1,429 research outputs found

    Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws

    Get PDF
    In this paper we analyze the large time asymptotic behavior of the discrete solutions of numerical approximation schemes for scalar hyperbolic conservation laws. We consider three monotone conservative schemes that are consistent with the one-sided Lipschitz condition (OSLC): Lax-Friedrichs, Engquist-Osher and Godunov. We mainly focus on the inviscid Burgers equation, for which we know that the large time behavior is of self-similar nature, described by a two-parameter family of N-waves. We prove that, at the numerical level, the large time dynamics depends on the amount of numerical viscosity introduced by the scheme: while Engquist-Osher and Godunov yield the same N-wave asymptotic behavior, the Lax-Friedrichs scheme leads to viscous self-similar profiles, corresponding to the asymptotic behavior of the solutions of the continuous viscous Burgers equation. The same problem is analyzed in the context of self-similar variables that lead to a better numerical performance but to the same dichotomy on the asymptotic behavior: N-waves versus viscous ones. We also give some hints to extend the results to more general fluxes. Some numerical experiments illustrating the accuracy of the results of the paper are also presented.Comment: Error corrected in main theorem in v3. Obtained results do not change in essence. Minor typos corrected in v

    On the upstream mobility scheme for two-phase flow in porous media

    Get PDF
    When neglecting capillarity, two-phase incompressible flow in porous media is modelled as a scalar nonlinear hyperbolic conservation law. A change in the rock type results in a change of the flux function. Discretizing in one-dimensional with a finite volume method, we investigate two numerical fluxes, an extension of the Godunov flux and the upstream mobility flux, the latter being widely used in hydrogeology and petroleum engineering. Then, in the case of a changing rock type, one can give examples when the upstream mobility flux does not give the right answer.Comment: A preprint to be published in Computational Geoscience

    A moving mesh method for one-dimensional hyperbolic conservation laws

    Get PDF
    We develop an adaptive method for solving one-dimensional systems of hyperbolic conservation laws that employs a high resolution Godunov-type scheme for the physical equations, in conjunction with a moving mesh PDE governing the motion of the spatial grid points. Many other moving mesh methods developed to solve hyperbolic problems use a fully implicit discretization for the coupled solution-mesh equations, and so suffer from a significant degree of numerical stiffness. We employ a semi-implicit approach that couples the moving mesh equation to an efficient, explicit solver for the physical PDE, with the resulting scheme behaving in practice as a two-step predictor-corrector method. In comparison with computations on a fixed, uniform mesh, our method exhibits more accurate resolution of discontinuities for a similar level of computational work

    The discrete one-sided Lipschitz condition for convex scalar conservation laws

    Get PDF
    Physical solutions to convex scalar conservation laws satisfy a one-sided Lipschitz condition (OSLC) that enforces both the entropy condition and their variation boundedness. Consistency with this condition is therefore desirable for a numerical scheme and was proved for both the Godunov and the Lax-Friedrichs scheme--also, in a weakened version, for the Roe scheme, all of them being only first order accurate. A new, fully second order scheme is introduced here, which is consistent with the OSLC. The modified equation is considered and shows interesting features. Another second order scheme is then considered and numerical results are discussed

    An Unsplit, Cell-Centered Godunov Method for Ideal MHD

    Full text link
    We present a second-order Godunov algorithm for multidimensional, ideal MHD. Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys. vol. 87, 1990), with all of the primary dependent variables centered at the same location. To properly represent the divergence-free condition of the magnetic fields, we apply a discrete projection to the intermediate values of the field at cell faces, and apply a filter to the primary dependent variables at the end of each time step. We test the method against a suite of linear and nonlinear tests to ascertain accuracy and stability of the scheme under a variety of conditions. The test suite includes rotated planar linear waves, MHD shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For all of these cases, we observe that the algorithm is second-order accurate for smooth solutions, converges to the correct weak solution for problems involving shocks, and exhibits no evidence of instability or loss of accuracy due to the possible presence of non-solenoidal fields.Comment: 37 Pages, 9 Figures, submitted to Journal of Computational Physic

    Local characteristic algorithms for relativistic hydrodynamics

    Get PDF
    Numerical schemes for the general relativistic hydrodynamic equations are discussed. The use of conservative algorithms based upon the characteristic structure of those equations, developed during the last decade building on ideas first applied in Newtonian hydrodynamics, provides a robust methodology to obtain stable and accurate solutions even in the presence of discontinuities. The knowledge of the wave structure of the above system is essential in the construction of the so-called linearized Riemann solvers, a class of numerical schemes specifically designed to solve nonlinear hyperbolic systems of conservation laws. In the last part of the review some astrophysical applications of such schemes, using the coupled system of the (characteristic) Einstein and hydrodynamic equations, are also briefly presented.Comment: 20 pages, 4 figures, To appear in the proceedings of the workshop "The conformal structure of space-time", J. Frauendiener, H. Friedrich, eds, Springer Lecture Notes in Physic
    corecore