453 research outputs found

    A dynamical adaptive tensor method for the Vlasov-Poisson system

    Get PDF
    A numerical method is proposed to solve the full-Eulerian time-dependent Vlasov-Poisson system in high dimension. The algorithm relies on the construction of a tensor decomposition of the solution whose rank is adapted at each time step. This decomposition is obtained through the use of an efficient modified Progressive Generalized Decomposition (PGD) method, whose convergence is proved. We suggest in addition a symplectic time-discretization splitting scheme that preserves the Hamiltonian properties of the system. This scheme is naturally obtained by considering the tensor structure of the approximation. The efficiency of our approach is illustrated through time-dependent 2D-2D numerical examples

    A "metric" semi-Lagrangian Vlasov-Poisson solver

    Full text link
    We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position Q(P)Q(P) of any test particle PP, by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time tt and position PP by proper interpolation of initial conditions, following Liouville theorem. When distorsion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four or six-dimensional phase-space. It can also be trivially generalised to plasmas.Comment: 32 pages, 14 figures, accepted for publication in Journal of Plasma Physics, Special issue: The Vlasov equation, from space to laboratory plasma

    WENO schemes applied to the quasi-relativistic Vlasov--Maxwell model for laser-plasma interaction

    Get PDF
    In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov--Maxwell (QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We propose several non-oscillatory methods based on either Runge--Kutta (explicit) or Time-Splitting (implicit) time discretizations. We then show preliminary numerical experiments

    Simulations of Kinetic Electrostatic Electron Nonlinear (KEEN) Waves with Variable Velocity Resolution Grids and High-Order Time-Splitting

    Get PDF
    KEEN waves are nonlinear, non-stationary, self-organized asymptotic states in Vlasov plasmas outside the scope or purview of linear theory constructs such as electron plasma waves or ion acoustic waves. Nonlinear stationary mode theories such as those leading to BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force used to drive them. Smaller amplitude drives create highly localized structures attempting to coalesce into KEEN waves. These cases have much more chaotic and intricate time histories than strongly driven ones. The narrow range in which one must maintain adequate velocity resolution in the weakly driven cases challenges xed grid numerical schemes. What is missing there is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform cubic splines in velocity that tackles this problem head on. An additional feature of our approach is the use of a new high-order time-splitting scheme which allows much longer simulations per computational e ort. This is needed for low amplitude runs which take a long time to set up KEEN waves, if they are able to do so at all. The new code's performance is compared to uniform grid simulations and the advantages quanti ed. The birth pains associated with KEEN waves which are weakly driven is captured in these simulations. These techniques allow the e cient simulation of KEEN waves in multiple dimensions which will be tackled next as well as generalizations to Vlasov-Maxwell codes which are essential to understanding the impact of KEEN waves in practice

    ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

    Full text link
    Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincar\'e invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a "warm" dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.Comment: Code and illustration movies available at: http://www.vlasix.org/index.php?n=Main.ColDICE - Article submitted to Journal of Computational Physic
    corecore