12,532 research outputs found

    A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    Get PDF
    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex states: an imaginary time propagation method and a Sobolev gradient descent method. We first address the basic issue of the choice of the variable used to compute new metrics for the mesh adaptivity and show that simultaneously refinement using the real and imaginary part of the solution is successful. Mesh refinement using only the modulus of the solution as adaptivity variable fails for complicated test cases. Then we suggest an optimized algorithm for adapting the mesh during the evolution of the solution towards the equilibrium state. Considerable computational time saving is obtained compared to uniform mesh computations. The new method is applied to compute difficult cases relevant for physical experiments (large nonlinear interaction constant and high rotation rates).Comment: to appear in J. Computational Physic

    Computation of Ground States of the Gross-Pitaevskii Functional via Riemannian Optimization

    Full text link
    In this paper we combine concepts from Riemannian Optimization and the theory of Sobolev gradients to derive a new conjugate gradient method for direct minimization of the Gross-Pitaevskii energy functional with rotation. The conservation of the number of particles constrains the minimizers to lie on a manifold corresponding to the unit L2L^2 norm. The idea developed here is to transform the original constrained optimization problem to an unconstrained problem on this (spherical) Riemannian manifold, so that fast minimization algorithms can be applied as alternatives to more standard constrained formulations. First, we obtain Sobolev gradients using an equivalent definition of an H1H^1 inner product which takes into account rotation. Then, the Riemannian gradient (RG) steepest descent method is derived based on projected gradients and retraction of an intermediate solution back to the constraint manifold. Finally, we use the concept of the Riemannian vector transport to propose a Riemannian conjugate gradient (RCG) method for this problem. It is derived at the continuous level based on the "optimize-then-discretize" paradigm instead of the usual "discretize-then-optimize" approach, as this ensures robustness of the method when adaptive mesh refinement is performed in computations. We evaluate various design choices inherent in the formulation of the method and conclude with recommendations concerning selection of the best options. Numerical tests demonstrate that the proposed RCG method outperforms the simple gradient descent (RG) method in terms of rate of convergence. While on simple problems a Newton-type method implemented in the {\tt Ipopt} library exhibits a faster convergence than the (RCG) approach, the two methods perform similarly on more complex problems requiring the use of mesh adaptation. At the same time the (RCG) approach has far fewer tunable parameters.Comment: 28 pages, 13 figure

    An extension of the projected gradient method to a Banach space setting with application in structural topology optimization

    Get PDF
    For the minimization of a nonlinear cost functional jj under convex constraints the relaxed projected gradient process φk+1=φk+αk(PH(φk−λk∇Hj(φk))−φk)\varphi_{k+1} = \varphi_{k} + \alpha_k(P_H(\varphi_{k}-\lambda_k \nabla_H j(\varphi_{k}))-\varphi_{k}) is a well known method. The analysis is classically performed in a Hilbert space HH. We generalize this method to functionals jj which are differentiable in a Banach space. Thus it is possible to perform e.g. an L2L^2 gradient method if jj is only differentiable in L∞L^\infty. We show global convergence using Armijo backtracking in αk\alpha_k and allow the inner product and the scaling λk\lambda_k to change in every iteration. As application we present a structural topology optimization problem based on a phase field model, where the reduced cost functional jj is differentiable in H1∩L∞H^1\cap L^\infty. The presented numerical results using the H1H^1 inner product and a pointwise chosen metric including second order information show the expected mesh independency in the iteration numbers. The latter yields an additional, drastic decrease in iteration numbers as well as in computation time. Moreover we present numerical results using a BFGS update of the H1H^1 inner product for further optimization problems based on phase field models

    Inexact Direct-Search Methods for Bilevel Optimization Problems

    Full text link
    In this work, we introduce new direct search schemes for the solution of bilevel optimization (BO) problems. Our methods rely on a fixed accuracy black box oracle for the lower-level problem, and deal both with smooth and potentially nonsmooth true objectives. We thus analyze for the first time in the literature direct search schemes in these settings, giving convergence guarantees to approximate stationary points, as well as complexity bounds in the smooth case. We also propose the first adaptation of mesh adaptive direct search schemes for BO. Some preliminary numerical results on a standard set of bilevel optimization problems show the effectiveness of our new approaches

    High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Full text link
    We present a new family of very high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and Discontinuous Galerkin (DG) schemes for the solution of nonlinear hyperbolic PDE systems on moving 2D Voronoi meshes that are regenerated at each time step and which explicitly allow topology changes in time. The Voronoi tessellations are obtained from a set of generator points that move with the local fluid velocity. We employ an AREPO-type approach, which rapidly rebuilds a new high quality mesh rearranging the element shapes and neighbors in order to guarantee a robust mesh evolution even for vortex flows and very long simulation times. The old and new Voronoi elements associated to the same generator are connected to construct closed space--time control volumes, whose bottom and top faces may be polygons with a different number of sides. We also incorporate degenerate space--time sliver elements, needed to fill the space--time holes that arise because of topology changes. The final ALE FV-DG scheme is obtained by a redesign of the fully discrete direct ALE schemes of Boscheri and Dumbser, extended here to moving Voronoi meshes and space--time sliver elements. Our new numerical scheme is based on the integration over arbitrary shaped closed space--time control volumes combined with a fully-discrete space--time conservation formulation of the governing PDE system. In this way the discrete solution is conservative and satisfies the GCL by construction. Numerical convergence studies as well as a large set of benchmarks for hydrodynamics and magnetohydrodynamics (MHD) demonstrate the accuracy and robustness of the proposed method. Our numerical results clearly show that the new combination of very high order schemes with regenerated meshes with topology changes lead to substantial improvements compared to direct ALE methods on conforming meshes
    • …
    corecore