger response to the previous 
solution (signal). Identically to IMV, the upper bound is found already in the second iteration for 
all of scenarios except Scenario 4.The solving times of each partial sub-problem are very similar to 
the MVCD. More detailed results of this approach are reported in Table D-23 - Table D-30. Again, 
Scenario 3 is solved in the first iteration. In Scenario 4 there is no optimality reached and the 
quality of the obtained solutions is identical to the one obtained from MVCD. Here, again better 
(lower) than optimal infeasible solutions are found due to altered (with weighted mean) load curve 
signal.  

 

  
Figure 4-26 IWMV: Iteration results for Scenario 1 

 

 
Figure 4-27 IWMV: Iteration results for Scenario 2 
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Figure 4-28 IWMV: Iteration results for Scenario 5 

4.3.4.5. Industrial approach with One-sided Weighted MVCD 

Another variation of the Cross Decomposition is to use one of the signals directly without any 
alteration. In our problem setup it could make sense to apply the direct signal to the flow network 
problem to avoid getting a purchase structure (flow network solution) for an infeasible load curve 
(since it was altered to take mean value). If a direct load curve is used in the flow network the 
entire iteration should never yield solutions better than the optimal, since both solutions from the 
partial problems are feasible in the original monolithic problem. 

Detailed results including objective function values of iterations are reported in Table D-31 - Table 
D-38. In can be concluded that the behavior of the OWMVD algorithm is very similar to the 
previous approaches, however optimal solutions are obtained with a slightly less number of 
iterations. For example, in Scenario 1, 2 and 5 optimality is reached in 2 iterations. Again, Scenario 
3 is solved directly. Scenario 4 does not reach optimality, but the best objective value (123246,34 - 
identical with the one found by IMV and IWMV) is found faster (already in iteration 15 not 20). It 
can be concluded that for the considered case study, OWMVD seems to give the best performance 
above all of the investigated approaches – it requires the least number of iterations to obtain the 
optimal solutions and only 2 models are solved in one iteration in contrast to 4 models solved for 
the convergence tests. It is worth mentioning that also experiments with OWMVD using option 1, 
to calculate the mean value were performed, however did not give a better behavior than option 2. 

 

 
Figure 4-29 IOWMV: Iteration results for Scenario 4 



99 

 
Figure 4-30 IHCD: Iteration results for Scenario 4 

4.3.4.6. Industrial approach with heuristic Cross Decomposition 

In this approach, both signals are not altered at all and are sent directly to the other partial sub-
problems during the iterative algorithm. This allows avoiding the infeasibility problems, however it 
is not proven to yield convergence. The iteration behavior of the IHCD approach turned out to be 
exactly the same as in the case of IOWMV, except of Scenario 4. In addition, all solution times 
were also very similar to all other approaches. The detailed results of Scenario 4 are given in 
Appendix D. From Figure 4-30, which shows the iteration results of Scenario 4, it can be observed 
that the algorithm oscillates between two solutions. The exchanged signals are cyclically identical 
with the best one being worse than the best ones found by the other approaches. Since there is no 
alteration on the signals, the algorithm seems to get stuck having no incentive to change its 
behavior. In this sense, it is expected that the IOWMV is the best choice of the Cross 
Decomposition variation among all the investigated approaches. In addition, the best solution of the 
IHCD approach is by 0,1% worse than the best one from IOWMV. However, on the other hand this 
solution scheme is easy to handle since the feasible signals always provide feasible solutions. 
Moreover, the cyclic solutions can be easily detected and the algorithm can be stopped. Therefore, 
for practical implementation this method provides advantages. 

4.3.4.7. Discussion on performance and limitations 

In Chapters 4.3.4.1-4.3.4.6 different approaches that utilize the idea of Mean Value Cross 
Decomposition are presented. The iterative framework solves Benders’ sub-problem with a flow 
network model and the Dantzig-Wolfe sub-problem with production schedule. Proving the 
convergence of the algorithm can be shown in two ways. First, solving complete sub-problems of 
Benders’ and Dantzig-Wolfe decomposition to compare the upper and the lower bound. Second, 
the decomposition result can be compared with the optimal solution of the original monolithic 
problem. In all of the investigated approaches solutions very close to optimal, if not optimal, have 
been found in reasonable times. 

Computational performance 

From the detailed results for different instances, it can be noted that it usually takes longer for the 
decomposition approach to return the optimal solutions when compared to the monolithic model. In 
order to further asses the computational time performance, it was chosen to investigate the 
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IOWMV and HCD approach and compare it to the monolithic model solution times. The results are 
shown in Table 4-14. It can be seen clearly that for Scenarios 1-3, the monolithic model is faster. 
However, under certain stopping criteria for the problematic Scenario 4-5, the decomposition 
approaches perform quite similar to the monolithic. Moreover, the IHCD approach computes 
slightly faster for easy-to-solve instances (Scenarios 1-3), while IOWMV is slightly better when 
solving the problematic Scenarios 4-5. In general, it should be noted that the TMP process case 
forms relatively small problem instances for which the monolithic as well as all of the 
decomposition approaches find industrially acceptable solutions very fast. 

Table 4-14 Computational time comparison 

Scenario 
RTN IOWMV IHCD 

MIP CPUs Gap CPUs Gap CPUs Gap 
1 219637,2 0,74 0% 1,82* 0% 1,60* 0% 
2 -623600 0,53 0% 2,03* 0% 1,78* 0% 
3 320072,8 0,47 0% 0,35* 0% 0,35* 0% 
4 122869 10,54*** <0,01% 10,10***1 0,47%** 10,18***3 0,54%** 
5 615072 10,47*** <0,01% 10,13***2 0%** 10,72***2 0%** 

* time to obtaining first optimal solution 

** best iteration with stopping limitation of relative gap 1 % 

*** stopping limitation set to 10 s 
1total of 15 iterations; 2total of 13 iterations; 3total of 14 iterations; 

 

Solution quality performance and limitations 

One limitation of the approach to use the dual information is that in practice it might sometimes be 
difficult to obtain the dual cost from an LP solution of a MILP problem. Also, it should be noted 
that it is difficult to assess what the necessary conditions are, apart from the special structure that 
allows formulating Benders’ and Dantzig-Wolfe sub-problems, for the framework to obtain 
acceptable solutions. One possible weak point of the framework is the quality of the Marginal Cost 
signal obtained from the flow network when no mean values on both signals are used. Even though 
complicated network structures were investigated and similarly good solutions were obtained, it is 
not certain that the dual information from an LP solution of a MILP problem is correct. To be more 
precise, the Marginal Cost applies to certain load parameter bounds where the LP solution of the 
flow network is optimal for the given load bounds. Therefore, if the scheduler stays within the load 
bounds, it will provide the system-wide optimal solution. However, if the load exceeded the 
bounds, the Marginal Cost information is no longer “correct” and the flow network’s solution for 
which the dual was obtained is not optimal anymore (actually regardless of whether the original 
problem was LP or MILP). Because of this, the dual information gives a correct indication, but 
only, for limited load bounds which are likely to be exceeds. Another interpretation of the quality 
of the ܥܯ signal is that it is proven (Holmberg 1997) to be a valid signal, but only over the convex 
hull (convexified set of the original problem) of Benders’ sub-problem. Therefore if no mean 
values on the other signal are used then the scheme is not proven to stay within the convex hull. 
Nevertheless, for practical example problems, the Marginal Cost curve turns out to provide a very 
good guess of where the scheduler should move the load to in different time intervals. It can be 
suspected that this is due to the fact that: 
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 when load changes by a small amount the electricity contracts structure does not have 
significant price changes per MWh of electricity consumed, therefore also corresponding 
Marginal Cost curve does not have significant pattern changes with different load levels; 

 industrial loads result from the production process which is always constrained (e.g. due to 
final product demand requirements) thus the load values do not have full flexibility but 
usually small ranges within which they can be changed. 

When discussing Scenario 4, there is a very useful and important characteristic of the Mean Value 
Decomposition structure with mean value calculated on both signals. It is the fact that the lower 
bound produced by the Dantzig-Wolfe sub-problem, if enough iterations are admitted, eventually 
should converge as close to the optimal solution level as the dual gap allows. 

This is shown in Figure 4-31 where the shaded area represents the convex hull of the monolithic 
problem with the complicating constraint or Benders’ sub-problem region without the complicating 
constraint). In other words, the lower bound can be as good as the Lagrangean dual of the original 
monolithic problem, possibly performing even better than the LP relaxation of the monolithic 
problem (see optimal solution of LP relaxation in Figure 4-31). This was also shown in Holmberg 
(1997) where the convergence properties of such decomposition for MILP problems were 
investigated thoroughly. As for the Benders’ sub-problem (the upper bound), if the mean values on 
both signals and all integer variables (if needed) are used (integer requirements are relaxed), the 
lowest solution it can reach for a minimization problem is exactly the lower bound’s highest value, 
i.e. the solution value of the Benders’ sub-problem (in our case using a fixed variable ݍ௧) might be 
lower than the true optimum however, will never be lower than the best (highest) lower bound. If 
there is no dual gap then the lower bound can only go up until the true optimum of course, and also 
the upper bound will reach it. 

In this case, to overcome the infeasibility problem of the variable ݍ, the signal can be used directly 
without its mean value augmentation (One-sided Mean Value) such that it corresponds to a feasible 
schedule. For the investigated instances, the lower bound eventually finds very good solutions that 
approach the Lagrangean dual as in Scenario 4 (Dantzig-Wolfe sub-problem solution). When the 
corresponding ݍ information is used in the flow network model in the Benders’ sub-problem, the 
upper bound will produce very good quality solutions as well, especially when the dual gap is 
relatively small. If there is no dual gap, the One-sided Mean Value yields optimal solutions due to 
the fact that the lower bound finds the optimal objective function value of the monolithic model. 
The practical interpretation of this situation is the following. As seen in the investigated cases when 
iterating between the sub-problems, the schedule might eventually stabilize itself such that even 
when the ܥܯ signal from the flow network changes with each iteration, the schedule will not 
change due to process restrictions and especially due to integer decisions. From the industrial point 
of view, this is very appealing since the production schedule is the dominant cost-factor which is 
the most important in the integration of energy and production management. 
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Figure 4-31 Simplified geometrical representation of MVCD scheme limitations 

With the above arguments concerning the Mean Value convergence properties and theoretical lack 
of performance proofs of the One-sided Mean Value, one could investigate how to augment the 
Mean Value scheme such that it provides practically useful solution. An interesting approach to 
overcome the infeasibility problem would be to try to solve two different models at the upper 
bound level – one for finding ݍ values from a feasible schedule and the other one could provide ݍ’s 
from a relaxed version of the scheduler which then could be used for solving the Benders’ sub-
problem. In this way, it could be still possible to obtain feasible solutions (from the former model), 
but at the same time the Benders’ sub-problem could use a mean value signal (from the latter 
model). In this way, the Benders’ sub-problem could result in better solutions than in the case of 
the one-sided version. Another way of dealing with the infeasibility problem which would 
hopefully allow for closing the upper bound is to construct a specialized heuristic that could 
smartly round up the infeasible ݍ values to feasible integer levels, as suggested also by Holmberg 
(1997). As it was shown in the convergence tests with Scenario 4 this approach might however still 
not close the gap between the sub-problems. For practical implementations, it might be difficult to 
assess when to stop the algorithm since there is no stabilization of the algorithm’s solution. Another 
way has been suggested by Holmberg (2004): to use One-sided Mean Value for certain number of 
iterations and interrupt it with Mean Value calculation occasionally. For some problems, it should 
help to steer the convergence better than using OSWMVCD alone, however it is difficult (if 
possible at all without numerical experiments) to establish the number of iterations when to switch 
between the two.  

In general, if a successful way of overcoming the infeasibility problem when using Mean Value 
calculation on both sides is found the scheme is expected to yield better solution results than the 
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methods based on subgradient optimization. This is because the Lagrangean based methods are 
exploiting the “corners” of the convexified set and then use a heuristic to project then into a 
feasible solution satisfying the complicating constraint as well. 

Summary of conclusions 

From the cases investigated, the following conclusions can be drawn concerning different Cross 
Decomposition approaches: 

 Best approach: One-sided Weighted Mean Value Cross Decomposition (OSWMVCD) 
with signal alteration using stronger influence of the last received signal (Equation 21) 
performed better than the other approaches with mean value calculation, i.e. Mean Value 
and Weighted Mean Value Cross Decomposition. The former approach moved 
considerably slower towards optimality then the other approaches. Moreover, using direct 
signals in IHCD seems to work as good as OSWMVCD for the considered instances, but is 
expected show worse behavior in problematic instances with duality gap; 

 Stopping criteria: when using only partial solutions it might not be clear when to stop the 
algorithm in case of problematic instances, because the convergence tests cannot be done 
due to the lack of the lower bound. However, for the scenarios investigated the algorithm 
should terminate as soon as there is no improvement of the solution with new iterations. 
For practical purposes, in an industrial setting, the stopping criterion could simply be the 
total time limit combined with termination when there is no significant solution 
improvement with new iteration; 

 Optimality: there is no guarantee, when using OSWMVCD, that the algorithm will 
converge to optimality. In addition, probably due to the MILP duality gap, none of the 
investigated approaches can solve problematic instances to optimality, for example in 
Scenario 4 where the dual gap is present. In summary, the following might contribute to 
the lack of optimality in certain problem instances: 

o duality gap of MILP models in Benders’ sub-problem – as noted by Holmberg 
(1997), Holmberg and Kiwiel (2006) and discussed earlier; 

o one-sided instead of regular mean value calculation on both signals automatically 
does not guarantee  convergence of the solution to the dual gap (if present) of the 
Benders’ sub-problem (Holmberg 1997);  

o unbalanced sub-problems – Holmberg (1997) posed a suspicion that when using 
MVCD both sub-problems shall be of a similar size. When for example two 
unbalanced problems are solved, one very large and second small, the optimality 
might not be reached. For our case, the flow network problem is a smaller problem 
then the scheduler; 

o relative gap – not solving the sub-problems to optimality might also of course 
contribute to the overall lack of optimality of the algorithm, however in the 
investigated instances this is not seen to be an issue; 

 Controllability: MVCD takes many iterations to solve to optimality due to the weak 
influence of the last received solution from one of the sub-problems. The heuristic 
approach IHCD gave similar results to the OSWMVCD, however on the problematic 
instance (Scenario 4) showed oscillation around two identical solutions. This is because the 
signals are not altered, therefore might cycle back between identical values. 

 Computation time: for the example here the decomposition increases the computational 
time compared to the monolithic approach. However, for the TMP case the results were 
still obtained in reasonable times. 
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Even though the investigated decomposition scheme cannot be proven to converge, it shows very 
good results for the instances investigated, which is potentially relevant for industrial use as it 
allows for functional separation of the models as well. 

4.4 Application to continuous-time bi-level heuristic of the 
stainless-steel case 

In Chapter 4.2 it was shown that for a monolithic production scheduling problem with energy cost 
optimization based on the Minimum-cost Flow Network it is possible to use the special problem 
structure in order to arrive at the decomposition approach consisting of two functionally separated 
problems. To solve the monolithic stainless steel case investigated in Chapter 3.2 using the Mean 
Value Cross Decomposition idea, one could apply it directly in a similar manner as for the TMP 
case in the previous chapter using partial sub-problems. However, due to the large-scale nature of 
the scheduling problem, the MVCD scheme cannot be applied directly since it would result in an 
intractable scheduling problem. Therefore, here the bi-level heuristic from Chapter 3.4 is 
employed. It allows to investigate different integration variations. In the following chapter first the 
Mean Value Cross Decomposition is applied to a monolithic problem to create Benders’ and 
Dantzig-Wolfe partial sub-problems - the latter being not tractable. Therefore, in the next chapters 
two different options of bi-level heuristic integration with One-sided Weighted MVCD and 
heuristic Cross Decomposition  are investigated in order to solve the problem in reasonable times. 

4.4.1 Heuristic framework structure 

If the Mean Value Cross Decomposition approach solving only partial sub-problems is applied to 
the monolithic steel scheduling problem using the improved event binaries model from Chapter 3 
two optimization problems are obtained. First, the production scheduler with regular production 
specific costs (summation of task start times with a weighting factor), load deviation response 
(deviation penalties ߜ) and optimization of single energy price curve (dual information from the 
flow network) – scheduler of Dantzig-Wolfe sub-problem as in Eq. (4.52). 

ߜ)݊݅݉ + ܿ ∙ ∑ ௣,௠ݐ
௦

௣∈௉,௠∈ெ + ௦ݍ ∙  തതതതത௦)  (4.52)ܥܯ

subject to 

.ݍܧ (3.1 − 3.16) – production scheduling constraints (Chapter 3.2.2) 

.ݍܧ (3.44 − 3.47, 3.71 − 3.80)  – energy-awareness constraints of improved event binaries model 

 (Chapter 3.2.3.3) 

.ݍܧ (3.99 − 3.102)  – load deviation problem (Chapter 3.2.4.2) 

The above formulation applies to all three monolithic model variations assessed in Chapter 3.3 if 
the energy-awareness constraints are chosen according to the variation option. However, since the 
improved event binaries (Chapter 3.2.3.3) were concluded to be the most efficient, from this point 
this variation of the energy-awareness is referred as the monolithic steel plant scheduling model. 

Secondly, the energy model with optimization of purchase and sales net cost (net electricity cost), 
under the assumption of a given load distribution – flow network Benders’ sub-problem. 

݉݅݊(μ)  (4.53) 
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subject to 

௜݂ହ,௝଻,௦ = ݏ∀  ത௦ݍ ∈ ܵ  (4.54) 

.ݍܧ (3.88 − 3.89), (3.91 − 3.98)  – flow network constraints (Chapter 3.2.4.1) 

As previously stated, the signals exchanged between the sub-problems (either partial or complete) 
are the load curve (ݍ௦) from the schedule and the flow network’s marginal cost curve (ܥܯ௦). These 
signals can be used directly or can be augmented according to different decomposition approaches, 
as explained in Chapter 4.2.  

From the closer investigation of the general problem in Chapter 4.2.2.3 it can be concluded that it is 
sufficient to solve the above mentioned two partial sub-problems to get a solution to the original 
monolithic problem. Moreover, in the investigation of the Mean Value Cross Decomposition 
concepts applied to the TMP case (Chapter 4.3), it has been concluded, similarly as in the available 
literature studies (e.g. Holmberg and Kiwiel 2006), that the One-sided Weighted Mean Value Cross 
Decomposition is faster in finding optimality than the regular One-sided Mean Value. For our 
cases, also the Heuristic Cross Decomposition using direct signals gave good results event tough 
cycling between two identical solutions can occur. Therefore, for the application of the 
decomposition concepts to the steel case, these two approaches – OSWMVCD and HCD with 
solving only the partial problems – are investigated. 

Compared to the TMP case there are important differences which need to be taken into account 
when solving the steel problem: 

 the targeted instances of the TMP monolithic model are solvable to optimality, while the 
steel instances of the monolithic model are not (Chapter 3.3.2); 

 the partial sub-problems of the TMP models are solvable to optimality (or very close to 
optimality) in reasonable times, while the steel partial sub-problem of Dantzig-Wolfe’s 
decomposition is not tractable since after extraction of the flow network problem from the 
monolithic formulation the model is still very large for the targeted instances (see the size 
of the problems in Table 4-16). 

The first point has the implication that for the example case study it will not be possible to compare 
the results of the decomposition concept to the monolithic model (for targeted large-scale 
instances) to exactly asses its performance. However, it will be possible to compare it with the bi-
level heuristic results reported earlier in Chapter 3.5. That in turn implies the use of the same 
problem instances (input data). For the second point, the bi-level heuristic structure (Chapter 3.4) 
must be applied in a way that allows obtaining satisfactory solutions in reasonable times. Two 
different integration approaches are proposed as explained in the next chapters. 

4.4.1.1. Bi-level heuristic as Dantzig-Wolfe sub-problem 

Since the scheduler in the Mean Value Cross Decomposition scheme is the non-tractable 
bottleneck, the first approach is to simply use the bi-level heuristic to solve it in reasonable times as 
shown in Figure 4-32. In the following text ݏ is used to denote time intervals, following the 
notation from Chapter 3. 
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Figure 4-32 Bi-level heuristic as Dantzig-Wolfe partial sub-problem 

In the proposed approach, the initialization step and the solution of the flow network problem is 
performed similarly as for the TMP case. The production scheduling model is chosen as the one to 
be solved first. Again, the model is solved using the day-ahead spot market price (ܿ௜ଷ,௜ହ,௦) instead of 
the Marginal Cost curve as a parameter in the objective function. Since the full space scheduler is 
not tractable, the approximated model ܷ1ܮ is used in the initialization step. The model formulation 
is as follows. 

݉݅݊௜௡௜௧ିா௉ௌ൫௖೔య,೔ఱ,ೞ)൯ ( + ܿ ∙ ∑ ௣,௠ݐ
௦

௣∈௉,௠∈ெ + ∑ ௦ݍ ∙ ܿ௜ଷ,௜ହ,௦௦∈ௌ )  (4.55) 

subject to: 

.ݍܧ (3.1 − 3.16) – scheduling model equations with new sets ܯ and ܵܶ (Chapter 3.2.2) 

.ݍܧ (3.44 − 3.47), (3.71 − 3.80) – energy-awareness extension with improved event binaries 
model (Chapter 3.2.3.3) with new sets ܯ and ܵܶ 

.ݍܧ (3.99 − 3.102)  – load deviation problem (Chapter 3.2.4.2) 

After the first Marginal Cost signal is received, the upper level problem ܷ1ܮ can be computed 
using the formulation presented in Chapter (3.4.2), however with a modified objective function and 
without the flow network constraints as in problem (4.56). 

݉݅݊௎௅ଵିா௉ௌ(ெ஼ೞതതതതതത)൫  + ܿ ∙ ∑ ௣,௠ݐ
௦

௣∈௉,௠∈ெ + ∑ ௦ݍ ∙ തതതതത௦௦∈ௌܥܯ ൯  (4.56) 
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subject to: 

.ݍܧ (3.1 − 3.16) – scheduling model equations with new sets ܯ and ܵܶ (Chapter 3.2.2) 

.ݍܧ (3.44 − 3.47), (3.71 − 3.80) – energy-awareness extension with improved event binaries 
model (Chapter 3.2.3.3) with new sets ܯ and ܵܶ 

.ݍܧ (3.99 − 3.102)  – load deviation problem (Chapter 3.2.4.2) 

 new constraints for other internal bi-level heuristic iteration than initial (Chapter 3.4.4)  – ݏݐݑܥ

Similarly as for the monolithic bi-level heuristic the above models (4.55) and (4.56) have no stages 
,2ݐݏ  included. The parameters of maximum hold-up time and (AOD and LF process steps) 3ݐݏ
minimum transportation time are augmented as previously described in Chapter 3.4.2. The upper 
level problem for the case study in Chapter 3.5 was solved using a computational time limitation of 
120s, therefore in the MVCD scheme the same strategy is followed in an attempt to fairly compare 
the models. Similar as before, the results of the approximated ܷ1ܮ model are used to fix some 
binary variables in the full space problem ܮܮ to obtain a feasible schedule. This is done exactly in 
the same way as before (assignment, sequence and event start), as described in Chapter 3.4. The 
model (ܮܮ) is formulated following the Dantzig-Wolfe partial sub-problem as well, with modified 
objective function and eliminated flow network constraints: 

min௅௅ିா௉ௌ(ெ஼ೞതതതതതത)( + ܿ ∙ ∑ ௣,௠ݐ
௦

௣∈௉,௠∈ெ + ∑ ௦ݍ ∙ തതതതത௦௦∈ௌܥܯ )  (4.57) 

subject to: 

.ݍܧ (3.1 − 3.16) – scheduling model equations (Chapter 3.2.2) 

.ݍܧ (3.44 − 3.47), (3.71 − 3.80) – energy-awareness extension with improved event binaries 
model (Chapter 3.2.3.3) 

.ݍܧ (3.99 − 3.102)  – load deviation problem (Chapter 3.2.4.2) 

The results of the above formulated problem ܮܮ are used as an input to the problem ܷ2ܮ which 
aims at finding a better assignment on EAF stage, while keeping all the sequences and event start 
binary variables fixed to the values obtained from ܮܮ, exactly as described previously in Chapter 
3.4.3 - 3.4.4 with the dual information in the objective function similarly as in (4.57). 

The internal loop of the bi-level heuristic iterates between the models ܷܮܮ ,1ܮ and ܷ2ܮ until the 
time limitation of 180s is reached, since in this case there is no indication of optimality as a 
stopping criterion - similarly as for the case of the bi-level heuristic use for the monolithic model. 
The internal loop time limitation should allow for making few iterations of the bi-level heuristic 
within the global stopping criterion of the total global computational time limit of the entire 
algorithm. After the computation limit for the internal loop has been reached, the best iteration 
(minimal objective function value of ܷ2ܮ) is chosen to get the schedule’s solution and its 
corresponding load curve which is next fed to the flow network problem (4.53) to start a new 
iteration of the outer loop. In order to fairly compare the entire algorithm with the monolithic bi-
level approach, the total computational time limit is set to 600s. Since the flow network problem is 
solvable in seconds, the total time limitation allows for performing around 2 - 4 outer iterations 
between the MVCD’s partial sub-problems. 
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4.4.1.2. Bi-level heuristic with dual information at the upper level 

The second approach differs in the way the internal loop iterates. When investigating more closely 
the nature of the bi-level heuristic, it can be noted that the upper level problem ܷ1ܮ serves 
basically as an indicator of the direction of where it is worth looking for the optimal solutions of 
the monolithic problem. The remaining problems at lower level ܮܮ and upper level ܷܲ2 are only 
evaluating and refining the proposed guesses provided by ܷܲ1. Following this idea, another 
structure of the bi-level heuristic integration with Mean Value Cross Decomposition concept can be 
formulated as shown in Figure 4-33. The algorithm starts with solving the initialization step 
similarly as in the previous integration approach (4.55). The resulting load curve is used in 
Benders’ partial sub-problem (4.53) which gives the first Marginal Cost curve needed in the 
Dantzig-Wolfe’s partial sub-problem. 

 

  
Figure 4-33 Bi-level heuristic with dual information at the upper level with rough scheduler 

In this approach, the upper level model ܷ1ܮ is formulated exactly in the same way as in the 
previous integration (4.56). The difference is in the iteration scheme of the inner loop. Here, the 



109 

 problem iterates with the flow network problem and exchanges the signals. Again, a time 1ܮܷ
limitation of 120s is enforced for the ܷ1ܮ model and 180s for the total time spent on iterating 
between the ܷ1ܮ and the flow network model. This allows for performing a few iterations and the 
best result (minimum objective function value of ܷ1ܮ) is taken into consideration when fixing the 
decisions for the subsequently solved ܮܮ problem. Here, the ܮܮ model formulation differs from the 
other integration case and follows the original bi-level heuristic – does not include the Marginal 
Cost curve in the objective function: 

min௅௅ିா௉ௌ( + ܿ ∙ ∑ ௣,௠ݐ
௦

௣∈௉,௠∈ெ )  (4.58) 

subject to: 

.ݍܧ (3.1 − 3.16) – scheduling model equations (Chapter 3.2.2) 

.ݍܧ (3.44 − 3.47), (3.71 − 3.80) – energy-awareness extension with improved event binaries 
model (Chapter 3.2.3.3) 

.ݍܧ (3.99 − 3.102)  – load deviation problem (Chapter 3.2.4.2) 

The decisions to be fixed in ܮܮ are the same as in the other integration case and the same as in the 
monolithic bi-level heuristic in Chapter 3.4.3 (assignment, sequence, event binary start). Next, 
again the ܷ2ܮ model is solved with all binaries fixed except of the EAF assignment in order to get 
the final schedule with a load curve. The latter is then used as an input to solve the flow network 
problem and the new iteration of the outer loop starts. The outer loop is allowed to iterate for the 
total time of 600s, for comparison reasons, similarly as in the other integration case and original 
monolithic bi-level heuristic study. 

It is important to note that, compared to the previous approach, here the flow network problem 
(4.53) is solved using two different load curves, one rough load curve coming from the ܷܲ1 
problem (internal iteration) and the other one coming from a full schedule solution of ܷܲ2 problem 
(outer iteration). In this way, potentially two different load curves are evaluated by the flow 
network to give the dual information signal which is later used in the ܷܲ1 problem. 

4.4.2 Industrial case study setup 

The case study is designed such that for each different integration approach there are four problem 
instances tested which are the same instances and input data as in the original bi-level heuristic 
formulated on the corresponding monolithic model in Chapter 3.3. Furthermore, as shown for the 
TMP case, different signal updating schemes can be used in the two integration cases. For the case 
study, the two best performing updating schemes from the TMP case are taken, namely One-sided 
Weighted Mean Value and Heuristic (direct signals) Cross Decomposition. For the Weighted Mean 
calculations, the option found to be better performing for the TMP case (option 2 – Eq. 4.2) is 
chosen. The experiments are summarized in Figure 4-34. 
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Figure 4-34 Structure of the steel case study experiments with Cross Decompositions 

The overview of the basic information regarding the problem instances is given in Table 4-15. For 
comparison reasons, the results of the model BR are reported again. The detailed information with 
regard to the input data and differences between the instances is given in Appendix A and Chapter 
3.5. 

Table 4-15 Investigated problem instances for Cross Decomposition on the steel case 

Scenario Horizon Products Electricity sources and sinks 

1 24 h 20 all possible, day-ahead with high prices (France 2012) 

2 24 h 20 all possible, day-ahead with low prices (Germany/Austria 2013) 

3 24 h 16 all possible, day-ahead with high prices (France 2012) 

4 24 h 16 
all possible, day-ahead with high prices (France 2012), 
overcommitted pre-agreed load curve (as for 20 products) 

Name Model type 

BR Bi-level heuristic using improved event binaries model (Hadera et al. 2016) 

DH Bi-level heuristic with Marginal Cost curve at all levels and Heuristic Cross 
Decomposition (direct signals) 

DO Bi-level heuristic with Marginal Cost curve at all levels and One-sided Weighted Mean 
Value Cross Decomposition 

WH Bi-level heuristic with Marginal Cost curve only in ܷ1ܮ and Heuristic Cross 
Decomposition (direct signals) 

WO Bi-level heuristic with Marginal Cost curve only in ܷ1ܮ and One-sided Weighted Mean 
Value Cross Decomposition 
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4.4.3 Case study results and discussion 

The two investigated integration options were tested with the same problem instances as the 
original bi-level heuristic for the monolithic problem. Also the total computational time is limited 
to 600s. All the test problems have been solved using GAMS/CPLEX 24.0.2 and a Personal 
Computer with Intel® Core™ i5-2450M CPU @ 2.50 GHz and 4 GB RAM. 

In Table 4-16 the model statistics are reported on all investigated models. The Marginal Cost 
component indicates the objective function value of the additional component due to the dual 
information – load ݍ௦ multiplied by the dual variable ܥܯ′௦. To complete the results the 
corresponding best iteration results with economic assessment are shown in Table 4-17. Here the 
decomposition approaches are also compared with the best performing bi-level heuristic applied on 
the monolithic model (models BR1-4) as reported earlier in Chapter 3.5.  

When comparing the relative gap of the solutions provided by the heuristic approach with direct 
signals (DH or WH) against One-sided Weighted Mean approach (DO or WO) it can be seen that 
both provide almost identical solutions. Only in scenario DH4 the solution without changing the 
signals performed slightly better than DO4. Nearly for all of the cases not only the gap, but also the 
solution structure such as the economic assessment values is very similar. The reason behind it is 
that the difference between the two approaches in signal augmentation in the MC signal is not 
significant enough to result in two very different schedules, especially since the scheduling 
problem is strongly constrained and the flexibility in the process itself does not permit very 
different load curves (schedules). 

For both signal exchange schemes DH-DO (or WH-WO) the total number of iterations within 600s 
was similar and the best solution was found usually in 1-4 iterations of the algorithm. It is also 
important to note that the approach using the MC only at the upper level (WH and WO) usually 
performs more iterations with Benders’ sub-problem. When comparing the relative gap of both 
approaches to the results obtained from applying the bi-level heuristic (BR) directly to the 
monolithic model (results reported in Chapter 3.5) it can be noted that the Mean Value Cross 
Decomposition approaches yield similar results. The impact on the quality of the solutions is not 
only due to efficiency of the MVCD itself, but also depends very much on how well the upper level 
problem approximates the full space problem. Therefore, even assuming that the MC signal is 
perfect and is able to provide very good direction on how to change the schedule such that it 
converges to the optimal solution some error can still be present (solution gap) due to the heuristic 
nature of the bi-level algorithm. 

It cannot be clearly stated that one of the approaches is best, however  as previously investigated 
the One-Sided Mean Value Cross Decomposition (DO and WO) should be a better choice than the 
heuristic variations of Cross Decomposition using direct signals. This due to the risk of the 
oscillation between two similar solutions between Benders’ sub-problem and the bi-level heuristic. 
The option with dual information at the upper level only is probably a more interesting choice than 
the other scheme since it enables a more intensive information exchange with Bender’s sub-
problem, which in principle should be advantageous, especially since the nature of the Mean Value 
Cross Decomposition concepts for convex problems are such that they require a large number of 
iterations to converge to optimality (Holmberg and Kiwiel 2006). 
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Table 4-16 Model statistics of bi-level heuristic with MVCD integration 

Scenario 

Model statistics 

Scheduler 
MC component 

Flow network 
Binary vars Total vars Equations Total objective (MIP solution) Binary 

vars  
Total 
vars  

Equations 
UL1 LL UL2 UL1 LL UL2 UL1 LL UL2 UL1 LL UL2 UL1 LL UL2 

DH1 
DO1 

1689 2668 1434 5084 10044 10044 34881 70451 70431 256255 193639 193600 404230 430529 430471 24 265 305 

WH1 
WO1 

1669 3334 1434 5104 10044 10044 34902 70451 70431 514613 46000 46000 404230 - - 24 265 305 

DH2 
DO2 

1669 3334 1434 5104 10044 10044 34895 70451 70431 170612 165426 165426 93648 92249 92249 24 265 305 

WH2 
WO2 

1669 3334 1434 5104 10044 10044 34923 70451 70431 144616 45773 45773 93648 - - 24 265 305 

DH3 1445 2344 1252 3964 7804 7804 27272 54960 54944 174692 178641 178236 352655 364498 364852 24 265 305 

DO3 1445 2344 1252 3964 7804 7804 27272 54960 54944 174546 178704 178288 352655 364293 364657 24 265 305 
WH3 
WO3 

1445 2344 1252 3964 7804 7804 27272 54960 54944 435290 72970 72702 352655 - - 24 265 305 

DH4 
DO4 

765 1558 706 2302 4510 4510 14137 28495 28483 208602 200277 200274 -203627 -213417 -213425 18 199 227 

WH4 
WO4 

765 1558 706 2314 4510 4510 14151 28495 28483 -114823 107340 107275 -228444 - - 18 199 227 
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Table 4-17 Results assessment of bi-level heuristic with MVCD integration 

Scenario 

Iteration results Economic assessment 

Total cost - 
best solution 

Relative 
gap 

No. of 
iterations  

Best 
Iteration 

Lead times 
[min] 

Net cost [€] 
Electricity 

purchase [€] 
Deviation 

penalties [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sale 
[MWh] 

BR1 193667 9,30% 5 3 46470 146315 157131 1047 180,030 1457,367 952,000 677,730 
DH1 
DO1 

193915 9,31% 3 1 46919 145890 157329 1106 184,117 1455,375 952,000 679,525 

WH1 
WO1 

197338 9,47% 10 4 45658 151338 156032 342 166,767 1457,033 952,000 663,833 

BR2 165196 7,23% 5 4 45641 119489 99114 273 1508,583 159,833 432,000 188,750 
DH2 
DO2 

165428 7,24% 3 1 45460 119646 104196 323 1516,107 233,700 352,000 189,840 

WH2 
WO2 

165238 7,23% 10 7 45474 119465 103998 299 1520,113 229,217 352,000 189,363 

BR3 134578 9,87% 5 1 30893 102888 134133 811 133,900 1243,567 952,000 944,133 

DH3 134699 9,88% 3 1 30975 102888 134221 836 134,300 1243,767 952,000 944,133 

DO3 134664 9,88% 3 1 30973 102849 134179 841 134,059 1243,767 952,000 943,892 
WH3 
WO3 

136855 10,04% 5 1 30369 106486 133969 0 132,867 1243,767 952,000 942,700 

BR4 173873 8,61% 5 3 31988 99814 126178 42071 79,792 1228,357 952,000 874,815 

DH4 174908 8,66% 3 1 32034 98636 128302 44238 83,437 1251,665 952,000 901,269 

DO4 175648 8,69% 3 1 31509 98191 129327 45948 90,192 1250,081 952,000 906,340 
WH4 
WO4 

176148 8,72% 3 1 36116 105167 129283 34865 15,984 1271,913 952,000 854,164 
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To sum up, the following conclusions can be drawn concerning different Mean Value Cross 
Decomposition variations and the bi-level heuristic integration options: 

 Best approach: both One-sided Weighted Mean Value Cross Decomposition (OWMVCD) 
and Heuristic Cross Decomposition gave very similar results. Also, the two different 
options of integration do not differ much in the solution quality for the investigated 
instances. The option with dual information at the upper level only allows for performing a 
higher number of iterations; 

 Stopping criteria: for all of the investigated approaches there are no clear stopping criteria 
for the algorithm since there is no convergence test that could be performed. Therefore, the 
stopping criteria should follow the same criteria as for solving the original bi-level 
heuristic on the monolithic problem – computational time limit; 

 Optimality: when solving MILP models using any of the investigated approaches there is 
no guarantee that the algorithm will converge. When applying the MVCD decomposition 
concept to the bi-level strategy, the algorithm can yield as good solutions as good the upper 
level problem is in approximating the original full space problem. This is similar to the bi-
level approach applied on the monolithic problem (Chapter 3.5); 

 Controllability: for all of the investigated approaches there is no guarantee to improve the 
solution with each iteration of the algorithm; 

 Computation time: all of the investigated variations obtained satisfactory results within the 
computational time, giving the best solution in similar time ranges. 

The most important conclusion is that the investigated instances show that the decomposition 
scheme is useful for obtaining satisfactory quality solutions while solving functionally separated 
problems of the process scheduling and energy-cost optimization.  
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5 CONCLUSIONS 

The goal of this work was to develop and to test two approaches: a monolithic formulation and a 
concept for functional decomposition of process scheduling and energy cost optimization. The 
work specifically aimed to tackle the continuous-time precedence-based steel scheduling problem 
with energy-cost optimization. Another industrial process considered was Thermo-Mechanical 
Pulping for which the resulting scheduling problem was modeled using RTN approach. This served 
as a test case for showing convergence behavior and different functional decomposition variations 
based on Mean Value Cross Decomposition. The integration of production scheduling and energy 
cost optimization using both strategies – monolithic and functionally decomposed – leads to the 
following conclusions: 

 an energy-intensive industry may exploit energy-aware scheduling models to reduce the 
operating cost and achieve system-wide optimality of combined energy- and production-
specific cost; 

 continuous-time general precedence scheduling problems, which benefit from exactness, 
can be extended to account for use of energy resources which allows for further 
optimization of energy-related cost; 

 since the optimization of multiple energy contracts is done using a generic and 
theoretically well-defined Minimum-Cost Flow Network concept it has the potential to 
accommodate various real-life purchase-and sales structures, while still keeping the 
functional decomposition concept valid; 

 the load deviation problem and the optimization of multiple energy contracts can be 
included in both continuous- and discrete-time scheduling approaches in order to support 
the assessment of different price levels of the negotiated contracts, as well as to reduce the 
risk associated with volatile electricity markets; 

 the developed bi-level heuristic provides satisfactory solutions within reasonable solution 
times when solving large-scale problems; the quality of the solutions from the bi-level 
heuristic depends on how closely the simplified model at the upper level approximates the 
original monolithic problem; 

 the generic flow network for handling the optimization of energy purchase and sales can 
provide useful information of the marginal cost, which can be used for functional 
separation of the process scheduling from the energy cost optimization and it is easy to 
interpret; 

 the Thermo-Mechanical Pulping process may benefit from the functional separation by 
Mean Value Cross Decomposition to achieve system-wide optimal (or close to optimal) 
solutions while keeping the scheduling solution separated from the flow network problem 
which brings specific advantages from the industrial point of view; 
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 the bi-level heuristic can be exploited in order to solve the energy-aware scheduling 
problem applying the Mean Value Cross Decomposition, while keeping the scheduling 
separated from the flow network problem, and achieve solutions of comparable quality 
than the bi-level heuristic applied on the monolithic problem. 

The functional decomposition concept has great potential within the energy-intensive industries 
since it allows to exploit potentially existing scheduling and energy-cost optimization solutions 
without integrating them into one monolithic problem. Such an approach increases the modularity 
of the installed solutions and they may be provided by different technology vendors. 

5.1 Limitations of the developed concepts 

It is important to note that there are many uncertainties in the potential integration of the production 
scheduling and energy-cost optimization. The work presented here is a research investigation, thus 
some assumptions were necessary to simplify the complexity of the real-world problem. Some of 
the important limitations of this study include: 

 deterministic nature of the data and problem formulation 
o the plant needs to make commitments on the amounts of electricity to be bought 

and sold on the day-ahead markets, therefore the simplification is made throughout 
the dissertation that the price of electricity on the day-ahead market is known – this 
might have an impact on the final schedule usefulness in practice; 

o important factors are disturbances and the technical capability to realize the 
optimized schedule exactly, this might have a significant impact on the schedule’s 
potential benefits of iDSR; 

 computational performance limitations 
o the bi-level heuristic cannot yet solve very large problem instances in realistic 

computation times, such as for example a one week horizon; 
o the functional decomposition requires a number of iterations between the scheduler 

and the energy cost flow network optimizer, which might increase the total time 
spent on computation compared to monolithic approaches; 

 controllability of the solution algorithms 
o the bi-level heuristic does not provide a systematic improvement of the solution in 

each iteration due to not using a relaxation at the upper level; 
o when the one-sided version of the Mean Value Cross Decomposition is used there 

are no proven convergence properties, therefore no guarantee of optimal or close to 
optimal solutions can be provided; 

o if the Mean Value Cross Decomposition scheme is used, the solution might not 
obtain the optimal values due to the duality gap present in the Lagrangean 
relaxation; 

o when the bi-level heuristic is applied to the functional decomposition scheme, it 
can be expected that both methods, which do not provide optimality by themselves, 
could amplify the error thus resulting in unsatisfactory solutions; 

 applicability and generic nature of the solutions 
o the bi-level heuristic is a tailor-made method to solve a particular scheduling 

problem and even though the resource energy could be replaced by a number of 
other types of resources, the generic nature of this solution method is questionable; 
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o  the functional decomposition scheme is dependent on the problem nature and the 
identified special structure: the scheduler responds to one single energy-price curve 
and energy-cost optimizer provides the dual information based on the assumption 
of the consensus constraint (that the process load is equal to the demand in the 
flow network). Although the resource directive of the decomposition methods 
seems to be very generic, it is difficult to predict how the heuristic method would 
behave for very different scheduling problems. 

In consequence, not taking into account many of the above mentioned unknowns and 
circumstances could have an impact on the potential advantages of the developed concepts. 
Therefore, further investigation of the main limitations as discussed in the next chapter could 
strengthen the main conclusions drawn from this work. 

5.2 Recommendations for future work 

The research and findings drawn from this work lay out a potential base for the future industrial 
implementation of the main concepts studied here. In general, it would be interesting to expand the 
frames of the functional decomposition as well as to improve the bi-level heuristic approach. 
Therefore, further investigations could be related to the following: 

 bi-level heuristic and the steel case 
o to improve the quality of the heuristic solutions, a better approximation at the 

upper level problem could be found, ideally such that it would provide 
systematically a valid lower bound which would improve with each iteration of the 
algorithm; 

o to address further the computational limitations of the steel problem for larger 
instances. A scheduling horizon of several days could be investigated with a 
rolling horizon approach, here decisions for longer time windows should be done 
with higher level short- and long-term planning solutions taking into account 
different factors than those considered by the scheduling level; 

 generic energy-awareness and cost optimization 
o the flow network can be extended to other energy resources as for example gas or 

steam which would open up the possibility to coordinate production processes 
involving both the use and production of steam (or other resources) as a subject of 
optimization; 

o to address the computational performance of the energy-awareness extensions for 
general precedence continuous-time models, potentially even tighter energy-
awareness strategies could be developed, which use less equations and less 
variables in order to lower the computational burden especially related to the event 
binaries; 

 functional decomposition concept 
o an efficient feasibility constructor for the One-sided Mean Value Cross 

Decomposition could be investigated based on a Mean Value Cross Decomposition 
that exploits proven MVCD convergence properties and at the same time obtaining 
feasible solutions with OSWMVCD; 

o exploit further theoretical convergence conditions for the investigated One-sided 
Weighted Mean Value Cross Decomposition to see under what conditions it could 
converge similarly to the MVCD; 
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o a deeper sensitivity information study for the particular formulation of the flow 
network problem of energy purchase and sales optimization could explain how 
useful the dual information of the complicating constraint is; 

 uncertainty and disturbances 
o address uncertainty of the energy prices as well as potential effect of the process 

disturbances by introducing robust optimization approaches, especially at the upper 
level problem of the bi-level heuristic; 

 industrial implementation 
o the improved energy-awareness formulation could be used to expand already 

installed general precedence based continuous-time scheduling solutions, eg in the 
case that already has been reported for the stainless-steel manufacturer 
ThyssenKrupp-AST (Gajic et al. 2014; Harjunkoski et al. 2015); 

o a possible extension of the functional decomposition would be to apply the 
suggested framework in a multiple mill production planning environment, where 
energy purchase takes place in a centralized center. The center would act as a price 
coordinator using the internal electricity price i.e. marginal costs, and the mill side 
would return their load demands back to the centralized center for global 
purchasing (price/resource competition). 

Another line of further research concerns the developed decomposition concept and the flexibility 
of the resource driven directive. The electricity resource used in the scheduling model and the 
electricity-cost optimization in the other model can be easily exchanged with other types of 
resources. It could be related for example to equipment wear-off and maintenance issues or raw 
material consumption (e.g. chemical compounds, water, steam etc.). It might also be possible to 
include several different resources in one optimization model which would penalize the 
corresponding marginal cost in the objective function of the scheduling problem in order to 
approach system-wide optimal solution. 

More detailed and problem-specific studies will lead to a faster market introduction of the 
promising concepts that were developed in this work. 
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APPENDIX A  

Input data for continuous-time monolithic models case study 
Following the Demand Response strategy the plant has the goal of delivering a fixed number of 
heats (products) within a scheduling horizon of 24 h. Due to the continuous casting requirement, 
products are divided within heat groups as defined in Table A-1.  

 

Table A-1 Heat group definition 

Group Heat (product) 

HG1 P1-P3 

HG2 P4-P7 

HG3 P8-P12 

HG4 P13-P16 

HG5 P17-P20 

 

For the test cases with fewer products the last heats were excluded respectively to the total number 
of heats in a given problem instance. Processing times and specific electricity consumption of the 
tasks are given in Table A-2, while setup times are reported in Table A-3. Minimum transportation 
times and maximum waiting (hold-up) times after processing on a given stage are shown in Table 
A-4 and Table A-5 respectively.  

Table A-2 Processing times and electricity consumption 

  EAF1, EAF2 AOD1, AOD2 LF1, LF2 CC1, CC2 

P1-P20 
85 [min] 8  [min] 45 [min] 60 [min] 

85 [MW] 2 [MW] 2 [MW] 7 [MW] 

 

Table A-3 Setup times [min] 

Machine Setup time Machine Setup time 

EAF1, EAF2 9 LF2 5 

AOD1, AOD2 5 CC1 50 

LF1 15 CC2 70 
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Table A-4 Transportation times [min] 

  AOD1 AOD2 LF1 LF2 CC1 CC2 

EAF1 10  25 
    

EAF2 25 10 
    

AOD1 
  

4 20 
  

AOD2 
  

20 4 
  

LF1 
    

20 45 

LF2         45 20 

 

Table A-5 Hold-up time between stages [min] 

 
ST1 ST2 ST3 

P1-P20 60 90 60 

 

The input data concerning the electricity purchase limits is shown in Figure A-1. Note that the 
capacity of the onsite generation node denotes the power plant capacity. 

 

 
Figure A-1 Bounds for flows in the purchase flow network 

Note that the base load contract has a fixed amount of delivery for each hour of the day, regardless 
whether the electricity is needed for the production process or not. The prices of electricity and 
committed load curve are shown in Table A-6 and Table A-7. The electricity prices of both day-
ahead contract cases, low price (EPEX 2013, Germany/Austria 23/09/2013) and high price (EPEX 
2013, France 10/02/2012) are taken from a real spot market. The pre-agreed load curve comes from 
a valid production schedule which considers no energy cost in the optimization, but in our case 
only the lead times optimization (ܿ ∙ ∑ ௠,௣ݐ

௦
௠∈ெ,௣∈௉ ). This follows the previous studies (Castro et 
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al. 2013) where the schedule with optimized production-specific cost (makespan) served as a basis 
for the comparison with energy-driven schedule to assess the iDSM benefits. 

Table A-6 Electricity prices for case studies 

Time 
interval 

Base load 
prices [€] 

Day-ahead 
high prices [€] 

Day-ahead low 
prices [€] 

TOU [€] 

s1 52 95 12,0 65 

s2 52 113 13,1 65 

s3 52 90 9,8 65 

s4 52 75 9,8 65 

s5 52 61 11,5 65 

s6 52 85 18,8 65 

s7 52 140 39,1 65 

s8 52 186 57,9 65 

s9 52 176 62,7 65 

s10 52 605 61,0 65 

s11 52 431 56,1 65 

s12 52 177 50,7 65 

s13 52 146 42,6 90 

s14 52 100 38,8 90 

s15 52 100 33,0 90 

s16 52 83 35,1 90 

s17 52 73 40,5 90 

s18 52 110 49,5 90 

s19 52 162 59,9 90 

s20 52 143 67,5 90 

s21 52 117 61,4 90 

s22 52 84 48,5 90 

s23 52 94 39,9 90 

s24 52 87 31,5 90 

 

We assume that the income from selling back electricity to the grid are also time sensitive and are 
equal to 75% of the cost of a day-ahead market in the same time slot. The cost of onsite generation 
and other related parameters are shown Table A-8. The allowed buffer for over- and under-
consumption can be found in Table A-9, together with other load-deviation problem related 
parameters. 
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Table A-7 Pre-agreed load curve for the steel process 

Time interval 
Load curve 

Scenario 1, 2, 4 
[MWh] 

Load curve 
Scenario 3 

[MWh] 

s1 170 170 

s2 146,17 144,5 

s3 170,87 167,16 

s4 153,57 147,33 

s5 156,03 151,03 

s6 182,2 177 

s7 162,77 154,18 

s8 155,77 151,967 

s9 183,37 177 

s10 157,7 156,167 

s11 157,9 155,817 

s12 182,33 177 

s13 156,47 72,16 

s14 174,33 7,81 

s15 169,12 9,33 

s16 99,9 7 

s17 18,15 7 

s18 15,73 6,18 

s19 10,32 0 

s20 7 0 

s21 1,98 0 

s22 0 0 

s23 0 0 

s24 0 0 

 

Table A-8 Onsite generation parameters 

Cost of onsite generation [€/MWh] 61 

Minimum run of onsite [h] 3 

Minimum down time [h] 3 

Start-up cost [€] 1000 

Reduced production rate due to start-up 20% 
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Table A-9 Load deviation problem parameters 

Over-consumption penalty [€/MWh] 100 

Under-consumption penalty [€/MWh] 80 

Buffer for over-consumption 3% 

Buffer for under-consumption 4% 

 

Input data for bi-level decomposition case study 
The new maximum waiting times and minimum transportation times of the upper level ܷ1ܮ that 
were calculated using Equations (62-63) are shown in Table A-10 and Table A-11. 

Table A-10 Upper level ܷ1ܮ problem maximum waiting times 

 
ST1 ST2 

P1-P20 161 90 

 

Table A-11 Upper level ܷ1ܮ problem minimum transportation times 

  CC1 CC2 

EAF1 155 161 

EAF2 161 155 

 

The committed load curve for the upper level problem ܷ1ܮ modified by considering the lower 
consumption due to omitting the AOD and LF stages is shown in Table A-12. 
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Table A-12 Pre-agreed load curve for the upper level ܷ1ܮ problem 

Time interval 
Load curve UL1  
Scenario 1, 2, 4  

[MWh] 

Load curve UL1  
Scenario 3  

[MWh] 

s1 170 170 

s2 144,5 144,5 

s3 167,17 167,167 

s4 147,33 147,33 

s5 151,03 151,03 

s6 177 177 

s7 157,1 154,183 

s8 151,97 151,96 

s9 177 177 

s10 153,37 156,167 

s11 152,9 155,817 

s12 177 177 

s13 151,5 72,167 

s14 168,5 7,817 

s15 163,15 9,333 

s16 94,83 7 

s17 12,02 7 

s18 14 6,183 

s19 8,98 0 

s20 7,00 0 

s21 1,98 0 

s22 0 0 

s23 0 0 

s24 0 0 
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APPENDIX B  

Algorithm for finding start time variable bounds 
Table B-1 Algorithm details 

The lower and upper bound of ݐ௣,௦௧
௦  

initialize ݐ௣,௦௧
௦,௠௜௡ = ௣,௦௧ݐ

௦,௠௔௫ = 0 

for ݐݏ = ,ସݐݏ ℎ݃ ∈ ,ܩܪ ݌ ∈ ,ܩܪ)ܨ ܲ) do 

   set ݐ௣,௦௧
௦,௠௜௡ = ൝

min (ݐ௣,௦௧
௦ )

.ݏ .ݐ
ܵܿℎ݁݀ݏݐ݊݅ܽݎݐݏ݊݋ܿ ݎ݈݁ݑ

 

   set ݐ௣,௦௧
௦,௠௔௫ = ൝

max (ݐ௣,௦௧
௦ )

.ݏ .ݐ
ܵܿℎ݁݀ݏݐ݊݅ܽݎݐݏ݊݋ܿ ݎ݈݁ݑ

 

end for 

 

Find the bounds of the other products at the last stage 

for ݐݏ = ,ସݐݏ ℎ݃ ∈ ,ܩܪ ݌ ∈ ,ܩܪ)ܨ/ܲ ܲ) do  

   for ݌ ∈ ,ܩܪ)ܨ ܲ) + 1, … , ݌ ∈ ,ܩܪ)ܮ ܲ) do 

௣,௦௧ݐ   
௦,௠௜௡=ݐ௣ିଵ,௦௧

௦,௠௜௡ + min௠∈ௌெ(௦௧,௠) ߬௣ିଵ,௠ 

௣,௦௧ݐ   
௦,௠௔௫=ݐ௣ିଵ,௦௧

௦,௠௔௫ + max௠∈ௌெ(௦௧,௠) ߬௣ିଵ,௠ 

   end for 

end for 

 

Set the upper bound in the other stages as equal to the upper bound at the last stage  

௣,௦௧ݐ
௦,௠௔௫ = ௣,௦௧ସݐ

௦,௠௜௡ ݌∀  ∈ ܲ, ݐݏ ∈ ܵܶ 

 

Find the upper bound in stages other than last stage 

for ݐݏ ∈ ,ସݐݏ … , ,ଶݐݏ ܲ ∈ ܲ do 

   for ݐݏᇱ = ݐݏ − 1 do 

௣,௦௧ᇱݐ   
௦,௠௔௫=ݐ௣,௦௧

௦,௠௔௫ − min௠∈ௌெ൫௦௧ᇲ,௠൯ ߬௣,௠ − min௠∈ௌெ(௦௧,௠),௠ᇱ∈ௌெ(௦௧ᇱ,௠ᇱ) ௠,௠ᇱݐ 
௠௜௡ , 

   end for 
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end for 

 

Find the lower bound in stages 1-3 

for ݐݏ ∈ ,ଵݐݏ … , ,ଷݐݏ ܲ ∈ ܲ do 

   for ݐݏᇱ = ݐݏ + 1 do 

௣,௦௧ᇱݐ
௦,௠௜௡=ݐ௣,௦௧

௦,௠௜௡ + min௠∈ௌெ൫௦௧ᇲ,௠൯ ߬௣,௠ + min௠∈ௌெ(௦௧,௠),௠ᇱ∈ௌெ(௦௧ᇱ,௠ᇱ) ௠,௠ᇱݐ 
௠௜௡ , 

   end for 

end for 
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APPENDIX C  

Input data for Thermo-Mechanical Pulping case study 
The main sources for the input data for the TMP scheduling are the two studies, Karagiannopoulos 
et al. (2014), Pulkkinen and Ritala (2008) and also results from discussions with industrial experts. 
Since the purchase network assumed for the case study is the same as for the steel case the prices 
also remain the same, i.e. as in Appendix A, unless otherwise stated. The flow cost of selling 
electricity back to the grid is set here to be equal to the day-ahead prices. The only exception is 
Scenario 4 where there is no revenue for selling accounted (ܿ௜ହ,௝଺,௧ = 0, ݐ∀ ∈ ܶ), the base load 
contract is not anymore a constant delivery of electricity (lower bound of the flow is zero: ௜݂ଵ,௝ହ,௧

௅ை =
0) and there are no deviation penalties. The demand curve for final pulp product is deterministic, 
one day curve shown in Table C-1 is copied through the entire scheduling horizon as many times as 
required problem instance horizon.  

Table C-1 Demand curve for final pulp product 

Time slot Demand [m3/h] Demand high [m3/h] 
t1 50 100 
t2 90 180 
t3 80 160 
t4 165 330 
t5 40 80 
t6 80 160 
t7 60 120 
t8 40 80 
t9 40 80 
t10 165 330 
t11 50 100 
t12 40 80 
t13 90 180 
t14 160 320 
t15 40 80 
t16 50 100 
t17 160 320 
t18 150 300 
t19 55 110 
t20 40 80 
t21 110 220 
t22 50 100 
t23 230 360 
t24 50 100 
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The pre-agreed load curve as an input for the load deviation optimization is shown in Table C-2. 

Table C-2 Pre-agreed load curve for the TMP process 

Time slot Pre-agreed load curve [MWh] 

t1 20 
t2 35 
t3 31 
t4 65 
t5 16 
t6 31 
t7 24 
t8 16 
t9 16 
t10 65 
t11 20 
t12 16 
t13 35 
t14 63 
t15 16 
t16 20 
t17 63 
t18 59 
t19 22 
t20 16 
t21 43 
t22 20 
t23 90 
t24 20 

 

The parameters for the other energy-related cost and contracts which are changed compared to the 
input parameters reported for the steel case are shown in Table C-3. 

Table C-3 Energy-cost related parameters changed 

Upper limit of the base-load contract [MWh]  15 
Lower limit of the base-load contract [MWh] 
for Scenario 4 0 

Upper limit of sale [MWh] 100 
Onsite generation start-up cost [€] 40 
Buffer for over-consumption 0,05 
Buffer for under-consumption 0,05 
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The input parameters of the scheduling problem are presented in Table C-4.  

Table C-4 TMP scheduling model parameters 

External pulp price [€/m3]  50  

External pulp price low [€/m3]  5 

Maximum amount of pulp that can be bought in one time slot [m3] 200 

Start-up cost of one refiner [€] 80 

Shut-down cost of one refiner [€] 50 

Volume of preparation tank at start of time horizon [m3] 250 

Production rate of one refiner [m3/h] 30 

Power consumption of one refiner [MW] 11 

Maximum volume of the storage tank [m3] 500 

Minimum volume of the storage tank [m3] 50 
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APPENDIX D  

TMP case study results of Cross Decomposition 
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Table D-1 CRTN-opt2: Iteration results for Scenario 1 

Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe sub-problem   Benders’ sub-problem 
Dantzig-Wolfe sub-

problem   
Benders’ sub-problem 

Dantzig-Wolfe sub-
problem   

scheduler flow network scheduler flow network scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

1 51858 167797,69 198330,59 21877,85 0,602 0,529 1,342 0,509 0% 0% 0% 0% 

2 51728 167909,20 197751,35 21901,85 0,625 0,577 1,132 0,620 0% 0% 0% 0% 

3 51728 167909,20 197733,75 21905,85 0,554 0,557 1,209 0,529 0% 0% 0% 0% 

4 51728 167909,20 197730,82 21906,99 0,635 0,600 1,316 0,655 0% 0% 0% 0% 

5 51728 167909,20 197729,98 21907,42 0,720 0,601 1,192 0,922 0% 0% 0% 0% 

6 51728 167909,20 197729,66 21907,61 0,637 0,634 1,126 0,558 0% 0% 0% 0% 

7 51728 167909,20 197729,52 21907,71 0,637 0,576 1,142 0,628 0% 0% 0% 0% 

8 51728 167909,20 197729,45 21907,76 0,637 0,574 1,397 0,624 0% 0% 0% 0% 

9 51728 167909,20 197729,42 21907,79 0,638 0,681 1,199 0,598 0% 0% 0% 0% 

10 51728 167909,20 197729,39 21907,81 0,826 0,558 1,318 0,562 0% 0% 0% 0% 

11 51728 167909,20 197729,38 21907,82 0,653 0,564 1,282 0,624 0% 0% 0% 0% 

12 51728 167909,20 197729,37 21907,83 0,654 0,588 1,293 0,661 0% 0% 0% 0% 

13..30 51728 167909,20 197729,37 21907,83 0,646 0,668 1,239 0,630 0% 0% 0% 0% 
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Table D-2 CRTN-opt2: Model results for Scenario 1 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound Lower bound 
Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue [€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold Electricity 
[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 167798 280611 50886 34360 5100 225 560 796 3817 250 38578 13030 10410 5 219655,69 219629,20 

2 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219635,60 

3 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219636,67 

4 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219636,97 

5 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,09 

6 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,14 

7 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,16 

8 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,18 

9 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,18 

10 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,19 

11 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,19 

12 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,19 

13..30 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,20 
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Table D-3 CRTN-opt1: Iteration results for Scenario 4 

Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe sub-problem   Benders’ sub-problem 
Dantzig-Wolfe sub-

problem   
Benders’ sub-problem 

Dantzig-Wolfe sub-
problem   

scheduler flow network scheduler flow network scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

1 10000 113414,95 123201,99 0 0,493 0,412 1,265 0,461 0% 0% 0% 0% 
2 6750 116971,90 122524,34 0 0,474 0,460 46,433 0,365 0% 0% 0% 0% 
3 6750 116971,90 122524,34 -1518,00 0,478 0,345 47,553 0,361 0% 0% 0% 0% 
4 10000 113414,95 123201,99 -1951,71 0,562 0,459 1,419 0,376 0% 0% 0% 0% 
5 10000 113414,95 123201,99 -975,86 0,571 0,455 1,506 0,454 0% 0% 0% 0% 
6 10000 113414,95 123201,99 -542,14 0,491 0,456 1,952 0,422 0% 0% 0% 0% 
7 10000 113414,95 123201,99 -325,29 0,531 0,474 12,350 0,537 0% 0% 0% 0% 
8 6750 116971,90 123001,43 -207,00 0,515 0,507 50,796 0,438 0% 0% 0% 0% 
9 6750 116971,90 122827,94 -897,00 0,521 0,358 48,832 0,411 0% 0% 0% 0% 
10 10000 113414,95 123201,99 -1321,62 0,495 0,470 2,022 0,508 0% 0% 0% 0% 
11 10000 113414,95 123201,99 -944,01 0,564 0,427 1,529 0,397 0% 0% 0% 0% 
12 10000 113414,95 123201,99 -692,27 0,494 0,497 2,092 0,438 0% 0% 0% 0% 
13 10000 113414,95 123201,99 -519,21 0,494 0,450 2,706 0,483 0% 0% 0% 0% 
14 10000 113414,95 123201,99 -397,04 0,504 0,357 9,006 0,472 0% 0% 0% 0% 
15 6750 116971,90 123106,67 -308,81 0,627 0,483 180,651 0,488 0% 0% 0,081% 0% 
16 6750 116971,90 122977,26 -723,16 0,529 0,465 35,224 0,469 0% 0% 0% 0% 
17 10000 113414,95 123201,99 -1033,93 0,625 0,461 2,897 0,478 0% 0% 0% 0% 
18 10000 113414,95 123201,99 -836,99 0,632 0,458 1,971 0,569 0% 0% 0% 0% 
19 10000 113414,95 123201,99 -684,81 0,622 0,452 2,283 0,461 0% 0% 0% 0% 
20 10000 113414,95 123201,99 -565,71 0,631 0,448 2,697 0,471 0% 0% 0% 0% 
21 10000 113414,95 123201,99 -471,43 0,632 0,554 4,040 0,529 0% 0% 0% 0% 
22 9480 113766,34 123192,74 -396,00 0,635 0,445 4,199 0,670 0% 0% 0% 0% 
23 6750 116971,90 123105,14 -335,08 0,812 0,633 180,550 0,491 0% 0% 0,012% 0% 
24 6750 116971,90 123015,79 -622,77 0,624 0,447 85,185 0,462 0% 0% 0% 0% 
25 10000 113414,95 123201,99 -859,09 0,589 0,475 3,329 0,550 0% 0% 0% 0% 
26 10000 113414,95 123201,99 -740,59 0,600 0,469 2,347 0,464 0% 0% 0% 0% 
27 10000 113414,95 123201,99 -641,85 0,635 0,547 2,723 0,467 0% 0% 0% 0% 
28 10000 113414,95 123201,99 -559,03 0,636 0,453 3,100 0,520 0% 0% 0% 0% 
29 10000 113414,95 123201,99 -489,15 0,632 0,554 5,061 0,496 0% 0% 0% 0% 
30 9480 113766,34 123197,93 -429,86 0,628 0,447 116,633 0,513 0% 0% 0% 0% 
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Table D-4 CRTN-opt1: Model results for Scenario 4 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound Lower bound 
Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-End Cost  
[€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

1 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122524,34 

2 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 122524,34 

3 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 121683,99 

4 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 121250,28 

5 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122226,13 

6 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122659,85 

7 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122676,14 

8 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 122620,94 

9 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 122304,99 

10 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 121880,37 

11 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122257,98 

12 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122509,72 

13 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122682,78 

14 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122709,63 

15 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 122668,45 

16 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 122478,83 

17 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122168,06 

18 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122365,00 

19 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122517,18 

20 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122636,28 

21 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122721,31 

22 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 122709,14 

23 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 122680,71 

24 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 122579,22 

25 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122342,90 

26 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122461,40 

27 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122560,14 

28 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122642,96 

29 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122708,78 

30 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 122722,37 
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Table D-5 CRTN-opt1: Iteration results for Scenario 5 

Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe sub-problem   Benders’ sub-problem 
Dantzig-Wolfe sub-

problem   
Benders’ sub-problem 

Dantzig-Wolfe sub-
problem   

scheduler flow network scheduler flow network scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

1 144316 470812,23 555446,50 61251,98 1,054 0,936 181,334 0,996 0% 0% 0,043% 0% 
2 143926 471146,76 553796,78 61251,98 1,055 0,901 181,018 0,860 0% 0% 0,045% 0% 
3 143926 471146,76 553796,78 61311,98 1,275 0,782 180,976 0,973 0% 0% 0,045% 0% 
4 143926 471146,76 553752,78 61329,12 1,067 0,898 181,001 0,981 0% 0% 0,045% 0% 
5 143926 471146,76 553740,21 61335,55 1,056 0,923 181,083 0,981 0% 0% 0,045% 0% 
6 143926 471146,76 553735,49 61338,41 1,090 1,100 181,036 0,976 0% 0% 0,045% 0% 
7 143926 471146,76 553733,40 61339,84 1,107 0,989 181,014 0,854 0% 0% 0,045% 0% 
8 143926 471146,76 553732,35 61340,62 0,987 0,890 180,998 0,903 0% 0% 0,045% 0% 
9 143926 471146,76 553731,78 61341,07 1,037 0,882 180,952 0,997 0% 0% 0,045% 0% 
10 143926 471146,76 553731,45 61341,35 0,866 0,820 181,017 0,945 0% 0% 0,045% 0% 
11 143926 471146,76 553731,24 61341,53 1,109 0,921 180,904 1,090 0% 0% 0,045% 0% 
12 143926 471146,76 553731,11 61341,65 1,205 0,967 181,086 0,994 0% 0% 0,045% 0% 
13 143926 471146,76 553731,02 61341,73 1,057 0,955 181,089 1,022 0% 0% 0,045% 0% 
14 143926 471146,76 553730,96 61341,79 1,047 0,863 180,984 0,956 0% 0% 0,045% 0% 
15 143926 471146,76 553730,92 61341,83 1,129 0,987 181,097 0,977 0% 0% 0,045% 0% 
16 143926 471146,76 553730,89 61341,86 1,003 0,931 181,070 0,969 0% 0% 0,045% 0% 
17 143926 471146,76 553730,87 61341,89 1,112 0,898 181,062 1,086 0% 0% 0,045% 0% 
18 143926 471146,76 553730,85 61341,90 1,163 0,976 181,019 0,992 0% 0% 0,045% 0% 
19 143926 471146,76 553730,84 61341,92 1,065 0,891 180,992 1,280 0% 0% 0,045% 0% 
20 143926 471146,76 553730,83 61341,93 1,083 0,892 181,030 0,896 0% 0% 0,045% 0% 
21 143926 471146,76 553730,82 61341,94 1,052 0,920 180,963 1,512 0% 0% 0,045% 0% 
22 143926 471146,76 553730,81 61341,94 1,084 1,000 181,114 1,042 0% 0% 0,045% 0% 
23 143926 471146,76 553730,81 61341,95 1,078 0,886 181,056 1,072 0% 0% 0,045% 0% 
24 143926 471146,76 553730,80 61341,95 1,045 0,984 181,038 0,952 0% 0% 0,045% 0% 
25 143926 471146,76 553730,80 61341,96 1,005 0,834 181,005 1,066 0% 0% 0,045% 0% 
26 143926 471146,76 553730,80 61341,96 1,042 0,964 181,029 1,018 0% 0% 0,045% 0% 

27..30 143926 471146,76 553730,79 61341,96 1,065 1,005 181,040 1,117 0% 0% 0,045% 0% 
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Table D-6 CRTN-opt1: Model results for Scenario 5 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound Lower bound 
Costs Quantities Costs Quantities 

Net 
cost 
[€] 

Electricity 
purchase [€] 

Sales 
Revenue [€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

1 470812 629785 141109 96208 9200 630 1568 2209 10703 0 108276 36040 29190 0 615128,23 615048,76 

2 471147 629785 141109 96208 9200 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615048,76 

3 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615064,76 

4 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615069,33 

5 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615071,05 

6 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615071,81 

7 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,19 

8 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,40 

9 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,52 

10 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,59 

11 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,64 

12 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,67 

13 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,69 

14 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,71 

15 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,72 

16 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,73 

17 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,74 

18 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,74 

19 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,74 

20 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

21 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

22 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

23 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

24 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

25 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

26 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

27..30 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,76 
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Table D-7 CRTN-opt2: Iteration results for Scenario 1 

Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe sub-problem   Benders’ sub-problem 
Dantzig-Wolfe sub-

problem   
Benders’ sub-problem 

Dantzig-Wolfe sub-
problem   

scheduler flow network scheduler flow network scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

scheduler 
flow 
network 

1 51858 167797,69 198330,59 21877,85 0,602 0,529 1,342 0,509 0% 0% 0% 0% 

2 51728 167909,20 197751,35 21901,85 0,625 0,577 1,132 0,620 0% 0% 0% 0% 

3 51728 167909,20 197733,75 21905,85 0,554 0,557 1,209 0,529 0% 0% 0% 0% 

4 51728 167909,20 197730,82 21906,99 0,635 0,600 1,316 0,655 0% 0% 0% 0% 

5 51728 167909,20 197729,98 21907,42 0,720 0,601 1,192 0,922 0% 0% 0% 0% 

6 51728 167909,20 197729,66 21907,61 0,637 0,634 1,126 0,558 0% 0% 0% 0% 

7 51728 167909,20 197729,52 21907,71 0,637 0,576 1,142 0,628 0% 0% 0% 0% 

8 51728 167909,20 197729,45 21907,76 0,637 0,574 1,397 0,624 0% 0% 0% 0% 

9 51728 167909,20 197729,42 21907,79 0,638 0,681 1,199 0,598 0% 0% 0% 0% 

10 51728 167909,20 197729,39 21907,81 0,826 0,558 1,318 0,562 0% 0% 0% 0% 

11 51728 167909,20 197729,38 21907,82 0,653 0,564 1,282 0,624 0% 0% 0% 0% 

12 51728 167909,20 197729,37 21907,83 0,654 0,588 1,293 0,661 0% 0% 0% 0% 

13..30 51728 167909,20 197729,37 21907,83 0,646 0,668 1,239 0,630 0% 0% 0% 0% 
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Table D-8 CRTN-opt2: Model results for Scenario 1 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound Lower bound 
Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue [€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 167798 280611 50886 34360 5100 225 560 796 3817 250 38578 13030 10410 5 219655,69 219629,20 

2 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219635,60 

3 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219636,67 

4 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219636,97 

5 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,09 

6 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,14 

7 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,16 

8 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,18 

9 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,18 

10 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,19 

11 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,19 

12 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,19 

13..30 167909 280611 50886 34360 5100 225 560 796 3817 250 38578 12900 10410 5 219637,20 219637,20 
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Table D-9 CRTN-opt2: Iteration results for Scenario 4 

Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe sub-problem Benders’ sub-problem 
Dantzig-Wolfe sub-

problem 
Benders’ sub-problem 

Dantzig-Wolfe sub-
problem 

scheduler flow network scheduler flow network scheduler 
flow 

network 
scheduler 

flow 
network 

scheduler 
flow 

network 
scheduler 

flow 
network 

1 10000 113414,95 123201,99 0,00 0,513 0,398 1,361 0,467 0% 0% 0% 0% 
2 6750 116971,90 122524,34 -1821,60 0,524 0,441 45,925 0,498 0% 0% 0% 0% 
3 10000 113414,95 123201,99 -607,20 0,624 0,453 1,591 0,458 0% 0% 0% 0% 
4 10000 113414,95 123201,99 -260,23 0,514 0,463 3,321 0,529 0% 0% 0% 0% 
5 6750 116971,90 122906,01 -1268,61 0,611 0,604 56,367 0,466 0% 0% 0% 0% 
6 10000 113414,95 123201,99 -704,79 1,160 0,447 1,746 0,504 0% 0% 0% 0% 
7 10000 113414,95 123201,99 -422,87 0,623 0,448 3,102 0,521 0% 0% 0% 0% 
8 7530 115900,51 123144,03 -765,90 0,608 0,469 116,144 0,510 0% 0% 0% 0% 
9 8700 114837,73 123088,80 -814,20 0,625 0,440 4,871 0,486 0% 0% 0% 0% 
10 10000 113414,95 123201,99 -563,68 0,624 0,458 2,778 0,474 0% 0% 0% 0% 
11 10000 113414,95 123201,99 -402,63 0,610 0,466 10,852 0,433 0% 0% 0% 0% 
12 7530 115900,51 123102,26 -659,58 0,633 0,456 8,068 0,432 0% 0% 0% 0% 
13 8700 114837,73 123130,57 -722,38 0,635 0,423 5,812 0,472 0% 0% 0% 0% 
14 10000 113414,95 123201,99 -552,41 0,614 0,459 3,019 0,481 0% 0% 0% 0% 
15 10000 113414,95 123201,99 -429,65 0,617 0,452 17,311 0,466 0% 0% 0% 0% 
16 7530 115900,51 123134,18 -626,82 0,623 0,453 180,802 0,497 0% 0% 0,079% 0% 
17 8700 114837,73 123158,05 -683,62 0,520 0,454 9,044 0,551 0% 0% 0% 0% 
18 10000 113414,95 123201,99 -553,40 0,622 0,451 3,159 0,507 0% 0% 0% 0% 
19 10000 113414,95 123201,99 -452,79 0,616 0,459 8,099 0,562 0% 0% 0% 0% 
20 8050 115549,12 123162,19 -611,64 0,644 0,450 65,494 0,462 0% 0% 0% 0% 
21 8700 114837,73 123176,53 -661,50 0,615 0,455 7,511 0,495 0% 0% 0% 0% 
22 10000 113414,95 123201,99 -555,66 0,621 0,455 3,611 0,482 0% 0% 0% 0% 
23 10000 113414,95 123201,99 -470,17 0,671 0,451 9,566 0,551 0% 0% 0% 0% 
24 8050 115549,12 123181,27 -602,92 0,631 0,448 80,208 0,499 0% 0% 0% 0% 
25 9480 113766,34 123183,81 -516,79 0,630 0,460 8,658 0,489 0% 0% 0% 0% 
26 8700 114837,73 123152,69 -571,13 0,630 0,439 21,256 0,494 0% 0% 0% 0% 
27 10000 113414,95 123201,99 -494,98 0,643 0,554 27,491 0,500 0% 0% 0% 0% 
28 8050 115549,12 123196,01 -607,40 0,636 0,544 13,134 0,566 0% 0% 0% 0% 
29 9480 113766,34 123196,14 -531,47 0,629 0,446 3,328 0,547 0% 0% 0% 0% 
30 9480 113766,34 123178,43 -467,05 0,631 0,572 5,471 0,484 0% 0% 0% 0% 
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Table D-10 CRTN-opt2: Model results for Scenario 4 

Iteration 

Economic assessments EFN 
Total slot 

consumption 
[MWh] 

Economic assessments PP 

Upper bound Lower bound Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp Produced 
[m3] 

Pulp Bought 
[m3] 

1 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122524,34 

2 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 121380,39 

3 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122594,79 

4 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122645,78 

5 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 121933,38 

6 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122497,20 

7 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122721,16 

8 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 122322,90 

9 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 122387,79 

10 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122638,31 

11 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122699,63 

12 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 122470,99 

13 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 122479,61 

14 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122649,58 

15 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122704,52 

16 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 122531,23 

17 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 122518,37 

18 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122648,59 

19 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122709,40 

20 115549 115549 0 0 3639,8 21 0 0 3798,4 250 0 7800 10350 5 123599,12 122564,89 

21 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 122540,49 

22 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122646,33 

23 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122711,10 

24 115549 115549 0 0 3639,8 21 0 0 3798,4 250 0 7800 10350 5 123599,12 122580,89 

25 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 122635,90 

26 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 122630,86 

27 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 122701,02 

28 115549 115549 0 0 3639,8 21 0 0 3798,4 250 0 7800 10350 5 123599,12 122588,75 

29 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 122646,96 

30 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 122681,78 
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Table D-11 CRTN-opt2: WMVCD with feasibility repair heuristic 

Iteration 
Benders' 

subproblem 
Lower 
bound 

Upper 
bound- 

iteration 

Upper 
bound 

Iteration 
Benders' 

subproblem 
Lower 
bound 

Upper 
bound- 
iteration 

Upper 
bound 

Iteration 
Benders' 

subproblem 
Lower 
bound 

Upper 
bound- 
iteration 

Upper 
bound 

1 123414,9 122524,3 123586,9 123586,9 51 121775,9 122709,3 123285,4 123054,5 101 121711,2 122719,1 123586,9 123054,5 

2 122558,1 121380,4 123202 123202 52 122555,4 122671,1 123433 123054,5 102 121747,3 122711,7 123586,9 123054,5 

3 124080,1 122594,8 123202 123202 53 123060,4 122680 123433 123054,5 103 121781,7 122704,6 123586,9 123054,5 

4 123700 122645,8 123586,9 123202 54 123067,7 122724,6 123054,5 123054,5 104 121826,6 122706,5 123356 123054,5 

5 121554,7 122585,1 123586,9 123202 55 124398,2 122721,1 123285,4 123054,5 105 123754 122730,1 123586,9 123054,5 

6 122290,3 122117,7 123202 123202 56 122471,6 122715,1 123586,9 123054,5 106 121851 122721,3 123285,4 123054,5 

7 124543,3 122551,4 123202 123202 57 121769 122687 123356 123054,5 107 122637,9 122677,7 123202 123054,5 

8 124133 122717,5 123586,9 123202 58 123667,2 122703 123356 123054,5 108 125019,2 122696,6 123202 123054,5 

9 121475,1 122653,1 123586,9 123202 59 123631,4 122717,2 123586,9 123054,5 109 124961,9 122714,6 123202 123054,5 

10 121839,5 122613,5 123586,9 123202 60 121743,5 122704,9 123586,9 123054,5 110 124907,2 122726,4 123359,2 123054,5 

11 122355,9 122414,9 123202 123202 61 121825,5 122714,2 123285,4 123054,5 111 122703,5 122721,5 123285,4 123054,5 

12 124814,7 122624,8 123202 123202 62 122602 122680,1 123433 123054,5 112 122455,6 122718,9 123285,4 123054,5 

13 124464,8 122722,9 123285,4 123202 63 123125,1 122696,5 123202 123054,5 113 122467,3 122716,5 123285,4 123054,5 

14 122182,6 122678,8 123586,9 123202 64 124956,7 122722,8 123054,4 123054,5 114 122478,4 122714,1 123285,4 123054,5 

15 121681,8 122644,5 123586,9 123202 65 124366,6 122721,4 123285,4 123054,5 115 122489,1 122708,4 123586,9 123054,5 

16 121982,8 122559,3 123356 123202 66 122438,5 122717,1 123285,4 123054,5 116 121755 122723,7 123586,9 123054,5 

17 123751,2 122627,1 123202 123202 67 122458,7 122709,7 123586,9 123054,5 117 121806,4 122696,8 123356 123054,5 

18 124692,1 122718,3 123285,4 123202 68 121734 122699,3 123586,9 123054,5 118 123701,5 122704,5 123356 123054,5 

19 122325,9 122702 123586,9 123202 69 121809,1 122715 123356 123054,5 119 123682,2 122712 123356 123054,5 

20 121739,5 122671,1 123586,9 123202 70 123701,2 122714 123586,9 123054,5 120 123663,7 122717,9 123586,9 123054,5 

21 121968,3 122560,4 123202 123202 71 121800,3 122703,8 123586,9 123054,5 121 121744,2 122711,7 123586,9 123054,5 

22 124866,4 122663 123202 123202 72 121878,7 122695,3 123054,5 123054,5 122 121776,8 122712,5 123586,9 123054,5 

23 124643,1 122722,8 123285,4 123202 73 124506,2 122710,2 123356 123054,5 123 121813,7 122714,8 123436,2 123054,5 

24 122264,9 122705,6 123586,9 123202 74 123715,4 122718,7 123202 123054,5 124 122223,1 122708,4 123359,2 123054,5 

25 121652,7 122679,7 123586,9 123202 75 124913,3 122721,4 123285,4 123054,5 125 122875,6 122723,9 123128,2 123054,5 

26 121800,3 122629 123356 123202 76 122461 122717,6 123285,4 123054,5 126 124764 122710 123359,2 123054,5 

27 123657,7 122669,3 123356 123202 77 122477,6 122714,1 123285,4 123054,5 127 122815,1 122710,4 123359,2 123054,5 

28 123641,6 122714,4 123433 123202 78 122493,2 122707,8 123586,9 123054,5 128 122826,8 122704,4 123128,2 123054,5 

29 122940,4 122709,7 123285,4 123202 79 121759,3 122698,8 123586,9 123054,5 129 124723,5 122717,3 123128,2 123054,5 

30 122465,5 122695,3 123586,9 123202 80 121802,9 122721,2 123586,9 123054,5 130 124681,6 122728,2 123054,4 123054,5 

31 121800,1 122675,2 123586,9 123202 81 121883,2 122680 123054,5 123054,5 131 124386,5 122724,7 123436,2 123054,5 

32 121981,6 122655,4 123202 123202 82 124511 122697,6 123054,5 123054,5 132 122066,7 122720,6 123436,2 123054,5 

33 124955,7 122716,2 123202 123202 83 124452,2 122714 123356 123054,5 133 122086,1 122716,7 123436,2 123054,5 
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34 124789,1 122717,3 123285,4 123202 84 123652,8 122718 123202 123054,5 134 122104,7 122712,8 123436,2 123054,5 

35 122369 122705,3 123586,9 123202 85 124876,9 122721,9 123285,4 123054,5 135 122122,8 122709,2 123436,2 123054,5 

36 121698,8 122686,7 123586,9 123202 86 122424,2 122718,6 123285,4 123054,5 136 122140,1 122704,4 123586,9 123054,5 

37 121801,9 122673,1 123356 123202 87 122440,6 122715,4 123285,4 123054,5 137 121791,6 122723,5 123586,9 123054,5 

38 123683,2 122698,3 123356 123202 88 122456,1 122712,5 123586,9 123054,5 138 121840,3 122708,7 123205,2 123054,5 

39 123657,7 122717,7 123285,4 123202 89 121718,8 122704,3 123586,9 123054,5 139 124120,3 122711,4 123279 123054,5 

40 122493,5 122645,3 123433 123202 90 121759,3 122696,5 123586,9 123054,5 140 124343 122721,1 123205,2 123054,5 

41 123005,5 122658,9 123433 123202 91 121797,6 122689,2 123586,9 123054,5 141 124057,9 122720,2 123436,2 123054,5 

42 123001,6 122671,1 123433 123202 92 121867,9 122718,7 123285,4 123054,5 142 122125 122716,5 123436,2 123054,5 

43 123031,5 122704,6 123054,5 123054,5 93 122670,4 122690,9 123202 123054,5 143 122141,4 122712,9 123436,2 123054,5 

44 124327,5 122726,8 123285,4 123054,5 94 125022,2 122712 123202 123054,5 144 122157,3 122709,5 123436,2 123054,5 

45 122412,2 122717,8 123586,9 123054,5 95 124956,6 122725,4 123285,4 123054,5 145 122172,7 122706,1 123436,2 123054,5 

46 121745,4 122661,1 123356 123054,5 96 122499 122722,3 123285,4 123054,5 146 122200,9 122725,7 123436,2 123054,5 

47 123621,7 122682,7 123356 123054,5 97 122510,7 122719,3 123285,4 123054,5 147 122237,6 122706,3 123205,2 123054,5 

48 123581,8 122702,2 123356 123054,5 98 122534,2 122709,9 123054,5 123054,5 148 124132,5 122710,7 123205,2 123054,5 

49 123545,7 122704,1 123586,9 123054,5 99 124423,9 122720,4 123356 123054,5 149 124104,3 122712,5 123279 123054,5 

50 121676 122690,5 123586,9 123054,5 100 123623,2 122726,9 123586,9 123054,5 150 124332,6 122721,7 123279 123054,5 
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Table D-12 CRTN-opt2: Iteration results of WMVCD with relaxed integers for Scenario 4 

Iteration Upper 
bound 

Lower 
bound Iteration Upper 

bound 
Lower 
bound Iteration Upper 

bound 
Lower 
bound Iteration Upper 

bound 
Lower 
bound 

1 121953,57 115036,67 26 121487,23 121347,27 51 121460,15 121386,99 76 121442,07 121382,1 

2 161024,42 44885,721 27 121472,98 121356,77 52 121451,61 121383,72 77 121437,1 121380,11 

3 133947,09 119069,61 28 121456,18 121385,47 53 121443,84 121380,74 78 121432,45 121378,25 

4 125594,28 120219,04 29 121442 121379,96 54 121436,75 121378,03 79 121428,07 121376,5 

5 123722,65 121164,59 30 121429,98 121375,32 55 121430,27 121375,56 80 121423,96 121374,85 

6 122664,94 121316,66 31 121419,72 121371,38 56 121424,34 121373,3 81 121420,1 121373,31 

7 122200,96 121291,22 32 121410,93 121368,01 57 121418,9 121371,23 82 121416,46 121371,85 

8 122005,56 120825,82 33 121509,57 121355,45 58 121413,91 121369,33 83 121413,03 121370,49 

9 121954,05 121198,62 34 121516,16 121387,95 59 121409,32 121367,59 84 121409,8 121369,2 

10 121765,97 121377,73 35 121435,26 121201,47 60 121433,4 121359,73 85 121406,76 121367,98 

11 121645,06 121366,98 36 121477,91 121269,85 61 121441,97 121378,98 86 121399,14 121364,16 

12 121536,31 121344,88 37 121515,22 121329,45 62 121422,99 121369,39 87 121436,03 121358,46 

13 121882,42 121314,53 38 121547,98 121381,61 63 121418,13 121387,98 88 121441,94 121374,86 

14 121543,28 121163,49 39 121528,44 121385,11 64 121413,63 121385,24 89 121447,53 121383,46 

15 121611,67 121325,26 40 121511,17 121381,08 65 121409,46 121382,71 90 121407,67 121363,04 

16 121555,06 121382,3 41 121495,86 121377,52 66 121405,6 121380,36 91 121426,53 121384,03 

17 121512,61 121373,98 42 121482,26 121374,36 67 121402,01 121378,18 92 121423,01 121387,5 

18 121480,26 121367,74 43 121470,13 121371,56 68 121400,84 121376,16 93 121419,66 121385,62 

19 121467,58 121346,6 44 121459,29 121369,05 69 121410,26 121387,11 94 121416,49 121383,83 

20 121508,24 121265,96 45 121440,79 121364,14 70 121420,52 121305,92 95 121413,49 121382,14 

21 121565,37 121367,71 46 121424,17 121353,57 71 121443,8 121335,79 96 121410,63 121380,54 

22 121529,76 121382,67 47 121445,4 121344,07 72 121465,51 121363,64 97 121407,92 121379,01 

23 121501 121376,29 48 121455,21 121379,62 73 121459,06 121388,93 98 121405,34 121377,56 

24 121477,56 121371,13 49 121438,39 121332,9 74 121453,02 121386,5 99 121402,88 121376,19 

25 121443,23 121365,61 50 121469,53 121372,75 75 121447,36 121384,23 100 121400,55 121374,88 
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Table D-13 CRTN-opt2: Iteration results for Scenario 5 

Iteration 

MIP CPUs Gap 

Benders’ sub-problem Dantzig-Wolfe sub-problem Benders’ sub-problem 
Dantzig-Wolfe sub-

problem 
Benders’ sub-problem 

Dantzig-Wolfe sub-
problem 

scheduler flow network scheduler flow network scheduler 
flow 

network 
scheduler 

flow 
network 

scheduler 
flow 

network 
scheduler 

flow 
network 

1 144316 470812,23 555446,50 61251,98 1,079 0,996 181,325 0,996 0% 0% 0,043% 0% 

2 143926 471146,76 553796,78 61323,98 1,091 0,990 181,086 1,004 0% 0% 0,045% 0% 

3 143926 471146,76 553743,98 61335,98 0,922 1,101 181,062 1,047 0% 0% 0,045% 0% 

4 143926 471146,76 553735,18 61339,41 1,101 0,935 181,051 0,977 0% 0% 0,045% 0% 

5 143926 471146,76 553732,67 61340,69 1,029 0,906 181,023 0,905 0% 0% 0,045% 0% 

6 143926 471146,76 553731,72 61341,27 0,948 0,898 180,970 0,945 0% 0% 0,045% 0% 

7 143926 471146,76 553731,30 61341,55 1,004 0,884 180,971 0,932 0% 0% 0,045% 0% 

8 143926 471146,76 553731,09 61341,71 0,959 0,841 181,052 1,022 0% 0% 0,045% 0% 

9 143926 471146,76 553730,98 61341,80 1,013 0,857 180,979 5,947 0% 0% 0,045% 0% 

10 143926 471146,76 553730,91 61341,85 0,955 0,929 182,321 0,872 0% 0% 0,045% 0% 

11 143926 471146,76 553730,87 61341,89 0,985 0,795 181,218 0,970 0% 0% 0,045% 0% 

12 143926 471146,76 553730,85 61341,91 0,947 0,873 181,063 0,973 0% 0% 0,045% 0% 

13 143926 471146,76 553730,83 61341,93 1,008 0,957 181,005 0,986 0% 0% 0,045% 0% 

14 143926 471146,76 553730,82 61341,94 1,088 0,886 181,039 1,016 0% 0% 0,045% 0% 

15 143926 471146,76 553730,81 61341,95 1,042 0,894 181,086 0,971 0% 0% 0,045% 0% 

16 143926 471146,76 553730,80 61341,96 1,108 0,923 181,040 1,045 0% 0% 0,045% 0% 

17..30 143926 471146,76 553730,80 61341,96 1,103 0,917 181,065 1,046 0% 0% 0,045% 0% 
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Table D-14 CRTN-opt2: Model results for Scenario 5 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound Lower bound 
Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue [€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold Electricity 
[MWh] 

External Pulp 
Cost  [€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

1 470812 629785 141109 96208 9200 630 1568 2209 10703 0 108276 36040 29190 0 615128,23 615048,76 

2 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615067,96 

3 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615071,16 

4 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,07 

5 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,42 

6 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,57 

7 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,65 

8 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,69 

9 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,71 

10 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,73 

11 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,74 

12 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,74 

13 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

14 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

15 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

16 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,75 

17..30 471147 623514 141109 96208 9100 630 1568 2209 10703 0 108276 35650 29190 0 615072,76 615072,76 

 
  



D-17 

Table D-15 IMV: Iterations results and model statistics for Scenario 1 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 167797,69 198330,59 0,570 1,300 0% 0% 
2 167849,45 197751,35 0,546 1,453 0% 0% 
3 167867,36 197751,35 0,598 1,088 0% 0% 
4 167877,82 197744,02 0,622 1,272 0% 0% 
5 167884,10 197740,35 0,498 1,185 0% 0% 
6 167888,28 197738,15 0,462 1,095 0% 0% 
7 167891,27 197736,68 0,625 1,379 0% 0% 
8 167893,51 197735,64 0,579 1,113 0% 0% 
9 167895,25 197734,85 0,543 1,147 0% 0% 
10 167896,65 197734,24 0,459 1,193 0% 0% 
11 167897,79 197733,75 0,595 1,262 0% 0% 
12 167898,74 197733,35 0,563 1,139 0% 0% 
13 167899,55 197733,02 0,473 1,213 0% 0% 
14 167900,24 197732,73 0,504 1,281 0% 0% 
15 167900,83 197732,49 0,582 1,281 0% 0% 
16 167901,36 197732,28 0,598 1,202 0% 0% 
17 167901,82 197732,10 0,638 1,278 0% 0% 
18 167902,23 197731,94 0,536 1,223 0% 0% 
19 167902,59 197731,79 0,575 1,310 0% 0% 
20 167902,92 197731,67 0,770 2,953 0% 0% 
21 167903,22 197731,55 0,540 1,528 0% 0% 
22 167903,50 197731,45 0,576 2,576 0% 0% 
23 167903,74 197731,35 0,605 1,343 0% 0% 
24 167903,97 197731,26 0,674 2,872 0% 0% 
25 167904,18 197731,18 0,659 1,227 0% 0% 
26 167904,37 197731,11 0,570 1,708 0% 0% 
27 167904,55 197731,04 0,649 5,728 0% 0% 
28 167904,72 197730,98 0,615 1,232 0% 0% 
29 167904,87 197730,92 0,510 1,346 0% 0% 
30 167905,02 197730,87 0,562 1,286 0% 0% 
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Table D-16 IMV: Model results for Scenario 1 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue [€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp 

Cost  [€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 167798 179251 45813 34360 1889 280,000 560 712,000 3817 250 38578 13030 10410 5 219655,69 
2 167849 179302 45813 34360 1878 291,000 560 712,000 3817 250 38578 12900 10410 5 219577,45 
3 167867 179360 45853 34360 1875 294,667 560 712,667 3817 250 38578 12900 10410 5 219595,36 
4 167878 179479 45961 34360 1875 296,500 560 714,500 3817 250 38578 12900 10410 5 219605,82 
5 167884 179551 46027 34360 1875 297,600 560 715,600 3817 250 38578 12900 10410 5 219612,10 
6 167888 179598 46070 34360 1875 298,333 560 716,333 3817 250 38578 12900 10410 5 219616,28 
7 167891 179632 46101 34360 1875 298,857 560 716,857 3817 250 38578 12900 10410 5 219619,27 
8 167894 179658 46124 34360 1875 299,250 560 717,250 3817 250 38578 12900 10410 5 219621,51 
9 167895 179678 46142 34360 1875 299,556 560 717,556 3817 250 38578 12900 10410 5 219623,25 

10 167897 179694 46157 34360 1875 299,800 560 717,800 3817 250 38578 12900 10410 5 219624,65 
11 167898 179707 46169 34360 1875 300,000 560 718,000 3817 250 38578 12900 10410 5 219625,79 
12 167899 179717 46179 34360 1875 300,167 560 718,167 3817 250 38578 12900 10410 5 219626,74 
13 167900 179727 46187 34360 1875 300,308 560 718,308 3817 250 38578 12900 10410 5 219627,55 
14 167900 179734 46194 34360 1875 300,429 560 718,429 3817 250 38578 12900 10410 5 219628,24 
15 167901 179741 46200 34360 1875 300,533 560 718,533 3817 250 38578 12900 10410 5 219628,83 
16 167901 179747 46206 34360 1875 300,625 560 718,625 3817 250 38578 12900 10410 5 219629,36 
17 167902 179752 46211 34360 1875 300,706 560 718,706 3817 250 38578 12900 10410 5 219629,82 
18 167902 179757 46215 34360 1875 300,778 560 718,778 3817 250 38578 12900 10410 5 219630,23 
19 167903 179761 46219 34360 1875 300,842 560 718,842 3817 250 38578 12900 10410 5 219630,59 
20 167903 179765 46222 34360 1875 300,900 560 718,900 3817 250 38578 12900 10410 5 219630,92 
21 167903 179769 46225 34360 1875 300,952 560 718,952 3817 250 38578 12900 10410 5 219631,22 
22 167903 179772 46228 34360 1875 301,000 560 719,000 3817 250 38578 12900 10410 5 219631,50 
23 167904 179774 46231 34360 1875 301,043 560 719,043 3817 250 38578 12900 10410 5 219631,74 
24 167904 179777 46233 34360 1875 301,083 560 719,083 3817 250 38578 12900 10410 5 219631,97 
25 167904 179779 46235 34360 1875 301,120 560 719,120 3817 250 38578 12900 10410 5 219632,18 
26 167904 179782 46237 34360 1875 301,154 560 719,154 3817 250 38578 12900 10410 5 219632,37 
27 167905 179784 46239 34360 1875 301,185 560 719,185 3817 250 38578 12900 10410 5 219632,55 
28 167905 179786 46241 34360 1875 301,214 560 719,214 3817 250 38578 12900 10410 5 219632,72 
29 167905 179787 46242 34360 1875 301,241 560 719,241 3817 250 38578 12900 10410 5 219632,87 
30 167905 179789 46244 34360 1875 301,267 560 719,267 3817 250 38578 12900 10410 5 219633,02 
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Table D-17 IMV: Iterations results and model statistics for Scenario 2 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 -673378,00 198330,59 0,468 1,199 0% 0% 
2 -674973,00 338528 1,157 1,164 0% 0% 
3 -675504,67 338528 0,509 1,149 0% 0% 
4 -675770,50 338528 0,506 1,239 0% 0% 
5 -675930,00 338528 0,482 1,257 0% 0% 
6 -676036,33 338528 0,510 1,258 0% 0% 
7 -676112,29 338528 0,510 1,166 0% 0% 
8 -676169,25 338528 0,459 1,298 0% 0% 
9 -676213,56 338528 0,499 1,298 0% 0% 
10 -676249,00 338528 0,527 1,158 0% 0% 
11 -676278,00 338528 0,442 1,220 0% 0% 
12 -676302,17 338528 0,502 1,291 0% 0% 
13 -676322,62 338528 0,495 1,277 0% 0% 
14 -676340,14 338528 0,438 1,220 0% 0% 
15 -676355,33 338528 0,508 1,169 0% 0% 
16 -676368,63 338528 0,499 1,260 0% 0% 
17 -676380,35 338528 0,479 1,081 0% 0% 
18 -676390,78 338528 0,506 1,256 0% 0% 
19 -676400,11 338528 0,464 1,107 0% 0% 
20 -676408,50 338528 0,496 1,272 0% 0% 
21 -676416,10 338528 0,479 1,286 0% 0% 
22 -676423,00 338528 0,559 1,194 0% 0% 
23 -676429,30 338528 0,493 1,263 0% 0% 
24 -676435,08 338528 0,504 1,259 0% 0% 
25 -676440,40 338528 0,555 1,200 0% 0% 
26 -676445,31 338528 0,493 1,258 0% 0% 
27 -676449,85 338528 0,480 1,195 0% 0% 
28 -676454,07 338528 0,502 1,253 0% 0% 
29 -676458,00 338528 0,476 1,262 0% 0% 
30 -676461,6667 338528 0,548 1,314 0% 0% 
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Table D-18 IMV: Model results for Scenario 2 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase [€] 

Sales Revenue 
[€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-
End 
Cost  
[€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 -673378 705200 1670930 292352 0 8055,00 4792 10830 3817 250 38578 13030 10410 5 -621520,00 
2 -674973 703605 1670930 292352 0 8049,50 4792 10830 3806 250 39118 13600 10380 5 -622005,00 
3 -675505 703073 1670930 292352 0 8047,67 4792 10830 3806 250 39118 13600 10380 5 -622536,67 
4 -675771 702808 1670930 292352 0 8046,75 4792 10830 3806 250 39118 13600 10380 5 -622802,50 
5 -675930 702648 1670930 292352 0 8046,20 4792 10830 3806 250 39118 13600 10380 5 -622962,00 
6 -676036 702542 1670930 292352 0 8045,83 4792 10830 3806 250 39118 13600 10380 5 -623068,33 
7 -676112 702466 1670930 292352 0 8045,57 4792 10830 3806 250 39118 13600 10380 5 -623144,29 
8 -676169 702409 1670930 292352 0 8045,38 4792 10830 3806 250 39118 13600 10380 5 -623201,25 
9 -676214 702364 1670930 292352 0 8045,22 4792 10830 3806 250 39118 13600 10380 5 -623245,56 
10 -676249 702329 1670930 292352 0 8045,10 4792 10830 3806 250 39118 13600 10380 5 -623281,00 
11 -676278 702300 1670930 292352 0 8045,00 4792 10830 3806 250 39118 13600 10380 5 -623310,00 
12 -676302 702276 1670930 292352 0 8044,92 4792 10830 3806 250 39118 13600 10380 5 -623334,17 
13 -676323 702255 1670930 292352 0 8044,85 4792 10830 3806 250 39118 13600 10380 5 -623354,62 
14 -676340 702238 1670930 292352 0 8044,79 4792 10830 3806 250 39118 13600 10380 5 -623372,14 
15 -676355 702223 1670930 292352 0 8044,73 4792 10830 3806 250 39118 13600 10380 5 -623387,33 
16 -676369 702209 1670930 292352 0 8044,69 4792 10830 3806 250 39118 13600 10380 5 -623400,63 
17 -676380 702198 1670930 292352 0 8044,65 4792 10830 3806 250 39118 13600 10380 5 -623412,35 
18 -676391 702187 1670930 292352 0 8044,61 4792 10830 3806 250 39118 13600 10380 5 -623422,78 
19 -676400 702178 1670930 292352 0 8044,58 4792 10830 3806 250 39118 13600 10380 5 -623432,11 
20 -676409 702170 1670930 292352 0 8044,55 4792 10830 3806 250 39118 13600 10380 5 -623440,50 
21 -676416 702162 1670930 292352 0 8044,52 4792 10830 3806 250 39118 13600 10380 5 -623448,10 
22 -676423 702155 1670930 292352 0 8044,50 4792 10830 3806 250 39118 13600 10380 5 -623455,00 
23 -676429 702149 1670930 292352 0 8044,48 4792 10830 3806 250 39118 13600 10380 5 -623461,30 
24 -676435 702143 1670930 292352 0 8044,46 4792 10830 3806 250 39118 13600 10380 5 -623467,08 
25 -676440 702138 1670930 292352 0 8044,44 4792 10830 3806 250 39118 13600 10380 5 -623472,40 
26 -676445 702133 1670930 292352 0 8044,42 4792 10830 3806 250 39118 13600 10380 5 -623477,31 
27 -676450 702128 1670930 292352 0 8044,41 4792 10830 3806 250 39118 13600 10380 5 -623481,85 
28 -676454 702124 1670930 292352 0 8044,39 4792 10830 3806 250 39118 13600 10380 5 -623486,07 
29 -676458 702120 1670930 292352 0 8044,38 4792 10830 3806 250 39118 13600 10380 5 -623490,00 
30 -676462 702116 1670930 292352 0 8044,37 4792 10830 3806 250 39118 13600 10380 5 -623493,67 
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Table D-19 IMV: Iterations results and model statistics for Scenario 4 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 113414,95 123201,99 0,499 1,379 0% 0% 
2 114662,12 122524,34 0,591 48,322 0% 0% 
3 115077,85 122524,34 0,598 47,436 0% 0% 
4 115517,21 122524,34 0,571 39,559 0% 0% 
5 114911,56 123201,99 0,564 15,289 0% 0% 
6 114970,12 123182,20 0,587 114,989 0% 0% 
7 115171,95 123080,94 0,521 180,735 0% 0,074% 
8 115026,95 123121,76 0,540 12,734 0% 0% 
9 114839,74 123201,99 0,498 3,498 0% 0% 
10 114697,26 123201,99 0,487 10,390 0% 0% 
11 114748,69 123182,20 0,557 30,272 0% 0% 
12 114845,41 123131,54 0,467 108,202 0% 0% 
13 114927,24 123080,94 0,577 180,660 0% 0,071% 
14 114997,39 123038,12 0,598 180,516 0% 0,007% 
15 115058,18 123001,43 0,528 38,787 0% 0% 
16 115134,72 122969,62 0,522 39,057 0% 0% 
17 115171,19 123148,80 0,434 55,147 0% 0% 
18 115099,20 123166,67 0,512 68,264 0% 0% 
19 114993,30 123201,99 0,490 9,563 0% 0% 
20 114931,95 123195,06 0,517 8,487 0% 0% 
21 114947,71 123182,20 0,503 180,577 0% 0,056% 
22 114962,04 123156,75 0,509 17,233 0% 0% 
23 115003,23 123131,54 0,497 76,255 0% 0% 
24 115040,98 123105,14 0,544 61,653 0% 0% 
25 115075,71 123080,94 0,495 180,706 0% 0,073% 
26 115146,77 123058,68 0,521 180,595 0% 0,063% 
27 115165,69 123161,64 0,493 49,378 0% 0% 
28 115052,86 123201,99 0,478 11,994 0% 0% 
29 115008,49 123197,58 0,527 16,283 0% 0% 
30 114967,09 123192,64 0,391 4,653 0% 0% 
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Table D-20 IMV: Model results for Scenario 4 

Iteration 

Economic assessments EFN 
Total slot 

consumption 
[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost [€] 
Electricity 

purchase [€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market [MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 113415 113415 0 0 3795,800 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
2 114662 114662 0 0 3630,800 0 0 0 3797,8 250 0 6500 10350 5 121412,12 
3 115078 115078 0 0 3575,800 0 0 0 3797,8 250 0 6500 10350 5 121827,85 
4 115517 115517 0 0 3563,550 7,625 0 0 3797,8 250 0 6500 10350 5 122267,21 
5 114912 114912 0 0 3597,800 0 0 0 3799,3 250 0 9750 10350 5 124911,56 
6 114970 114970 0 0 3586,833 0 0 0 3798 250 0 7280 10350 5 122500,12 
7 115172 115172 0 0 3574,000 2,229 0 0 3797,8 250 0 6500 10350 5 121921,95 
8 115027 115027 0 0 3581,925 0,3 0 0 3798,7 250 0 8450 10350 5 123726,95 
9 114840 114840 0 0 3605,156 0 0 0 3799,3 250 0 9750 10350 5 124839,74 

10 114697 114697 0 0 3624,220 0 0 0 3799,3 250 0 9750 10350 5 124697,26 
11 114749 114749 0 0 3615,836 0 0 0 3798 250 0 7280 10350 5 122278,69 
12 114845 114845 0 0 3603,333 0 0 0 3797,8 250 0 6500 10350 5 121595,41 
13 114927 114927 0 0 3592,754 0 0 0 3797,8 250 0 6500 10350 5 121677,24 
14 114997 114997 0 0 3583,686 0 0 0 3797,8 250 0 6500 10350 5 121747,39 
15 115058 115058 0 0 3575,827 0 0 0 3797,8 250 0 6500 10350 5 121808,18 
16 115135 115135 0 0 3570,488 0,769 0 0 3797,8 250 0 6500 10350 5 121884,72 
17 115171 115171 0 0 3570,129 1,676 0 0 3798 250 0 7280 10350 5 122701,19 
18 115099 115099 0 0 3573,367 0,6 0 0 3798,7 250 0 8450 10350 5 123799,20 
19 114993 114993 0 0 3583,937 0 0 0 3799,3 250 0 9750 10350 5 124993,30 
20 114932 114932 0 0 3591,240 0 0 0 3798,9 250 0 9230 10350 5 124411,95 
21 114948 114948 0 0 3588,419 0 0 0 3798 250 0 7280 10350 5 122477,71 
22 114962 114962 0 0 3585,855 0 0 0 3798 250 0 7280 10350 5 122492,04 
23 115003 115003 0 0 3580,635 0 0 0 3797,8 250 0 6500 10350 5 121753,23 
24 115041 115041 0 0 3575,850 0 0 0 3797,8 250 0 6500 10350 5 121790,98 
25 115076 115076 0 0 3571,448 0 0 0 3797,8 250 0 6500 10350 5 121825,71 
26 115147 115147 0 0 3569,954 1,285 0 0 3797,8 250 0 6500 10350 5 121896,77 
27 115166 115166 0 0 3569,511 1,719 0 0 3798 250 0 7280 10350 5 122695,69 
28 115053 115053 0 0 3574,279 0 0 0 3799,3 250 0 9750 10350 5 125052,86 
29 115008 115008 0 0 3579,648 0 0 0 3798,9 250 0 9230 10350 5 124488,49 
30 114967 114967 0 0 3584,660 0 0 0 3798,9 250 0 9230 10350 5 124447,09 
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Table D-21 IMV: Iterations results and model statistics for Scenario 5 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 470812,23 555446,50 0,965 180,900 0% 0,043% 
2 470967,50 553796,78 0,868 180,913 0% 0,045% 
3 471021,25 553796,78 0,894 180,888 0% 0,045% 
4 471052,63 553774,78 0,904 180,990 0% 0,045% 
5 471071,45 553763,78 0,872 180,990 0% 0,045% 
6 471084,01 553757,18 0,883 181,011 0% 0,045% 
7 471092,97 553752,78 1,050 181,281 0% 0,045% 
8 471099,69 553749,64 0,957 181,375 0% 0,045% 
9 471104,92 553747,28 1,485 181,276 0% 0,045% 
10 471109,11 553745,45 1,839 182,321 0% 0,045% 
11 471112,53 553743,98 1,192 181,205 0% 0,045% 
12 471115,38 553742,78 1,125 181,701 0% 0,045% 
13 471117,80 553741,78 0,980 181,055 0% 0,045% 
14 471119,87 553740,93 0,900 181,081 0% 0,045% 
15 471121,66 553740,21 1,636 181,724 0% 0,045% 
16 471123,23 553739,58 1,884 181,856 0% 0,045% 
17 471124,61 553739,03 1,582 181,850 0% 0,045% 
18 471125,84 553738,54 1,799 181,901 0% 0,045% 
19 471126,94 553738,11 1,859 181,940 0% 0,045% 
20 471127,93 553737,73 1,872 182,428 0% 0,045% 
21 471128,83 553737,38 1,636 182,387 0% 0,045% 
22 471129,65 553737,07 1,759 182,312 0% 0,045% 
23 471130,39 553736,78 1,521 182,309 0% 0,045% 
24 471131,07 553736,52 1,997 181,827 0% 0,045% 
25 471131,70 553736,28 1,380 181,531 0% 0,045% 
26 471132,28 553736,06 1,509 182,618 0% 0,045% 
27 471132,81 553735,86 1,666 181,725 0% 0,045% 
28 471133,31 553735,67 1,635 182,011 0% 0,045% 
29 471133,78 553735,49 1,729 181,778 0% 0,045% 
30 471134,21 553735,33 1,484 181,652 0% 0,045% 
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Table D-22 IMV: Model results for Scenario 5 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp 
Cost  
[€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp Produced 
[m3] 

Pulp 
Bought 
[m3] 

1 470812 502786 128182 96208 5292 795 1568 1992 10703 0 108276 36040 29190 0 615128,23 
2 470967 502941 128182 96208 5259 828 1568 1992 10703 0 108276 35650 29190 0 614893,50 
3 471021 503113 128300 96208 5250 839 1568 1994 10703 0 108276 35650 29190 0 614947,25 
4 471053 503471 128626 96208 5250 844,5 1568 1999,500 10703 0 108276 35650 29190 0 614978,63 
5 471071 503685 128822 96208 5250 847,8 1568 2002,8 10703 0 108276 35650 29190 0 614997,45 
6 471084 503828 128952 96208 5250 850 1568 2005 10703 0 108276 35650 29190 0 615010,01 
7 471093 503931 129046 96208 5250 851,57 1568 2006,571 10703 0 108276 35650 29190 0 615018,97 
8 471100 504007 129116 96208 5250 852,75 1568 2007,750 10703 0 108276 35650 29190 0 615025,69 
9 471105 504067 129170 96208 5250 853,67 1568 2008,667 10703 0 108276 35650 29190 0 615030,92 

10 471109 504114 129213 96208 5250 854,4 1568 2009,4 10703 0 108276 35650 29190 0 615035,11 
11 471113 504153 129249 96208 5250 855 1568 2010 10703 0 108276 35650 29190 0 615038,53 
12 471115 504186 129279 96208 5250 855,5 1568 2010,5 10703 0 108276 35650 29190 0 615041,38 
13 471118 504213 129304 96208 5250 855,92 1568 2010,923 10703 0 108276 35650 29190 0 615043,80 
14 471120 504237 129325 96208 5250 856,29 1568 2011,286 10703 0 108276 35650 29190 0 615045,87 
15 471122 504257 129344 96208 5250 856,6 1568 2011,6 10703 0 108276 35650 29190 0 615047,66 
16 471123 504275 129360 96208 5250 856,875 1568 2011,875 10703 0 108276 35650 29190 0 615049,23 
17 471125 504291 129375 96208 5250 857,12 1568 2012,118 10703 0 108276 35650 29190 0 615050,61 
18 471126 504305 129387 96208 5250 857,33 1568 2012,333 10703 0 108276 35650 29190 0 615051,84 
19 471127 504318 129399 96208 5250 857,53 1568 2012,526 10703 0 108276 35650 29190 0 615052,94 
20 471128 504329 129409 96208 5250 857,7 1568 2012,7 10703 0 108276 35650 29190 0 615053,93 
21 471129 504339 129418 96208 5250 857,86 1568 2012,857 10703 0 108276 35650 29190 0 615054,83 
22 471130 504348 129427 96208 5250 858 1568 2013 10703 0 108276 35650 29190 0 615055,65 
23 471130 504357 129435 96208 5250 858,13 1568 2013,13 10703 0 108276 35650 29190 0 615056,39 
24 471131 504365 129442 96208 5250 858,25 1568 2013,25 10703 0 108276 35650 29190 0 615057,07 
25 471132 504372 129448 96208 5250 858,36 1568 2013,36 10703 0 108276 35650 29190 0 615057,70 
26 471132 504378 129454 96208 5250 858,46 1568 2013,462 10703 0 108276 35650 29190 0 615058,28 
27 471133 504385 129460 96208 5250 858,56 1568 2013,556 10703 0 108276 35650,00001 29190 0 615058,81 
28 471133 504390 129465 96208 5250 858,64 1568 2013,643 10703 0 108276 35650,00001 29190 0 615059,31 
29 471134 504396 129470 96208 5250 858,72 1568 2013,724 10703 0 108276 35650 29190 0 615059,78 
30 471134 504400 129474 96208 5250 858,80 1568 2013,8 10703 0 108276 35650 29190 0 615060,21 
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Table D-23 IWMV: Iterations results and model statistics for Scenario 1 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 167797,69 198330,59 0,526 1,344 0% 0% 
2 167797,69 197751,35 0,635 2,844 0% 0% 
3 167867,36 197751,35 0,478 1,158 0% 0% 
4 167891,27 197736,68 0,569 1,136 0% 0% 
5 167900,24 197732,49 0,531 1,183 0% 0% 
6 167904,22 197730,92 0,470 1,203 0% 0% 
7 167906,21 197730,22 0,651 1,150 0% 0% 
8 167907,30 197729,87 0,459 1,116 0% 0% 
9 167907,93 197729,68 0,492 1,341 0% 0% 
10 167908,32 197729,57 0,499 1,280 0% 0% 
11 167908,57 197729,50 0,560 1,130 0% 0% 
12 167908,74 197729,46 0,557 1,281 0% 0% 
13 167908,86 197729,43 0,561 1,245 0% 0% 
14 167908,94 197729,41 0,610 1,273 0% 0% 
15 167908,99 197729,40 0,560 1,133 0% 0% 
16 167909,04 197729,39 0,533 1,272 0% 0% 
17 167909,07 197729,38 0,578 1,211 0% 0% 
18 167909,10 197729,37 0,587 1,277 0% 0% 
19 167909,11 197729,37 0,659 1,274 0% 0% 
20 167909,13 197729,37 0,515 1,313 0% 0% 
21 167909,14 197729,36 0,626 1,250 0% 0% 
22 167909,15 197729,36 0,520 1,245 0% 0% 
23 167909,16 197729,36 0,521 1,406 0% 0% 
24 167909,16 197729,36 0,553 1,223 0% 0% 
25 167909,17 197729,36 0,566 1,346 0% 0% 
26 167909,17 197729,36 0,479 1,326 0% 0% 
27 167909,18 197729,35 0,580 1,215 0% 0% 
28 167909,18 197729,35 0,612 1,238 0% 0% 
29 167909,18 197729,35 0,642 1,150 0% 0% 
30 167909,18 197729,35 0,626 1,341 0% 0% 
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Table D-24 IWMV: Model results for Scenario 1 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp Produced 
[m3] 

Pulp Bought 
[m3] 

1 167798 179251 45813 34360 1889 280 560 712 3817 250 38578 13030 10410 5 219655,69 
2 167798 179251 45813 34360 1889 280 560 712 3817 250 38578 12900 10410 5 219525,69 
3 167867 179360 45853 34360 1875 294,67 560 712,67 3817 250 38578 12900 10410 5 219595,36 
4 167891 179632 46101 34360 1875 298,86 560 716,86 3817 250 38578 12900 10410 5 219619,27 
5 167900 179734 46194 34360 1875 300,43 560 718,43 3817 250 38578 12900 10410 5 219628,24 
6 167904 179780 46236 34360 1875 301,13 560 719,13 3817 250 38578 12900 10410 5 219632,22 
7 167906 179803 46256 34360 1875 301,48 560 719,48 3817 250 38578 12900 10410 5 219634,21 
8 167907 179815 46268 34360 1875 301,67 560 719,67 3817 250 38578 12900 10410 5 219635,30 
9 167908 179822 46274 34360 1875 301,78 560 719,78 3817 250 38578 12900 10410 5 219635,93 

10 167908 179827 46278 34360 1875 301,85 560 719,85 3817 250 38578 12900 10410 5 219636,32 
11 167909 179829 46281 34360 1875 301,89 560 719,89 3817 250 38578 12900 10410 5 219636,57 
12 167909 179831 46283 34360 1875 301,92 560 719,92 3817 250 38578 12900 10410 5 219636,74 
13 167909 179833 46284 34360 1875 301,94 560 719,94 3817 250 38578 12900 10410 5 219636,86 
14 167909 179834 46285 34360 1875 301,95 560 719,95 3817 250 38578 12900 10410 5 219636,94 
15 167909 179834 46285 34360 1875 301,96 560 719,96 3817 250 38578 12900 10410 5 219636,99 
16 167909 179835 46286 34360 1875 301,97 560 719,97 3817 250 38578 12900 10410 5 219637,04 
17 167909 179835 46286 34360 1875 301,98 560 719,98 3817 250 38578 12900 10410 5 219637,07 
18 167909 179835 46286 34360 1875 301,98 560 719,98 3817 250 38578 12900 10410 5 219637,10 
19 167909 179836 46287 34360 1875 301,98 560 719,98 3817 250 38578 12900 10410 5 219637,11 
20 167909 179836 46287 34360 1875 301,99 560 719,99 3817 250 38578 12900 10410 5 219637,13 
21 167909 179836 46287 34360 1875 301,99 560 719,99 3817 250 38578 12900 10410 5 219637,14 
22 167909 179836 46287 34360 1875 301,99 560 719,99 3817 250 38578 12900 10410 5 219637,15 
23 167909 179836 46287 34360 1875 301,99 560 719,99 3817 250 38578 12900 10410 5 219637,16 
24 167909 179836 46287 34360 1875 301,99 560 719,99 3817 250 38578 12900 10410 5 219637,16 
25 167909 179836 46287 34360 1875 301,99 560 719,99 3817 250 38578 12900 10410 5 219637,17 
26 167909 179836 46287 34360 1875 302,00 560 720,00 3817 250 38578 12900 10410 5 219637,17 
27 167909 179836 46287 34360 1875 302,00 560 720,00 3817 250 38578 12900 10410 5 219637,18 
28 167909 179836 46287 34360 1875 302,00 560 720,00 3817 250 38578 12900 10410 5 219637,18 
29 167909 179836 46287 34360 1875 302,00 560 720,00 3817 250 38578 12900 10410 5 219637,18 
30 167909 179836 46287 34360 1875 302,00 560 720,00 3817 250 38578 12900 10410 5 219637,18 
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Table D-25 IWMV: Iterations results and model statistics for Scenario 2 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 -673378 198330,59 0,452 1,213 0% 0% 
2 -673378 338528 0,424 1,135 0% 0% 
3 -675504,67 338528 0,511 1,204 0% 0% 
4 -676112,29 338528 0,499 1,162 0% 0% 
5 -676340,14 338528 0,503 1,274 0% 0% 
6 -676441,41 338528 0,479 1,287 0% 0% 
7 -676492,05 338528 0,472 1,197 0% 0% 
8 -676519,67 338528 0,440 1,243 0% 0% 
9 -676535,78 338528 0,489 1,098 0% 0% 
10 -676545,69 338528 0,472 1,268 0% 0% 
11 -676552,07 338528 0,511 1,269 0% 0% 
12 -676556,32 338528 0,502 1,157 0% 0% 
13 -676559,24 338528 0,489 1,278 0% 0% 
14 -676561,30 338528 0,454 1,118 0% 0% 
15 -676562,79 338528 0,469 1,299 0% 0% 
16 -676563,88 338528 0,511 1,073 0% 0% 
17 -676564,71 338528 0,484 1,193 0% 0% 
18 -676565,34 338528 0,515 1,149 0% 0% 
19 -676565,82 338528 0,471 1,175 0% 0% 
20 -676566,20 338528 0,459 1,183 0% 0% 
21 -676566,50 338528 0,452 1,210 0% 0% 
22 -676566,74 338528 0,479 1,294 0% 0% 
23 -676566,93 338528 0,527 1,251 0% 0% 
24 -676567,09 338528 0,494 1,196 0% 0% 
25 -676567,22 338528 0,487 1,261 0% 0% 
26 -676567,33 338528 0,464 1,184 0% 0% 
27 -676567,42 338528 0,490 1,275 0% 0% 
28 -676567,49 338528 0,441 1,310 0% 0% 
29 -676567,56 338528 0,498 1,260 0% 0% 
30 -676567,61 338528 0,524 1,251 0% 0% 
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Table D-26 IWMV: Model results for Scenario 2 

Iteration 

Economic assessments EFN 
Total slot 

consumption 
[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp 

Cost  [€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 -673378 705200 1670930 292352 0 8055 4792 10830 3817 250 38578 13030 10410 5 -621520,00 
2 -673378 705200 1670930 292352 0 8055 4792 10830 3806 250 39118 13600 10380 5 -620410,00 
3 -675505 703073 1670930 292352 0 8047,67 4792 10830 3806 250 39118 13600 10380 5 -622536,67 
4 -676112 702466 1670930 292352 0 8045,57 4792 10830 3806 250 39118 13600 10380 5 -623144,29 
5 -676340 702238 1670930 292352 0 8044,79 4792 10830 3806 250 39118 13600 10380 5 -623372,14 
6 -676441 702137 1670930 292352 0 8044,44 4792 10830 3806 250 39118 13600 10380 5 -623473,41 
7 -676492 702086 1670930 292352 0 8044,26 4792 10830 3806 250 39118 13600 10380 5 -623524,05 
8 -676520 702058 1670930 292352 0 8044,17 4792 10830 3806 250 39118 13600 10380 5 -623551,67 
9 -676536 702042 1670930 292352 0 8044,11 4792 10830 3806 250 39118 13600 10380 5 -623567,78 
10 -676546 702032 1670930 292352 0 8044,08 4792 10830 3806 250 39118 13600 10380 5 -623577,69 
11 -676552 702026 1670930 292352 0 8044,05 4792 10830 3806 250 39118 13600 10380 5 -623584,07 
12 -676556 702022 1670930 292352 0 8044,04 4792 10830 3806 250 39118 13600 10380 5 -623588,32 
13 -676559 702019 1670930 292352 0 8044,03 4792 10830 3806 250 39118 13600 10380 5 -623591,24 
14 -676561 702017 1670930 292352 0 8044,02 4792 10830 3806 250 39118 13600 10380 5 -623593,30 
15 -676563 702015 1670930 292352 0 8044,02 4792 10830 3806 250 39118 13600 10380 5 -623594,79 
16 -676564 702014 1670930 292352 0 8044,01 4792 10830 3806 250 39118 13600 10380 5 -623595,88 
17 -676565 702013 1670930 292352 0 8044,01 4792 10830 3806 250 39118 13600 10380 5 -623596,71 
18 -676565 702013 1670930 292352 0 8044,01 4792 10830 3806 250 39118 13600 10380 5 -623597,34 
19 -676566 702012 1670930 292352 0 8044,01 4792 10830 3806 250 39118 13600 10380 5 -623597,82 
20 -676566 702012 1670930 292352 0 8044,01 4792 10830 3806 250 39118 13600 10380 5 -623598,20 
21 -676566 702012 1670930 292352 0 8044,01 4792 10830 3806 250 39118 13600 10380 5 -623598,50 
22 -676567 702011 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623598,74 
23 -676567 702011 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623598,93 
24 -676567 702011 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623599,09 
25 -676567 702011 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623599,22 
26 -676567 702011 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623599,33 
27 -676567 702011 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623599,42 
28 -676567 702011 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623599,49 
29 -676568 702010 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623599,56 
30 -676568 702010 1670930 292352 0 8044,00 4792 10830 3806 250 39118 13600 10380 5 -623599,61 
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Table D-27 IWMV: Iterations results and model statistics for Scenario 4 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 113414,95 123201,99 0,468 1,420 0% 0% 
2 114662,12 122524,34 0,452 51,496 0% 0% 
3 115077,85 122524,34 0,455 48,599 0% 0% 
4 115517,21 122524,34 0,495 38,041 0% 0% 
5 114911,56 123201,99 0,432 14,491 0% 0% 
6 114970,12 123182,20 0,448 111,376 0% 0% 
7 115171,95 123080,94 0,521 180,697 0% 0,073% 
8 115026,95 123121,76 0,541 12,414 0% 0% 
9 114839,74 123201,99 0,517 3,788 0% 0% 
10 114697,26 123201,99 0,478 9,772 0% 0% 
11 114748,69 123182,20 0,519 29,651 0% 0% 
12 114845,41 123131,54 0,536 99,097 0% 0% 
13 114927,24 123080,94 0,551 180,660 0% 0,070% 
14 114997,39 123038,12 0,454 172,478 0% 0% 
15 115058,18 123001,43 0,441 36,269 0% 0% 
16 115134,72 122969,62 0,531 36,108 0% 0% 
17 115171,19 123148,80 0,459 53,053 0% 0% 
18 115099,20 123166,67 0,528 64,874 0% 0% 
19 114993,30 123201,99 0,481 9,149 0% 0% 
20 114931,95 123195,06 0,515 8,044 0% 0% 
21 114947,71 123182,20 0,482 180,579 0% 0,055% 
22 114962,04 123156,75 0,480 17,059 0% 0% 
23 115003,23 123131,54 0,418 71,697 0% 0% 
24 115040,98 123105,14 0,498 60,012 0% 0% 
25 115075,71 123080,94 0,524 180,685 0% 0,072% 
26 115146,77 123058,68 0,475 180,630 0% 0,062% 
27 115165,69 123161,64 0,552 45,894 0% 0% 
28 115052,86 123201,99 0,479 11,424 0% 0% 
29 115008,49 123197,58 0,561 15,131 0% 0% 
30 114967,09 123192,64 0,450 4,578 0% 0% 
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Table D-28 IWMV: Model results for Scenario 4 

Iteration 

Economic assessments EFN 
Total slot 

consumption 
[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 113415 113415 0 0 3795,80 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
2 114662 114662 0 0 3630,80 0 0 0 3797,8 250 0 6500 10350 5 121412,12 
3 115078 115078 0 0 3575,80 0 0 0 3797,8 250 0 6500 10350 5 121827,85 
4 115517 115517 0 0 3563,55 7,625 0 0 3797,8 250 0 6500 10350 5 122267,21 
5 114912 114912 0 0 3597,80 0 0 0 3799,3 250 0 9750 10350 5 124911,56 
6 114970 114970 0 0 3586,83 0 0 0 3798 250 0 7280 10350 5 122500,12 
7 115172 115172 0 0 3574,00 2,229 0 0 3797,8 250 0 6500 10350 5 121921,95 
8 115027 115027 0 0 3581,93 0,3 0 0 3798,7 250 0 8450 10350 5 123726,95 
9 114840 114840 0 0 3605,16 0 0 0 3799,3 250 0 9750 10350 5 124839,74 
10 114697 114697 0 0 3624,22 0 0 0 3799,3 250 0 9750 10350 5 124697,26 
11 114749 114749 0 0 3615,84 0 0 0 3798 250 0 7280 10350 5 122278,69 
12 114845 114845 0 0 3603,33 0 0 0 3797,8 250 0 6500 10350 5 121595,41 
13 114927 114927 0 0 3592,75 0 0 0 3797,8 250 0 6500 10350 5 121677,24 
14 114997 114997 0 0 3583,69 0 0 0 3797,8 250 0 6500 10350 5 121747,39 
15 115058 115058 0 0 3575,83 0 0 0 3797,8 250 0 6500 10350 5 121808,18 
16 115135 115135 0 0 3570,49 0,769 0 0 3797,8 250 0 6500 10350 5 121884,72 
17 115171 115171 0 0 3570,13 1,676 0 0 3798 250 0 7280 10350 5 122701,19 
18 115099 115099 0 0 3573,37 0,6 0 0 3798,7 250 0 8450 10350 5 123799,20 
19 114993 114993 0 0 3583,94 0 0 0 3799,3 250 0 9750 10350 5 124993,30 
20 114932 114932 0 0 3591,24 0 0 0 3798,9 250 0 9230 10350 5 124411,95 
21 114948 114948 0 0 3588,42 0 0 0 3798 250 0 7280 10350 5 122477,71 
22 114962 114962 0 0 3585,85 0 0 0 3798 250 0 7280 10350 5 122492,04 
23 115003 115003 0 0 3580,63 0 0 0 3797,8 250 0 6500 10350 5 121753,23 
24 115041 115041 0 0 3575,85 0 0 0 3797,8 250 0 6500 10350 5 121790,98 
25 115076 115076 0 0 3571,45 0 0 0 3797,8 250 0 6500 10350 5 121825,71 
26 115147 115147 0 0 3569,95 1,285 0 0 3797,8 250 0 6500 10350 5 121896,77 
27 115166 115166 0 0 3569,51 1,719 0 0 3798 250 0 7280 10350 5 122695,69 
28 115053 115053 0 0 3574,28 0 0 0 3799,3 250 0 9750 10350 5 125052,86 
29 115008 115008 0 0 3579,65 0 0 0 3798,9 250 0 9230 10350 5 124488,49 
30 114967 114967 0 0 3584,66 0 0 0 3798,9 250 0 9230 10350 5 124447,09 
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Table D-29 IWMV: Iterations results and model statistics for Scenario 5 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 470812,23 555446,50 0,924 180,972 0% 0,043% 
2 470812,23 553796,78 0,894 181,016 0% 0,045% 
3 471021,25 553796,78 0,896 180,990 0% 0,045% 
4 471092,97 553752,78 0,945 181,023 0% 0,045% 
5 471119,87 553740,21 0,960 181,080 0% 0,045% 
6 471131,82 553735,49 0,878 181,003 0% 0,045% 
7 471137,80 553733,40 0,997 181,036 0% 0,045% 
8 471141,06 553732,35 0,975 181,081 0% 0,045% 
9 471142,96 553731,78 0,853 181,004 0% 0,045% 
10 471144,13 553731,45 0,981 180,973 0% 0,045% 
11 471144,88 553731,24 0,911 181,038 0% 0,045% 
12 471145,38 553731,11 0,997 181,056 0% 0,045% 
13 471145,73 553731,02 1,636 181,433 0% 0,045% 
14 471145,97 553730,96 1,747 181,380 0% 0,045% 
15 471146,14 553730,92 1,100 183,212 0% 0,045% 
16 471146,27 553730,89 0,909 181,246 0% 0,045% 
17 471146,37 553730,87 1,280 181,232 0% 0,045% 
18 471146,45 553730,85 1,028 181,169 0% 0,045% 
19 471146,50 553730,84 1,242 181,393 0% 0,045% 
20 471146,55 553730,83 1,914 181,639 0% 0,045% 
21 471146,58 553730,82 0,954 181,246 0% 0,045% 
22 471146,61 553730,81 1,016 181,118 0% 0,045% 
23 471146,63 553730,81 1,021 181,108 0% 0,045% 
24 471146,65 553730,80 0,905 181,209 0% 0,045% 
25 471146,67 553730,80 0,929 181,146 0% 0,045% 
26 471146,68 553730,80 1,128 181,188 0% 0,045% 
27 471146,69 553730,79 1,991 181,646 0% 0,045% 
28 471146,70 553730,79 1,671 182,231 0% 0,045% 
29 471146,71 553730,79 1,655 181,837 0% 0,045% 
30 471146,71 553730,79 1,329 182,409 0% 0,045% 
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Table D-30 IWMV: Model results for Scenario 5 

Iteration 

Economic assessments EFN 
Total slot 

consumption 
[MWh] 

Economic assessments PP 

Decomposition 
solution 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generatio
n [MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-
End 

Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 470812 502786 128182 96208 5292 795 1568 1992 10703 0 108276 36040 29190 0 615128,23 
2 470812 502786 128182 96208 5292 795 1568 1992,000 10703 0 108276 35650 29190 0 614738,23 
3 471021 503113 128300 96208 5250 839 1568 1994,000 10703 0 108276 35650 29190 0 614947,25 
4 471093 503931 129046 96208 5250 851,57 1568 2006,571 10703 0 108276 35650 29190 0 615018,97 
5 471120 504237 129325 96208 5250 856,29 1568 2011,286 10703 0 108276 35650 29190 0 615045,87 
6 471132 504373 129449 96208 5250 858,38 1568 2013,381 10703 0 108276 35650 29190 0 615057,82 
7 471138 504441 129512 96208 5250 859,43 1568 2014,429 10703 0 108276 35650 29190 0 615063,80 
8 471141 504478 129545 96208 5250 860 1568 2015,000 10703 0 108276 35650 29190 0 615067,06 
9 471143 504500 129565 96208 5250 860,33 1568 2015,333 10703 0 108276 35650 29190 0 615068,96 
10 471144 504513 129577 96208 5250 860,54 1568 2015,538 10703 0 108276 35650 29190 0 615070,13 
11 471145 504522 129585 96208 5250 860,67 1568 2015,670 10703 0 108276 35650 29190 0 615070,88 
12 471145 504528 129590 96208 5250 860,76 1568 2015,758 10703 0 108276 35650 29190 0 615071,38 
13 471146 504532 129594 96208 5250 860,82 1568 2015,819 10703 0 108276 35650 29190 0 615071,73 
14 471146 504534 129596 96208 5250 860,86 1568 2015,861 10703 0 108276 35650 29190 0 615071,97 
15 471146 504536 129598 96208 5250 860,89 1568 2015,892 10703 0 108276 35650 29190 0 615072,14 
16 471146 504538 129600 96208 5250 860,91 1568 2015,915 10703 0 108276 35650 29190 0 615072,27 
17 471146 504539 129601 96208 5250 860,93 1568 2015,932 10703 0 108276 35650 29190 0 615072,37 
18 471146 504540 129601 96208 5250 860,94 1568 2015,945 10703 0 108276 35650 29190 0 615072,45 
19 471147 504541 129602 96208 5250 860,95 1568 2015,955 10703 0 108276 35650 29190 0 615072,50 
20 471147 504541 129603 96208 5250 860,96 1568 2015,963 10703 0 108276 35650 29190 0 615072,55 
21 471147 504541 129603 96208 5250 860,97 1568 2015,969 10703 0 108276 35650 29190 0 615072,58 
22 471147 504542 129603 96208 5250 860,97 1568 2015,974 10703 0 108276 35650 29190 0 615072,61 
23 471147 504542 129603 96208 5250 860,98 1568 2015,978 10703 0 108276 35650 29190 0 615072,63 
24 471147 504542 129604 96208 5250 860,98 1568 2015,981 10703 0 108276 35650 29190 0 615072,65 
25 471147 504542 129604 96208 5250 860,98 1568 2015,984 10703 0 108276 35650 29190 0 615072,67 
26 471147 504543 129604 96208 5250 860,99 1568 2015,986 10703 0 108276 35650 29190 0 615072,68 
27 471147 504543 129604 96208 5250 860,99 1568 2015,988 10703 0 108276 35650 29190 0 615072,69 
28 471147 504543 129604 96208 5250 860,99 1568 2015,990 10703 0 108276 35650 29190 0 615072,70 
29 471147 504543 129604 96208 5250 860,99 1568 2015,991 10703 0 108276 35650 29190 0 615072,71 
30 471147 504543 129604 96208 5250 860,99 1568 2015,992 10703 0 108276 35650 29190 0 615072,71 
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Table D-31 IOWMV and IHCD: Iterations results and model statistics for Scenario 1 

Model 
type 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

IOWMV 
1 167797,69 198330,59 0,480 1,150 0% 0% 

2..30 167909,20 197751,35 0,518 1,052 0% 0% 

IHCD 
1 167797,69 198330,59 0,540 1,242 0% 0% 

2..30 167909,2 197751,35 0,487 1,283 0% 0% 

 

Table D-32 IOWMV and IHCD: Model results for Scenario 1 

Model type Iteration 

Economic assessments EFN 
Total slot 

consumption 
[MWh] 

Economic assessments PP 

Upper bound Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase [€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold Electricity 
[MWh] 

External Pulp 
Cost  [€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

IOWMV & 
IHCD 

1 167798 179251 45813 34360 1889 280 560 712 3817 250 38578 13030 10410 5 219655,69 

2..30 167909 179837 46287 34360 1875 302 560 720 3817 250 38578 12900 10410 5 219637,20 
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Table D-33 IOWMV and IHCD: Iterations results and model statistics for Scenario 2 

Model 
type 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

IOWMV 
1 -673378 198330,59 0,458 1,361 0% 0% 

2..30 -676568 338528 0,446 1,294 0% 0% 

IHCD 
1 -673378 198330,59 0,429 1,445 0% 0% 

2..30 -676568 338528 0,480 1,125 0% 0% 

 

Table D-34 IOWMV: Model results for Scenario 2 

Model type Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound 
Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase [€] 

Sales 
Revenue [€] 

Generation 
Cost [€] 

Day-
ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External Pulp 
Cost  [€] 

Deviation 
penalties [€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

IOWMV & 
IHCD 

1 -673378 705200 1670930 292352 0 8055 4792 10830 3817 250 38578 13030 10410 5 -621520 

2..30 -676568 702010 1670930 292352 0 8044 4792 10830 3806 250 39118 13600 10380 5 -623600 
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Table D-35 IOWMV: Iterations results and model statistics for Scenario 4 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 113414,95 123201,99 0,439 1,319 0% 0% 
2 116971,90 122524,34 0,536 44,153 0% 0% 
3 113414,95 123201,99 0,431 1,891 0% 0% 
4 113414,95 123201,99 0,527 2,837 0% 0% 
5 113414,95 123201,99 0,508 14,687 0% 0% 
6 115900,51 123182,20 0,542 109,809 0% 0% 
7 114837,73 123153,57 0,463 12,202 0% 0% 
8 113414,95 123201,99 0,510 3,187 0% 0% 
9 113414,95 123201,99 0,515 3,830 0% 0% 
10 113414,95 123201,99 0,434 10,498 0% 0% 
11 115900,51 123182,20 0,467 29,543 0% 0% 
12 114837,73 123173,81 0,532 11,117 0% 0% 
13 113414,95 123201,99 0,468 3,728 0% 0% 
14 113414,95 123201,99 0,437 12,769 0% 0% 
15 113766,34 123197,58 0,529 16,762 0% 0% 
16 115900,51 123182,20 0,522 39,495 0% 0% 
17 113766,34 123179,69 0,507 7,076 0% 0% 
18 114837,73 123166,67 0,501 66,710 0% 0% 
19 113414,95 123201,99 0,456 9,880 0% 0% 
20 113766,34 123195,06 0,472 8,129 0% 0% 
21 115900,51 123182,20 0,564 180,663 0% 0,081% 
22 113766,34 123181,67 0,548 37,367 0% 0% 
23 114837,73 123173,81 0,513 42,423 0% 0% 
24 113766,34 123199,65 0,485 4,753 0% 0% 
25 113766,34 123193,60 0,470 4,602 0% 0% 
26 115900,51 123182,20 0,517 180,498 0% 0% 
27 113766,34 123182,90 0,454 36,788 0% 0% 
28 113766,34 123178,14 0,474 22,192 0% 0% 
29 114837,73 123169,47 0,483 51,747 0% 0% 
30 113766,34 123192,64 0,487 4,561 0% 0% 
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Table D-36 IOWMV: Model results for Scenario 4 

Iteration 

Economic assessments EFN 
Total slot 

consumption 
[MWh] 

Economic assessments PP 

Upper 
bound 

Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase [€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
2 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 
3 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
4 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
5 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
6 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 
7 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 
8 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
9 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
10 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
11 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 
12 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 
13 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
14 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
15 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
16 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 
17 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
18 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 
19 113415 113415 0 0 3795,8 0 0 0 3799,3 250 0 9750 10350 5 123414,95 
20 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
21 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 
22 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
23 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 
24 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
25 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
26 115901 115901 0 0 3574 21 0 0 3798 250 0 7280 10350 5 123430,51 
27 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
28 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
29 114838 114838 0 0 3691,8 14 0 0 3798,7 250 0 8450 10350 5 123537,73 
30 113766 113766 0 0 3730 0 0 0 3798,9 250 0 9230 10350 5 123246,34 
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Table D-37 IOWMV and IHCD: Iterations results and model statistics for Scenario 5 

Model 
type 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

IOWMV 
1 470812,23 555446,50 0,989 180,974 0% 0,043% 

2..30 471146,76 553796,78 0,993 181,103 0% 0,045% 

IHCD 
1 470812,23 555446,50 0,810 180,859 0% 0,043% 

2..30 471146,76 553796,78 0,963 180,933 0% 0,045% 

 

Table D-38 IOWMV and IHCD: Model results for Scenario 5 

Model type Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase 

[€] 

Sales 
Revenue [€] 

Generation 
Cost [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External Pulp 
Cost  [€] 

Deviation 
penalties [€] 

Start-End Cost  
[€] 

Pulp 
Produced 

[m3] 

Pulp Bought 
[m3] 

IOWMV & 
IHCD 

1 470812 502786 128182 96208 5292 795 1568 1992 10703 0 108276 36040 29190 0 615128,23 

2..30 471147 504543 129605 96208 5250 861 1568 2016 10703 0 108276 35650 29190 0 615072,76 
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Table D-39 IHCD: Iterations results and model statistics for Scenario 4 

Iteration 

MIP CPU Gap 

Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   Benders' sub-problem Dantzig-Wolfe sub-problem   

flow network scheduler flow network scheduler flow network scheduler 

1 113414,95 123201,99 0,472 1,400 0% 0% 
2 116971,90 122524,34 0,538 44,352 0% 0% 
3 113414,95 123201,99 0,466 1,530 0% 0% 
4 116971,90 122524,34 0,538 49,369 0% 0% 
5 113414,95 123201,99 0,506 1,663 0% 0% 
6 116971,90 122524,34 0,528 47,483 0% 0% 
7 113414,95 123201,99 0,509 1,781 0% 0% 
8 116971,90 122524,34 0,532 44,707 0% 0% 
9 113414,95 123201,99 0,445 1,533 0% 0% 
10 116971,90 122524,34 0,400 44,625 0% 0% 
11 113414,95 123201,99 0,328 1,447 0% 0% 
12 116971,90 122524,34 0,486 45,314 0% 0% 
13 113414,95 123201,99 0,451 1,604 0% 0% 
14 116971,90 122524,34 0,528 44,237 0% 0% 
15 113414,95 123201,99 0,456 1,524 0% 0% 
16 116971,90 122524,34 0,449 45,241 0% 0% 
17 113414,95 123201,99 0,465 1,572 0% 0% 
18 116971,90 122524,34 0,497 44,717 0% 0% 
19 113414,95 123201,99 0,431 1,654 0% 0% 
20 116971,90 122524,34 0,440 47,963 0% 0% 
21 113414,95 123201,99 0,422 1,755 0% 0% 
22 116971,90 122524,34 0,439 50,778 0% 0% 
23 113414,95 123201,99 0,436 1,554 0% 0% 
24 116971,90 122524,34 0,547 44,224 0% 0% 
25 113414,95 123201,99 0,434 1,643 0% 0% 
26 116971,90 122524,34 0,506 43,941 0% 0% 
27 113414,95 123201,99 0,448 1,628 0% 0% 
28 116971,90 122524,34 0,552 44,945 0% 0% 
29 113414,95 123201,99 0,482 1,617 0% 0% 
30 116971,90 122524,34 0,547 46,076 0% 0% 
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Table D-40 IHCD: Model results for Scenario 4 

Iteration 

Economic assessments EFN 

Total slot 
consumption 

[MWh] 

Economic assessments PP 

Upper bound 
Costs Quantities Costs Quantities 

Net cost 
[€] 

Electricity 
purchase [€] 

Sales 
Revenue 

[€] 

Generation 
Cost [€] 

Day-ahead 
market [MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

Sold 
Electricity 

[MWh] 

External 
Pulp Cost  

[€] 

Deviation 
penalties 

[€] 

Start-End 
Cost  [€] 

Pulp 
Produced 

[m3] 

Pulp 
Bought 
[m3] 

1 113415 113415 0 0 3795,8  0 0 3799,3 250 0 9750 10350 5 123414,95 
2 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 
3 113415 113415 0 0 3795,8  0 0 3799,3 250 0 9750 10350 5 123414,95 
4 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
29 113415 113415 0 0 3795,8  0 0 3799,3 250 0 9750 10350 5 123414,95 
30 116972 116972 0 0 3535,8 35 0 0 3797,8 250 0 6500 10350 5 123721,90 
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