7,567 research outputs found

    Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems

    Get PDF
    This work is concerned with the convergence of Gaussian process regression. A particular focus is on hierarchical Gaussian process regression, where hyper-parameters appearing in the mean and covariance structure of the Gaussian process emulator are a-priori unknown, and are learnt from the data, along with the posterior mean and covariance. We work in the framework of empirical Bayes, where a point estimate of the hyper-parameters is computed, using the data, and then used within the standard Gaussian process prior to posterior update. We provide a convergence analysis that (i) holds for any continuous function ff to be emulated; and (ii) shows that convergence of Gaussian process regression is unaffected by the additional learning of hyper-parameters from data, and is guaranteed in a wide range of scenarios. As the primary motivation for the work is the use of Gaussian process regression to approximate the data likelihood in Bayesian inverse problems, we provide a bound on the error introduced in the Bayesian posterior distribution in this context

    Coordinate Transformation and Polynomial Chaos for the Bayesian Inference of a Gaussian Process with Parametrized Prior Covariance Function

    Full text link
    This paper addresses model dimensionality reduction for Bayesian inference based on prior Gaussian fields with uncertainty in the covariance function hyper-parameters. The dimensionality reduction is traditionally achieved using the Karhunen-\Loeve expansion of a prior Gaussian process assuming covariance function with fixed hyper-parameters, despite the fact that these are uncertain in nature. The posterior distribution of the Karhunen-Lo\`{e}ve coordinates is then inferred using available observations. The resulting inferred field is therefore dependent on the assumed hyper-parameters. Here, we seek to efficiently estimate both the field and covariance hyper-parameters using Bayesian inference. To this end, a generalized Karhunen-Lo\`{e}ve expansion is derived using a coordinate transformation to account for the dependence with respect to the covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian inference using similar coordinate transformations, enabling us to avoid expanding explicitly the solution dependence on the uncertain hyper-parameters. We demonstrate the feasibility of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data. The inferred profiles were found closer to the true profiles when including the hyper-parameters' uncertainty in the inference formulation.Comment: 34 pages, 17 figure

    A Hierarchical Bayesian Model for Frame Representation

    Get PDF
    In many signal processing problems, it may be fruitful to represent the signal under study in a frame. If a probabilistic approach is adopted, it becomes then necessary to estimate the hyper-parameters characterizing the probability distribution of the frame coefficients. This problem is difficult since in general the frame synthesis operator is not bijective. Consequently, the frame coefficients are not directly observable. This paper introduces a hierarchical Bayesian model for frame representation. The posterior distribution of the frame coefficients and model hyper-parameters is derived. Hybrid Markov Chain Monte Carlo algorithms are subsequently proposed to sample from this posterior distribution. The generated samples are then exploited to estimate the hyper-parameters and the frame coefficients of the target signal. Validation experiments show that the proposed algorithms provide an accurate estimation of the frame coefficients and hyper-parameters. Application to practical problems of image denoising show the impact of the resulting Bayesian estimation on the recovered signal quality

    Probabilistic Numerics and Uncertainty in Computations

    Full text link
    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data has led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimisers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.Comment: Author Generated Postprint. 17 pages, 4 Figures, 1 Tabl
    corecore