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Convergence of Gaussian Process Regression with Estimated

Hyper-parameters and Applications in Bayesian Inverse Problems

Aretha L. Teckentrup1

1 School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh, EH9
3FD, UK. a.teckentrup@ed.ac.uk

Abstract

This work is concerned with the convergence of Gaussian process regression. A particular
focus is on hierarchical Gaussian process regression, where hyper-parameters appearing in the
mean and covariance structure of the Gaussian process emulator are a-priori unknown, and are
learnt from the data, along with the posterior mean and covariance. We work in the framework
of empirical Bayes, where a point estimate of the hyper-parameters is computed, using the data,
and then used within the standard Gaussian process prior to posterior update. We provide a
convergence analysis that (i) holds for a given, deterministic function f to be emulated; and (ii)
shows that convergence of Gaussian process regression is unaffected by the additional learning
of hyper-parameters from data, and is guaranteed in a wide range of scenarios. As the primary
motivation for the work is the use of Gaussian process regression to approximate the data
likelihood in Bayesian inverse problems, we provide a bound on the error introduced in the
Bayesian posterior distribution in this context.

Keywords: inverse problem, Bayesian inference, surrogate model, Gaussian process regression,
posterior consistency, hierarchical, empirical Bayes’

AMS 2020 subject classifications: 62G08, 62J07, 65D15, 65D40, 65J22

1 Introduction

Mathematical modelling and simulation are indispensable tools frequently used to inform decisions
and assess risk. In practice, the parameters appearing in the models are often unknown, and have
to be inferred from indirect observations. This leads to an inverse problem, where one infers the
parameters of the model given incomplete, noisy observations of the model outputs. Adopting a
Bayesian approach [19, 50], we incorporate our prior knowledge of the parameters into a probability
distribution, referred to as the prior distribution, and obtain a more accurate representation of the
parameters in the posterior distribution, which results from conditioning the prior distribution on
the observations.

The goal of simulations is typically to (i) sample from the posterior distribution, using meth-
ods such as Markov chain Monte Carlo (MCMC), and/or (ii) compute a point estimate of the
parameters, such as the most likely value under the posterior distribution (known as the maximum
a-posteriori (MAP) estimate). Both of these tasks quickly become computationally infeasible when
the mathematical model involved is complex. In many applications, for example when the forward
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model is given by a partial differential equation, computing one instance of the forward model
is computationally very expensive, and the sheer number of model evaluations required for the
sampling and/or optimisation is prohibitively large.

This drawback of fully Bayesian inference for complex models was recognised several decades
ago in the statistics literature, and resulted in key papers which had a profound influence on
methodology [41, 21, 35]. These papers advocated the use of a Gaussian process surrogate model
(also called emulator) to approximate the solution of the governing equations, and in particular the
data likelihood, at a much lower computational cost.

The focus of this work is on the convergence analysis of Gaussian process surrogate models,
in the case where the hyper-parameters in the distribution of the Gaussian process are a-priori
unknown and inferred as part of the construction of the surrogate. This situation is of significant
importance and interest, for, amongst others, the following reasons. Firstly, by correctly tuning
the hyper-parameters, we will obtain a Gaussian process surrogate model that mimics closely the
behaviour of the function we are approximating, resulting in a smaller error in the approximation.
Secondly, the variance of the Gaussian process surrogate model is often used to represent the error
in the approximation. However, for this interpretation to make sense, the hyper-parameters have
to be chosen correctly. For example, the variance of the Gaussian process surrogate model can
artificially be driven to zero by letting the marginal variance of the covariance kernel go to zero,
but the error does not vanish in reality.

We adopt an empirical Bayes approach, also known as a plug-in approach, where we compute
an estimate of the hyper-parameters, and plug this into the predictive equations for a Gaussian
process surrogate model with known hyper-parameters. We present a convergence analysis of
these hierarchical Gaussian process surrogate models, which shows that convergence of the mean
and variance of the Gaussian process emulator is guaranteed under very mild assumptions on
the estimated hyper-parameters. In particular, the convergence rates of the hierarchical Gaussian
process emulator are the same as the convergence rates obtained for Gaussian process emulators
with fixed, known values of the hyper-parameters, if the estimated hyper-parameters converge to
the known values.

As particular examples of covariance kernels used to construct the emulators, we consider
Matérn kernels and separable (or multiplicative/tensor-product) Matérn kernels. As we will see in
section 3, the type of covariance kernel one should employ depends on the structure and smooth-
ness of the function being emulated. The use of Matérn kernels corresponds to assuming a certain
Sobolev smoothness, whereas the use of separable Matérn kernels assumes a tensor-product Sobolev
structure (also known as mixed dominating smoothness).

The question of how the estimation of hyper-parameters influences the error in Gaussian process
emulators is not new, and has been dealt with in the spatial statistics literature [47, 48, 37, 13, 44,
52, 8]. However, these results are of a different nature to our new results presented in section 3,
and to the type of error bounds needed in section 5 to justify the use of Gaussian process emulators
in Bayesian inverse problems (see also [49]). In particular, our results (i) give bounds for a fixed,
deterministic function being emulated, rather than averaging over a certain distribution of functions,
and (ii) do not require the hyper-parameters to be identifiable or the estimated hyper-parameters
to converge.

A further distinction to previous studies, is that we do not require a notion of ”true” values
of the hyper-parameters. The customary (and often necessary) definition in spatial statistics (cf
[47, 48, 37, 13]) is to choose the true parameter values such that the function being emulated
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is a sample of the corresponding Gaussian process. In our analysis, we do not require any such
assumption on the function being emulated. True parameter values in our context would simply
represent a good choice of hyper-parameters, and can be defined in any way that the user finds
suitable (including the customary definition above). Likewise, the estimated hyper-parameters
can be defined in many suitable ways, e.g through maximum likelihood or maximum a-posteriori
estimation (cf [17]) or cross-validation (cf [53]). Our results are independent of how the hyper-
parameters are estimated.

1.1 Our Contributions

In this paper, we make the following contributions to the analysis of Gaussian process regression:

1. We provide a convergence analysis of Gaussian process regression with estimated hyper-
parameters, which shows convergence of the emulators to the true function as the number of
design points tends to infinity.

2. We justify the use of hierarchical Gaussian process emulators to approximate the data likeli-
hood in Bayesian inverse problems, by bounding the error introduced in the posterior distri-
bution. Previous results, well known in the spatial statistics literature, are not sufficient for
this purpose.

1.2 Paper Structure

The paper is organised as follows. Section 2 introduces hierarchical Gaussian process regression,
and summarises relevant results from the spatial statistics literature. Section 3 analyses the error
in hierarchical Gaussian process regression in a wide range of scenarios. We set up the Bayesian
inverse problem of interest in section 4, whereas Section 5 then considers the use of hierarchi-
cal Gaussian process emulators to approximate the posterior distribution in the Bayesian inverse
problem. Section 6 provides a summary and discussion of the main results.

2 Hierarchical Gaussian Process Regression

We want to use Gaussian process regression (also known as Gaussian process emulation or kriging)
to derive a computationally cheaper approximation to a given function f : U → R, where U ⊆ Rdu
is compact with Lipschitz boundary. We focus on the case where the hyper-parameters defining
the Gaussian process emulator are unknown a-priori, and are inferred as part of the construction
of the emulator. We denote these hyper-parameters by θ, and treat them using an empirical Bayes
approach.

2.1 Set-up

Let f : U → R be an arbitrary function. To derive the Gaussian process emulator of f , we use a
Bayesian procedure and assign a Gaussian process prior distribution to f :

f0|θ ∼ GP(m(θ; ·), k(θ; ·, ·)). (2.1)

To avoid confusion between the true function f and its prior distribution, we have added the
subscript zero in the above prior. Here, θ ∈ Rθ ⊆ Rdθ are now hyper-parameters defining the mean
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function m(θ; ·) : U → R and the two-point covariance function k(θ; ·, ·) : U × U → R, assumed to
be positive-definite for all θ ∈ S, for any compact subset S ⊆ Rθ. Particular examples of covariance
kernels k(θ) are the Matérn and separable Matérn families discussed in sections 2.2 and 2.3. For
the mean function m(θ), we can for example use polynomials, in which case the hyper-parameters
are typically the unknown polynomial coefficients. We will write θ = {θmean, θcov} when we want to
explicitly distinguish between the hyper-parameters appearing in the mean and covariance function,
respectively.

We further put a prior distribution P(θ) on θ, with Lebesgue density p(θ). The joint prior
distribution on (f, θ) is then given by

P(f0, θ) = P(f0|θ) P(θ).

Then, given data in the form of a set of distinct design points DN := {un}Nn=1 ⊆ U , together
with corresponding function values

f(DN ) := [f(u1), . . . , f(uN )] ∈ RN ,

we condition the prior distribution P(f0, θ) on the observed data f(DN ) to obtain the posterior
distribution

P(f0, θ|f(DN )) = P(f0|θ, f(DN )) P(θ|f(DN )).

The distribution P(f0|θ, f(DN )) is again a Gaussian process, with explicitly known mean function

mf
N (θ; ·) and covariance kernel kN (θ; ·, ·):

mf
N (θ;u) = m(θ;u) + k(θ;u,DN )TK(θ;DN )−1(f(DN )−m(θ;DN )), (2.2)

kN (θ;u, u′) = k(θ;u, u′)− k(θ;u,DN )TK(θ;DN )−1k(θ;u′, DN ), (2.3)

where k(θ;u,DN ) = [k(θ;u, u1), . . . , k(θ;u, uN )] ∈ RN , K(θ;DN ) ∈ RN×N is the matrix with ijth

entry equal to k(θ;ui, uj) and m(θ;DN ) := [m(θ;u1), . . . ,m(θ;uN )] ∈ RN . These are the well-
known formulae for Gaussian process emulation [38], here adopting notation that will enable us to
make use of the analysis of such emulators in [49]. When we wish to make explicit the dependence

on the prior mean m, we will denote the predictive mean in (2.2) by mf,m
N (θ).

The marginal distribution

P(f0|f(DN )) =

∫
θ
P(f0, θ|f(DN )) dθ =

∫
θ
P(f0|θ, f(DN )) P(θ|f(DN )) dθ

is typically not available in closed form, since the integrals involved are intractable. In practice one
therefore often uses a plug-in approach, also known as empirical Bayes. This consists of calculating
an estimate θ̂N of θ using the data f(DN ), and then approximating

P(f0|f(DN )) ≈ P(f0|θ̂N , f(DN )) = GP(mf
N (θ̂N ; ·), kN (θ̂N ; ·, ·)).

This corresponds to approximating the distribution P(θ|f(DN )) by a Dirac measure at θ = θ̂N . For
the remainder of this work, we will use

fN (θ̂N ) ∼ GP(mf
N (θ̂N ; ·), kN (θ̂N ; ·, ·)) (2.4)
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as a Gaussian process emulator of f . The process in (2.4) is also referred to as the predictive

process, and we shall refer to mf
N (θ̂N ; ·) and kN (θ̂N ; ·, ·) as the predictive mean and the predictive

covariance, respectively.
In this work, we will focus on the convergence of the emulator fN (θ̂N ) to the true function f ,

and how this is affected by the learning of the hyper-parameters θ. Computing a good estimate θ̂N
of the hyper-parameters θ from the data f(DN ) is an important and difficult question in practice.
However, our results are independent of how this estimate is computed, and our results are also
independent of whether the hyper-parameters are identifiable.

Following [57], the random field model g ∼ GP(m(θ; ·), k(θ; ·, ·)) is identifiable if it is theoret-
ically possible to learn the true value of θ after obtaining an infinite number of observations of g
on U . In other words, the model g ∼ GP(m(θ; ·), k(θ; ·, ·)) is identifiable if different values of θ give
rise to orthogonal Gaussian measures.

By the Cameron-Martin Theorem ([7], see also [36, Proposition 2.24]) it follows in particular
that models with polynomial mean functions m(θmean), where the parameters θmean represent the
coefficients or the degree of the polynomial, are in most cases not identifiable, since polynomials
are typically contained in the reproducing kernel Hilbert space (a.k.a. Cameron Martin space)
associated to k. In particular, this is the case for the Matérn and separable Matérn kernels presented
below.

2.2 Matérn Covariance Kernels

Covariance functions k(θ; ·, ·) frequently used in applications are the Matérn covariance functions

kMat(θ;u, u
′) =

σ2

Γ(ν)2ν−1

(
‖u− u′‖2

λ

)ν
Bν

(
‖u− u′‖2

λ

)
, (2.5)

with hyper-parameters θcov = {σ2, λ, ν} ∈ (0,∞)3. Here, Γ denotes the Gamma function, and Bν
denotes the modified Bessel function of the second kind [27]. The parameter σ2 is usually referred
to as the (marginal) variance, λ as the correlation length and ν as the smoothness parameter. The
expression for the Matérn covariance kernel simplifies for particular choices of ν. Notable examples
include the exponential covariance kernel σ2 exp(−‖u − u′‖2/λ) with ν = 1/2, and the Gaussian
covariance kernel σ2 exp(−‖u− u′‖22/λ2) in the limit ν →∞.

The identifiability of the Matérn model has been studied in [58, 57, 3]. While all parameters
θcov are identifiable for du ≥ 5, only the quantities ν and σ2λ−2ν are identifiable when du ≤ 3.
The case du = 4 remains open. To alleviate problems with identifiabilty for du ≤ 3, the recent
paper [17] discusses choices for the prior distribution on the hyper-parameters {σ2, λ}, such that
the MAP estimate θ̂MAP

N gives a good estimate of the true value of θ.
We would briefly like to point out here that the identifiability issues mentioned above are related

to the fact that our parameter space U is bounded, which means that we are dealing with in-fill
asymptotics. If U were unbounded, we would be dealing with increasing domain asymptotics, where
all parameters are identifiable also when du ≤ 3 [58].

2.3 Separable Matérn Covariance Kernels

As an alternative to the classical Matérn covariance functions in the previous section, one can
consider using their separable versions (also called multiplicative or tensor-product versions). These
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are obtained by taking the product of one-dimensional Matérn covariance functions:

ksepMat(θ;u, u
′) =

du∏
j=1

kMat(θj ;uj , u
′
j). (2.6)

Since the marginal variances σ2
j only enter as multiplicative pre-factors, the hyper-parameters in

this case are {νj , λj}duj=1 and σ2 :=
∏du
j=1 σ

2
j , leading to θcov ∈ (0,∞)2du+1. A particular example

is the separable exponential covariance kernel, which corresponds to νj ≡ 1/2 and hence takes the
form

ksepExp(θ;u, u′) = σ2 exp

− du∑
j=1

|uj − u′j |
λj

 . (2.7)

The separable versions of Matérn kernels can have better properties than the classical Matérn
kernels in terms of identifiability. For example, [56, Theorem 1] shows that, provided du > 1,
the model g ∼ GP(0, ksepExp(θ; ·, ·)) on U is identifiable. The case of general separable Matérn
covariance kernels appears to be open, but related results in this direction can be found in [25, 26,
12]. Note that for du = 1, the classical and separable Matérn kernels coincide. In particular, for
the stationary Ornstein-Uhlenbeck process given by du = 1 and ν = 1/2, only the quantity σ2λ−1

is identifiable on the bounded domain U .

3 Error Analysis of Hierarchical Gaussian Process Regression

In this section, we are concerned with the convergence of the hierarchical Gaussian process emulator
fN to the function f . Although the main idea behind the error estimates in this section is related
to those in [47, 48, 37], we are here interested in error bounds which (i) do not assume that
the function being emulated is a sample of a particular Gaussian process, (iii) bound the error
for a given, deterministic function f , and (iii) are flexible with respect to the definition of the
estimated hyper-parameters, so do not require any assumptions on identifiability of the hyper-
parameters. Furthermore, the error analysis here will be performed in norms amenable to the use
of the hierarchical Gaussian process emulators as surrogate models in Bayesian inverse problems,
see section 5 for details. For a short discussion of the prediction error typically studied in the
spatial statistics literature, see section 3.3.

Since the error analysis depends on various properties of the covariance kernel, such as the
corresponding reproducing kernel Hilbert space (also known as the native space or Cameron-Martin
space), we will consider two particular examples, namely the classical and the separable Matérn
covariance kernels already considered in sections 2.2 and 2.3.

The definition of the estimated parameter values θ̂N is open, and our analysis does not require
any assumptions on how these estimates are computed. We do not require that the sequence
{θ̂N}N∈N converges, neither do we require the parameters θ to be identifiable. We could for example
use maximum likelihood or maximum a-posteriori estimators, choose θ̂N to minimise the error
‖f −mf

N (θ̂N )‖L2(U), or use a combination of different approaches for different hyper-parameters.

Note, however, that we do not want to minimise the predictive variance ‖k1/2
N (θ̂N )‖L2(U)

1, since

1By slight abuse of notation, we denote by kN (θ̂N ) the function of one variable that gives the predictive variance

at a point u, kN (θ̂N ;u, u). The quantity ‖k1/2
N (θ̂N )‖L2(U) =

√∫
U
kN (θ̂N ;u, u)du is hence an averaged predictive

variance.
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this can be made arbitrarily small by letting σ̂2
N → 0. We want to choose σ̂2

N such that k
1/2
N (θ̂N )

is a good representation of our remaining uncertainty about the function f , after observing the
f(DN ).

We would like to quantify the performance of the predictive mean and covariance functions
mf
N (θ̂N ) and kN (θ̂N ). In particular, in light of the error bounds required for the Bayesian posterior

distribution in section 5, we are interested in the quantities ‖f−mf
N (θ̂N )‖L2(U) and ‖kN (θ̂N )‖L2(U).

We recall the following fundamental results, which hold for any kernel k(θ).

Proposition 3.1. [38, Section 6.2], [45, Theorem 1] The function mf,0
N (θ), given by (2.2) with

m(θ) ≡ 0, is the minimal norm interpolant of f in the native space corresponding to k(θ), with
interpolation points DN :

mf,0
N (θ) = arg min

g∈Hk(θ)(U) : g(DN )=f(DN )
‖g‖Hk(θ)(U).

In particular, ‖mf,0
N (θ)‖Hk(θ)(U) ≤ ‖f‖Hk(θ)(U).

Proposition 3.2. [49, Proposition 3.5] Suppose kN (θ) is given by (2.3). Then

kN (θ;u, u)
1
2 = sup

‖g‖Hk(θ)(U)=1

|g(u)−mg,0
N (θ;u)|,

where mg,0
N (θ) is given by (2.2) with m(θ) ≡ 0.

3.1 Matérn Covariance Kernels

Suppose we use a Matérn covariance kernel kMat(θ̂N ), defined in (2.5), to construct the hierarchical
Gaussian process emulator fN , defined in (2.4).

Given the set of design points DN = {un}Nn=1 ⊆ U , we define the fill distance hDN ,U , separation
radius qDN ,U and mesh ratio ρDN ,U by

hDN ,U := sup
u∈U

inf
un∈U

‖u− un‖, qDN ,U :=
1

2
min
i 6=j
‖uj − ui‖, ρDN ,U :=

hDN ,U
qDN ,U

≥ 1. (3.1)

The fill distance (also known as the maximin distance [18] or dispersion [30]) is the maximum
distance any point in U can be from a design point in DN , and the separation radius is half the
smallest distance between any two distinct points in DN . The three quantities above provide
measures of how uniformly the design points DN are distributed in U .

The fill distance hDN ,U and the separation radius qDN ,U are decreasing functions of N , and
these quantities will tend to zero as N tends to infinity for space-filling designs. The best possible
rate of convergence for the fill distance for any choice of DN is hDN ,U ≤ CN−1/du (see e.g. [30, 39]).
The separation radius can decrease at an arbitrarily fast rate. The mesh ratio ρDN ,U , on the other
hand, is a non-decreasing function of N . Point sets DN for which ρDN ,U can be bounded uniformly
in N , i.e. sets for which the fill distance and the separation radius decrease at the same rate with
N , are called quasi-uniform. In general, however, the mesh ratio can be strictly increasing in N .
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3.1.1 Predictive Mean

We first consider the predictive mean mf
N (θ̂N ). The main result is given in Theorem 3.5. To

prove explicit error bounds, recall the following characterisation of the native space (also known as
reproducing kernel Hilbert space) of the Matérn kernel.

Proposition 3.3. [54, Corollary 10.48] Let U be a bounded Lipschitz domain, and let k(θ) =
kMat(θ), with θcov = {ν, λ, σ2} ⊆ S, for some compact set S ⊆ (0,∞)3. Then the native space
HkMat(θ)(U) is equal to the Sobolev space Hν+du/2(U) as a vector space, and the native space norm
and the Sobolev norm are equivalent.

There hence exist constants Clow(θcov) and Cup(θcov) such that for all g ∈ Hν+du/2(U)

Clow(θcov)‖g‖HkMat(θ)(U) ≤ ‖g‖Hν+du/2(U) ≤ Cup(θcov)‖g‖HkMat(θ)(U). (3.2)

Lemma 3.4. For any compact set S ⊆ (0,∞)3, we have

max
θcov∈S

Cup(θcov)Clow(θcov)−1 ≤ max
θcov∈S

max{λ, λ−1} =: C3.4.

Proof. First note that the conclusion of Proposition 3.3 holds also on the domain Rdu [54, Corollary
10.13]. By [54, Theorem 10.12], for any g ∈ HkMat(θ)(R

du), we can express the native space norm
as

‖g‖2HkMat(θ)(Rdu ) = (2π)−du/2
∫
Rdu

|ĝ(ω)|2

k̂(θ;ω)
dω,

where ·̂ denotes the Fourier transform. Furthermore, the Matèrn covariance kernel has the Fourier
transform [27, Example 7.17]

k̂(θ;ω) = σ2 Γ(ν + du/2)

Γ(ν)πdu/2
λdu

(1 + λ2‖ω‖2)ν+du/2
.

With

‖g‖2
Hν+du/2(Rdu )

= (2π)−du/2
∫
Rdu
|ĝ(ω)|2(1 + ‖ω‖2)ν+du/2dω,

it then follows that

‖g‖2
Hν+du/2(Rdu )

≤ σ2Γ(ν + du/2)λdu

πdu/2Γ(ν)
max{1, λ−2}‖g‖2HkMat(θ)(Rdu )

:= Cup(θcov)2‖g‖2HkMat(θ)(Rdu ),

‖g‖2HkMat(θ)(Rdu ) ≤
πdu/2Γ(ν)

σ2Γ(ν + du/2)λdu
max{1, λ2}‖g‖2

Hν+du/2(Rdu )

:= Clow(θcov)−2‖g‖2HkMat(θ)(Rdu ).

On the bounded Lipschitz domain U , the same inequalities then hold for the norms
‖g‖Hν+du/2(U) = infEg∈Hν+du/2(Rdu ) ‖g‖Hν+du/2(Rdu ) and
‖g‖HkMat(θ)(U) = infEg∈Hν+du/2(Rdu ) ‖g‖HkMat(θ)(Rdu ), where Eg denotes an extension of g. The claim

of the Lemma then follows, with C3.4 = maxθcov∈S max{λ, λ−1}.
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We then have the following result on the convergence of mf
N (θ̂N ) to f as N →∞. In particular,

it shows that we obtain convergence in a wide range of scenarios, under very mild assumptions on
the estimated hyper-parameters. If the estimated hyper-parameters converge, we obtain the same
convergence rate as in the case where all the hyper-parameters are fixed at the limiting value, cf
[49, Proposition 3.4]. Note that Theorem 3.5 trivially also applies to the special case θ̂N = θ̂, where
a fixed value of the hyper-parameter is used.

Theorem 3.5. (Convergence inN ofmf
N (θ̂N )) Suppose we have a sequence of estimates {θ̂N}∞N=1 ⊆

S, for some compact set S ⊆ Rθ. Assume

(a) U ⊆ Rdu is compact, with Lipschitz boundary, and satisfies an interior cone condition,

(b) the native space Hk(θ)(U) is isomorphic to the Sobolev space Hτ(θ)(U),

(c) f ∈ H τ̃ (U), for some τ̃ = n+ r, with n ∈ N, n > du/2 and 0 ≤ r < 1,

(d) m(θ) ∈ H τ̃ (U) for all θ ∈ S,

(e) for some N∗ ∈ N, the quantities τ− := infN≥N∗ τ(θ̂N ) and τ+ := supN≥N∗ τ(θ̂N ) satisfy
τ− = n′ + r′, with n′ ∈ N, n′ > du/2 and 0 ≤ r′ < 1.

Then there exists a constant C, which is independent of f , m and N , such that for any β ≤ τ̃

‖f −mf
N (θ̂N )‖Hβ(U) ≤ Ch

min{τ̃ ,τ−}−β
DN ,U

ρ
max{τ+−τ̃ ,0}
DN ,U

(
‖f‖H τ̃ (U) + sup

N≥N∗
‖m(θ̂N )‖H τ̃ (U)

)
,

provided N ≥ N∗ and hDN ,U ≤ h0.

Proof. First, we note that it follows from (2.2) that mf
N (θ̂N ) = mf,0

N (θ̂N ) +m(θ̂N )−mm,0
N (θ̂N ). An

application of the triangle inequality hence gives

‖f −mf
N (θ̂N )‖Hβ(U) = ‖f −mf,0

N (θ̂N )−m(θ̂N ) +mm,0
N (θ̂N )‖Hβ(U)

≤ ‖f −mf,0
N (θ̂N )‖Hβ(U) + ‖m(θ̂N )−mm,0

N (θ̂N )‖Hβ(U).

By assumption d), it follows from [29, Lemma 4.1] that for fixed N ∈ N,

‖m(θ̂N )−mm,0
N (θ̂N )‖Hβ(U) ≤ C1(τ̃ , θ̂N )hτ̃−βDN ,U

‖m(θ̂N )‖H τ̃ (U),

for some constant C1(τ̃ , θ̂N ) independent of hDN ,U and m, provided hDN ,U ≤ Ch(U)n−2. If τ(θ̂N ) ≤
τ̃ , a similar estimate holds for f :

‖f −mf,0
N (θ̂N )‖Hβ(U) ≤ C1(τ(θ̂N ), θ̂N )h

τ(θ̂N )−β
DN ,U

‖f‖H τ̃ (U),

provided hDN ,U ≤ Ch(U)bτ(θ̂N )c−2, where we have used ‖f‖
Hτ(θ̂N )(U)

≤ ‖f‖H τ̃ (U) (see e.g. the

proof of Lemma 3.4).
If τ(θ̂N ) > τ̃ , [29, Theorem 4.2] gives

‖f −mf,0
N (θ̂N )‖Hβ(U) ≤ C2(τ̃ , θ̂N )hτ̃−βDN ,U

ρ
τ(θ̂N )−τ̃
DN ,U

‖f‖H τ̃ (U),

for some constant C2(τ̃ , θ̂N ) independent of f , hDN ,U and ρDN ,U , provided hDN ,U ≤ Ch(U)n−2.
An inspection of the proofs of [29, Lemma 4.1 and Theorem 4.2] further gives the following.

The constant C1(τ ′, θ) is of the form C1(τ ′, θ) = 2C ′(τ ′)C ′′(θ), where
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• C ′(τ ′) is the constant appearing in the sampling inequality [28, Theorem 2.12]. This constant
depends only on the integer part of τ ′, and can hence only take a finite set of values for τ ′ in
a compact set.

• C ′′(θ) is such that ‖mf
N (θ)‖Hτ(θ)(U) ≤ C ′′(θ)‖f‖Hτ(θ)(U). Using Propositions 3.1 and 3.3, an

appropriate choice for C ′′(θ) is hence Cup(θcov)Clow(θcov)−1, which is uniformly bounded on
compact sets by Lemma 3.4.

Similarly, we have C2(τ ′, θ) = C ′(τ ′)(C ′′′(τ ′) + 2C ′′(θ)), where C ′ and C ′′ are as above, and C ′′′(τ ′)
is the constant appearing in the Bernstein inequality [29, Corollary 3.5].

The conclusion then follows, with h0 := Ch(U) min
θ̂N∈S′ min{bτ+c−2, n−2} and

C = max
θ̂N∈S′

max{C1(τ̃ , θ̂N ), C1(τ(θ̂N ), θ̂N ), C2(τ̃ , θ̂N )},

where S′ = S ∩ {θ : bτc > du/2}.

Assumption (a) in Theorem 3.5 is an assumption on the domain U being sufficiently regular,
containing no sharp corners or cusps, and is satisfied, for example, for the unit cube U = [0, 1]du .
Assumption (b) reiterates that the native space of Matérn kernels is a Sobolev space. Theorem 3.5
applies in fact not just to Matérn kernels, but to any kernel which has a Sobolev space as native
space, including the compactly supported Wendland functions [54].

Assumption (c) is an assumption on the regularity of the function f being emulated. We point
out here that this assumption is rather mild, and modulo some technicalities (cf Remark 3.7),
this assumption simply means that f should be an element of a Sobolev space that is compactly
embedded into the space of continuous functions. We also point out here that Theorem 3.5 does
not require the function f to be in the native space of any of the kernels k(θ̂N ). The smoothness
of f , denoted by τ̃ , can be both greater or smaller than the estimated smoothness τ(θ̂N ). The
best possible convergence rates are obtained when the estimated smoothness matches the true
smoothness of f (cf Remark 3.6). Recall that hDN ,U is decreasing in N , whereas ρDN ,U is either
constant or increasing in N . If we are underestimating the smoothness of f , then τ− < τ̃ , and we
do not achieve the best possible exponent in hDN ,U . If we are overestimating the smoothness of f ,
then τ+ > τ̃ and we obtain a positive power of ρDN ,U . See section 6 for a further discussion on the
optimality of the rates.

Assumption (d) ensures that the chosen mean m has at least the same regularity as f . This
can be relaxed, but less regularity in m would lead to lower convergence rates in the error, so in
practice, one should ensure that m is sufficiently smooth.

The quantities τ− and τ+ in assumption (e) can be thought of as lim infN→∞ τ(θ̂N ) and
lim supN→∞ τ(θ̂N ), respectively. If limN→∞ τ(θ̂N ) exists, then this can be substituted for both
quantities. Assumption (e) is the only assumption we make on the estimated hyper-parameters,
other than that {θ̂N}∞N=1 ⊆ S, for some compact set S ⊆ Rθ. In particular, this means that the

only assumptions required on λ̂N and σ̂2
N are that they are bounded away from zero and infinity.

For the estimated smoothness ν̂N , we again essentially require 0 < ν̂N < ∞, however, due some
technical issues in the proof (cf Remark 3.7), we require a slightly larger lower bound on ν̂N .

The error bounds in Theorem 3.5 can be translated into error bounds in terms of the number
of design points N for specific choices of point sets. For example, the uniform grid D̃N = { iN }

N
i=1

with N points in U = [0, 1] has fill distance and separation radius equal to hD̃N ,U = qD̃N ,U = N−1.
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In higher dimensions, the Cartesian product of one-dimensional uniform grids D̃N with N points

in U = [0, 1]du has fill distance hD̃N ,U =
√
duN

− 1
du and separation radius qD̃N ,U = N−

1
du . Hence

uniform grids are quasi-uniform, with constant mesh ratio ρDN ,U =
√
du, and Theorem 3.5 gives a

convergence rate of N−
min{τ̃ ,τ−}

du in the L2-norm (corresponding to β = 0).
Low-discrepancy point sets, such as the Halton sequence, Sobol nets and lattice rules (see e.g.

[30]), also have a small fill distance. The fill distance hDN ,U can be bounded in terms of the

discrepancy dDN ,U as hDN ,U ≤ d
1
du
DN ,U

(see e.g. [30, Theorem 6.6]). Sequences such as the Halton

sequence, for which dDN ,U ≤ CN−1(logN)du , then have a fill distance hDN ,U ≤ CN−
1
du logN ,

which up to the log factor decays at optimal rate. However, it is unclear whether these point sets
are quasi-uniform. For further discussion on specific point sets and their fill distances, we refer the
reader to [55] and the references therein.

For a given f ∈ H τ̃ (U), the fastest rate obtainable for ‖f − mf
N (θ̂N )‖L2(U) is N−

τ̃
du . Given

‖f−mf
N (θ̂N )‖L2(U) = CN−

τ̃
du , the number of points needed to obtain an error ‖f−mf

N (θ̂N )‖L2(U) =

ε is N = Cdu/τ̃ε−du/τ̃ , and the number of points required to achieve a given accuracy hence grows
exponentially in the dimension.

Remark 3.6. (Choice of ν) Under the assumptions of Theorem 3.5, we have

‖f −mf
N (θ0)‖Hβ(U) ≤ Ch

min{τ̃ ,τ(θ0)}−β
DN ,U

ρ
max{τ(θ0)−τ̃ ,0}
DN ,U

‖f‖H τ̃ (U),

for any θ0 ∈ S. The best possible convergence rate in N of this bound is obtained when τ̃ = τ(θ0),
i.e. when f is in the reproducing kernel Hilbert space corresponding to k(θ0): f ∈ Hτ(θ0)(U) =
Hk(θ0)(U). This is different to defining θ0 such that f is a sample of the Gaussian process GP(m(θ0; ·), k(θ0; ·, ·)),
since samples of a Gaussian process are almost surely not in the corresponding reproducing kernel
Hilbert space. This point has also already been noted in [44].

Remark 3.7. (Valid choice of τ̃) The Sobolev space H τ̃ (U) is a reproducing kernel Hilbert space for
any τ̃ > du/2. The restriction on τ̃ in assumption (c) of Theorem 3.5 is hence slightly stronger than
expected, requiring that the integer part of τ̃ is greater than du/2. This is due to a technical detail
in the proofs of [29, Lemma 4.1 and Theorem 4.2]. As noted in [55], one can use [5, Theorem 3.2]
instead of [29], and assumption (c) in Theorem 3.5 can then be relaxed to the expected f ∈ H τ̃ (U),
for some τ̃ > du/2. The rest of the proof remains identical. The same comment applies to τ− in
assumption (e) in Theorem 3.5, and assumptions (d) and (f) in Theorem 3.11.

3.1.2 Predictive Variance

Next, we investigate the predictive variance kN (θ̂N ). An application of Proposition 3.2 gives the
following result on the convergence of kN (θ̂N ) to 0.

Theorem 3.8. (Convergence in N of kN (θ̂N )) Let the assumptions of Theorem 3.5 hold. Then
there exists a constant C, independent of N , such that

‖k1/2
N (θ̂N )‖L2(U) ≤ Ch

min{τ̃ ,τ−}−du/2−ε
DN ,U

ρ
max{τ+−τ̃ ,0}
DN ,U

,

for any N ≥ N∗, hDN ,U ≤ h0 and ε > 0.
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Proof. An application of Proposition 3.2, gives

‖k1/2
N (θ̂N )‖L2(U) =

(∫
U
kN (θ̂N ;u, u)du

)1/2

≤ C sup
u∈U

kN (θ̂N ;u, u)1/2

= C sup
u∈U

sup
‖g‖H

k(θ̂N )
(U)=1

|g(u)−mg
N (θ̂N ;u)|

= C sup
‖g‖H

k(θ̂N )
(U)=1

sup
u∈U
|g(u)−mg

N (θ̂N ;u)|.

The Sobolev embedding theorem gives the compact embedding of Hdu/2+ε(U) into the space of
bounded continuous functions (see e.g. [2, Theorem 4.12, Part II]). Together with Theorem 3.5,
this gives

‖k1/2
N (θ̂N )‖L2(U) ≤ C ′ sup

‖g‖H
k(θ̂N )

(U)=1

‖g(u)−mg
N (θ̂N ;u)‖Hdu/2+ε(U)

≤ C ′′hmin{τ̃ ,τ−}−du/2−ε
DN ,U

ρ
max{τ+−τ̃ ,0}
DN ,U

sup
‖g‖H

k(θ̂N )
(U)=1

‖g‖H τ̃ (U).

Finally, using Proposition 3.3 gives ‖g‖H τ̃ (U) ≤ Cup(θ̂N )‖g‖H
k(θ̂N )

(U). The expression for Cup(θ̂N )

derived in the proof of Lemma 3.4, and the compactness of S, then finish the proof.

Remark 3.9. (Dependency on λ̂N , σ̂
2
N and ν̂N ) A careful inspection of the proofs of Theorems

3.5 and 3.8 reveals more details about the dependency on the different hyper-parameters. The
correlation length λ̂N enters only through the norm-equivalence constants Clow(θ̂N ) and Cup(θ̂N ),
and the constants in Theorems 3.5 and 3.8 are larger for extreme (i.e. very large or very small)
values of λ̂N . The constant in Theorem 3.5 is in fact independent of σ̂2

N , since it cancels out in

the product Clow(θ̂N )−1Cup(θ̂N ). This makes sense intuitively since the predictive mean mf
N (θ̂N ) is

independent of σ̂2
N . In Theorem 3.8, σ̂2

N enters linearly in the constant C through Cup(θ̂N ). Again,

this makes sense intuitively since σ̂2
N enters as a multiplicative constant in the kernel k(θ̂N ). The

dependency on ν̂N is much more intricate, and influences the constants, as well as the convergence
rates and valid choices for h0.

3.2 Separable Matérn Covariance Kernels

Rather than the Matérn kernels employed in the previous section, suppose now that we use a
separable Matérn covariance kernel ksepMat(θ̂N ), as defined in (2.6), to define the Gaussian process

emulator (2.4). Due to the tensor product structure of the kernel ksepMat(θ̂N ), we will assume that

our parameter domain U also has a tensor product structure U =
∏du
j=1 Uj , with Uj ⊂ R compact.

3.2.1 Predictive Mean

We again start with the predictive mean mf
N (θ̂N ). The main result in this section is Theorem 3.11.

We have the following equivalent of Proposition 3.3, characterising the native space of separable
Matérn covariance kernels on the tensor-product domain U .
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Proposition 3.10. [32, 40] Suppose U =
∏du
j=1 Uj, with Uj ⊂ R bounded. Let k(θ) = ksepMat(θ)

be a separable Matérn covariance kernel with θcov ∈ S, for some compact set S ⊆ (0,∞)2du+1.

Then the native space Hk(θ)(U) is equal to the tensor product Sobolev space H
{νj+1/2}
⊗du (U) :=

⊗duj=1H
νj+1/2(Uj) as a vector space, and the native space norm and the Sobolev norm are equivalent.

There hence exist constants C ′low(θcov) and C ′up(θcov) such that for all g ∈ H{νj+1/2}
⊗du (U)

C ′low(θcov)‖g‖HksepMat(θ)(U) ≤ ‖g‖
H
{νj+1/2}

⊗du
(U)
≤ C ′up(θ;U)‖g‖HksepMat(θcov)(U).

We will write {βj} ≤ {αj} if βj ≤ αj for all 1 ≤ j ≤ du.
For our further analysis, we now want to make use of the convergence results from [32], related

results are also found in [40] and the references in [32]. For the design points DN , we will use

Smolyak sparse grids [6]. For 1 ≤ j ≤ du, we choose a sequence X
(i)
j := {x(i)

j,1, . . . , x
(i)
j,mi
}, i ∈ N, of

nested sets of points in Uj . We then define the sparse grid H(q, du) ⊆ U as the set of points

H(q, du) :=
⋃
|i|=q

X
(i1)
1 × · · ·X(idu )

du
, (3.3)

where |i| = i1 + · · · idu for a multi-index i ∈ Ndu , and q ≥ du. We denote by N = N(q, du) the
number of points in the sparse grid H(q, du).

We then have the following equivalent of Theorem 3.5, which is again concerned with the
convergence as N →∞.

Theorem 3.11. (Convergence inN ofmf
N (θ̂N )) Suppose we have a sequence of estimates {θ̂N}∞N=1 ⊆

S, for some compact set S ⊆ Rθ. Assume

(a) U =
∏du
j=1 Uj, with Uj ⊂ R compact,

(b) DN is chosen as the Smolyak sparse grid H(q, du), for some q ≥ du, with

h
X

(i)
j ,Uj

≤ C1m
−rh
i , and ρ

X
(i)
j ,Uj

≤ C2m
rρ
i ,

for positive constants C1, C2, rh and rρ independent of mi and j,

(c) the native space Hk(θ)(U) is isomorphic to a tensor product Sobolev space H
{rj(θ)}
⊗du (U),

(d) f ∈ H{r̃j}⊗du (U), for some {r̃j} such that min1≤j≤du r̃j ≥ 1,

(e) m(θ) ∈ H{r̃j}⊗du (U) for all θ ∈ S,

(f) for some N∗ ∈ N, the quantities rj,− := infN≥N∗ rj(θ̂N ) and rj,+ := supN≥N∗ rj(θ̂N ) satisfy
min1≤j≤du rj,− ≥ 1.

Then there exists a constant C, which is independent of f and N , such that

‖f −mf
N (θ̂N )‖

H
{βj}

⊗du
(U)
≤ CN−α(logN)(1+α′)(du−1)

(
‖f‖

H
{r̃j}

⊗du
(U)

+ sup
N≥N∗

‖m(θ̂N )‖
H
{r̃j}

⊗du
(U)

)
,
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for any {βj} ≤ {r̃j} and N ≥ N∗, where

α = min
1≤j≤du

rh(min{r̃j , rj,−} − βj)− rρ max{rj,+ − r̃j , 0},

and α′ = min
1≤j≤du

rh(min{r̃j , rj,+} − βj)− rρ max{rj,− − r̃j , 0},

Proof. Theorem 3.11 is based on a generalisation of [32, Theorem 3], to the case where the function

f is not necessarily in the native space of the kernel used to construct mf
N (θ̂N ). The structure of

the proof remains identical, and we only need to replace [32, Proposition 4] with a corresponding
result. All other assumptions required for [32, Theorem 3] remain valid.

So let U ′ ⊆ R be bounded, and let Xn := {x1, . . . , xn} ⊆ U ′ be a set of n points in U ′. For
any r ≥ 1 and β ≤ r , let us denote by Id : Hr(U ′) → Hβ(U ′) the identity operator, and by
SθXn : Hr(U ′) → Hβ(U ′) the interpolation operator defined by SθXn(g) = mg,0

n (θ) (defined as in
(2.2) with m ≡ 0). As in the proof of Theorem 3.5, we have

‖Id− SθXn‖Hr(U ′)→Hβ(U ′) := sup
‖g‖Hr(U′)=1

‖g −mg,0
n (θ)‖Hβ(U ′)

≤ C1(θ)h
min{r,r(θ)}−β
Xn,U ′

ρ
max{r(θ)−r,0}
Xn,U ′

, (3.4)

for any β ≤ r and hXn,U ′ ≤ h0(θ), where Hr(θ)(U ′) is the reproducing kernel Hilbert space corre-

sponding to k(θ) used to construct mg,0
N (θ). The fill distance hXn,U ′ and mesh ratio ρXn,U ′ are as

defined in (3.1), and the constants C1(θ) and h0(θ) are as in the proof of Theorem 3.5.
Following the proof of [32, Theorem 3] and replacing [32, Proposition 4] with (3.4), gives

‖g′ −mg′,0
N (θ)‖

H
{βj}

⊗du
(U)
≤ C2(θ)N−α(θ)(logN)(1+α(θ))(du−1)‖g′‖

H
{r̃j}

⊗du
(U)
, (3.5)

for any {βj} ≤ {r̃j} and g′ ∈ H{r̃j}⊗du (U), where

α(θ) = min
1≤j≤du

rh(min{r̃j , rj(θ)} − βj)− rρ max{rj(θ)− r̃j , 0}.

By [32, Remark 4], the constant C2(θ) depends on θ only through
∏du
j=1C1(θ)α(θ).

To finish the proof, we use the triangle inequality and the equality mf
N (θ̂N ) = mf,0

N (θ̂N ) +

m(θ̂N )−mm,0
N (θ̂N ), and apply (3.5):

‖f −mf
N (θ̂N )‖

H
{βj}

⊗du
(U)
≤ ‖f −mf,0

N (θ̂N )‖
H
{βj}

⊗du
(U)

+ ‖m(θ̂N )−mm,0
N (θ̂N )‖

H
{βj}

⊗du
(U)

≤ C2(θ̂N )N−α(θ̂N )(logN)(1+α(θ̂N ))(du−1)

(
‖f‖

H
{r̃j}

⊗du
(U)

+ ‖m(θ̂N )‖
H
{r̃j}

⊗du
(U)

)
.

The claim then follows as in Theorem 3.5.

Many of the same comments apply as to Theorem 3.5. Assumption (a) means that the domain U
is of tensor-product structure, which is natural when using tensor-product kernels, and is satisfied,
for example, for the unit cube U = [0, 1]du .

Assumption (b) is a specific choice of design points DN , and in contrast to Theorem 3.5, the
choice of design points DN as a sparse grid is explicitly used in the proof and is crucial for obtaining
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the error bound. The values of rh and rρ will depend on the particular choice of one-dimensional
point sets. A particular choice of one-dimensional nested point sets often used in sparse grids are

the Clenshaw-Curtis point sets X
(i)
CC , defined on [−1, 1] by mi = 2(i−1) + 1, X

(1)
CC = {0} and

x
(i)
j,n = − cos

(
π(n− 1)

mi − 1

)
, 1 ≤ n ≤ mi.

General intervals [a, b] can be dealt with through a linear transformation. For this particular point
set, we can use the Lipschitz continuity of the cosine function, together with Kober’s inequality
1− x2

2 < cos(x) < 1− 4x2

π2 for x ∈ [0, π2 ] [42], to show that h
X

(i)
CC ,Uj

≤ C1m
−1
i and ρ

X
(i)
CC ,Uj

≤ C2mi.

This shows that assumption (b) is satisfied for Clenshaw-Curtis point sets, with rh = rρ = 1. Note
that Clenshaw-Curtis points are known to cluster around the boundaries, so are not quasi-uniform
(as evidenced by rρ = 1, which is sharp due Kober’s inequality.) Alternatively, the one-dimensional
point sets can be chosen as the uniform grids shown to be quasi-uniform in section 3.1, for which
rh = 1 and rρ = 0.

Assumption (c) reiterates that the native space of the separable Matérn kernel is a tensor-
product Sobolev space, and Theorem 3.11 applies to any kernel with such a native space.

Assumption (d) is a regularity assumption on f , and again roughly corresponds to the function
f being in a Sobolev space of mixed dominating smoothness that is compactly embedded into the
space of continuous functions. We would ideally have the restriction min1≤j≤du r̃j > 1/2; however,
we need a slightly stronger restriction due to some technicalities in the proof (cf Remark 3.7).
Theorem 3.11 does not require the function f to be in the native space of any of the kernels k(θ̂N ).
The fastest convergence rates are again obtained when the estimated smoothness matches the true
smoothness of f , see section 6 for a discussion on the optimality of the results.

Assumption (e) ensures that the mean m is at least as smooth as the function f , but this can
again be relaxed. The assumptions on the estimated hyper-parameters {νj , λj}duj=1 and σ2 are again

very mild. {λj}duj=1 and σ2 are simply required to be bounded away from zero and infinity, and we

require only a slightly larger lower bound on {νj}duj=1 (cf assumption (f)).
Explicit convergence rates can again be obtained for specific choices of the design points.

For sparse grids based on nested one-dimensional uniform grids, we obtain for βj ≡ 0 the val-
ues α = min1≤j≤du min{r̃j , rj,−} and α′ = min1≤j≤du min{r̃j , rj,+}, giving the error estimate

‖f − mf
N (θ̂N )‖L2(U) ≤ CN−min1≤j≤du min{r̃j ,rj,−}(logN)(1+α′)(du−1). Note in particular that the

dimension du enters only in the log factor.
The set-up in Theorem 3.11 is much more restrictive than that of Theorem 3.5. Firstly, the

design points need to be chosen as a sparse grid based on nested one-dimensional point sets. This
limits the admissible choices of number of points N . The choice m1 = 1 ensures that the growth of
N , as a function of level q and dimension du, is as slow as possible. Furthermore, it can be shown
that N grows at most polynomially in du (although it grows exponentially in the level q), see e.g.
[31, Lemma 3.9].

Secondly, the set of functions which satisfy the regularity assumptions in Theorem 3.11 is a
strict subset of those which satisfy the regularity assumptions in Theorem 3.5. The so-called mixed
regularity of f assumed here is crucial to obtaining the error bound in Theorem 3.11. Although
mixed regularity is quite a strong assumption, it is fulfilled in many important applications such as
parametric partial differential equations [10, 31]. Also note that this function class is very different
to those usually considered in the non-parametric regression literature (see e.g. [52, 22]), which
correspond to the ones in Theorem 3.5.
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The convergence rate in N is (up to logarithmic factors) independent of the dimension du, and
can in high dimensions be much larger than the convergence rate obtained in Theorem 3.5. For
illustrative purposes, let us look at the example where the smoothness of f is the same in every di-
mension, i.e. r̃j = r̃. The fastest rate of convergence is obtained for example with sparse grids based

on uniform one-dimensional grids and correctly estimated smoothness r(θ̂N ) = r̃, in which case the

convergence rate in the L2(U)-norm is ‖f −mf
N (θ̂N )‖L2(U) ≤ CN−r̃(logN)(1+r̃)(du−1). This means

that to get an error ‖f −mf
N (θ̂N )‖L2(U) = ε, it suffices to choose N = c ε−1/r̃| log ε|(1+1/r̃)(du−1) (cf

[32, Theorem 3]). In contrast with the setting of Theorem 3.5, the number of function evaluations
required to achieve a given accuracy no longer grows exponentially in ε with dimension du.

3.2.2 Predictive Variance

Next, we investigate the predictive variance kN (θ̂N ), proving the convergence of kN (θ̂N ) to 0 as
N →∞.

Theorem 3.12. (Convergence in N of kN (θ̂N )) Let the assumptions of Theorem 3.11 hold. Then
there exists a constant C, independent of N , such that

‖k1/2
N (θ̂N )‖L2(U) ≤ CN−α| logN |(1+α′)(du−1)

for any N ≥ N∗ and ε > 0, where

α = min
1≤j≤du

rh(min{r̃j , rj,−} − 1/2− ε)− rρ max{rj,+ − r̃j , 0},

and α′ = min
1≤j≤du

rh(min{r̃j , rj,+} − 1/2− ε)− rρ max{rj,− − r̃j , 0}.

Proof. The proof is identical to Theorem 3.8, using Theorem 3.11 instead of Theorem 3.5.

3.3 Point-wise prediction error

We now briefly discuss the point-wise prediction error, i.e. the error in using mf
N (θ̂N ) or fN (θ̂N )

to predict f(u), for an observed location u ∈ U \DN . This error is often considered in the spatial
statistics literature, see e.g. [47, 48, 37].

For prediction using the mean mf
N (θ̂N ), we immediately obtain an error bound using Theorem

3.5 or 3.11, together with the Sobolev embedding theorem, which gives the compact embedding of
Hdu/2+ε(U) into the space of bounded continuous functions (see e.g. [2, Theorem 4.12, Part II])

|f(u)−mf
N (θ̂N ;u)| ≤ sup

u∈U
|f(u)−mf

N (θ̂N ;u)|

≤

C‖f −m
f
N (θ̂N )‖Hdu/2+ε(U), in the set-up of Theorem 3.5,

C‖f −mf
N (θ̂N )‖

H
1/2+ε

⊗du
(U)
, in the set-up of Theorem 3.11.

Convergence of this prediction error to zero as N →∞ then follows, under very mild assumptions
on the estimated hyper-parameters (as in Theorem 3.5 or 3.11).

For prediction using the predictive process fN (θ̂N ), we obtain a bound on the error

E((f(u)− fN (θ̂N ;u)2))1/2 = kN (θ̂N ;u, u)1/2,
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where the expectation is over the distribution of fN (θ̂N ). As in the proof of Theorem 3.8, we use
Theorem 3.5 or 3.11, together with Proposition 3.2 and the Sobolev embedding theorem, which
gives the compact embedding of Hdu/2+ε(U) into the space of bounded continuous functions (see
e.g. [2, Theorem 4.12, Part II]):

kN (θ̂N ;u, u)1/2 ≤ sup
u∈U

kN (θ̂N ;u, u)1/2

≤

C sup‖g‖Hk(θ)=1
‖g −mg

N (θ̂N )‖Hdu/2+ε(U), in the set-up of Theorem 3.5,

C sup‖g‖Hk(θ)=1
‖g −mg

N (θ̂N )‖
H

1/2+ε

⊗du
(U)
, in the set-up of Theorem 3.11.

Convergence of this prediction error to zero as N →∞ then follows, under very mild assumptions
on the estimated hyper-parameters (as in Theorem 3.5 or 3.11).

We can also obtain convergence rates for the prediction error

E((f(u)−mf
N (θ̂N ;u)2))1/2,

where the expected value is now over some probability distribution over f . In particular, consider
the setting f ∼ GP(0, k(θ0; ·, ·)), for some true value θ0 of the hyper-parameters, as is used for
example [47, 48, 37]. Assume for simplicity that we are using Matérn kernels; similar arguments
apply in the case of separable Matérn kernels.

Every sample of the Gaussian process GP(0, k(θ0; ·, ·)) belongs to the Sobolev space Hν0(U)
(see e.g. [43]). Hence, we can apply Theorem 3.5 sample-wise, with τ̃ = ν0. The error bounds on

|f(u) − mf
N (θ;u)| coming from Theorem 3.5 depend on f only through ‖f‖H τ̃ (U), from which it

follows that

Eθ0((f(u)−mf
N (θ̂N ;u)2))1/2 ≤ Chmin{ν0,τ−}−du/2−ε

DN ,U
ρ

max{τ+−ν0,0}
DN ,U

Eθ0(‖f‖2Hν0 (U))
1/2.

Since Eθ0(‖f‖2Hν0 (U))
1/2 < ∞ (see e.g. [51, Propositions A.2.1 and A.2.3]), the above gives con-

vergence to zero of the prediction error as N tends to ∞, under the assumptions of Theorem 3.5.
Note that this does not require any particular relation between the true hyper-parameters θ0 and
the employed hyper-parameters θ.

If the observed values of f at the design points DN are used to form the estimate θ̂N , then

Eθ0((f(u)−mf
N (θ̂N ;u)2))1/2 ≤ C sup

f∈Hν0 (U)

(
h

min{ν0,τ−}−du/2−ε
DN ,U

ρ
max{τ+−ν0,0}
DN ,U

)
Eθ0(‖f‖2Hν0 (U))

1/2,

and convergence to zero as N → ∞ is again guaranteed. The restrictions on σ̂2
N and λ̂N are un-

changed from Theorem 3.5. The restrictions on ν̂N become slightly stronger, and require the quanti-
ties τ− and τ+ to be uniformly bounded in f . This can easily be achieved by imposing a fixed upper
and lower bound on ν̂N , which is independent of the observed function values f(u1), . . . , f(uN ).
Alternatively Hölder’s inequality can be used to weaken the supremum in the above bound to an
Lp-norm, with p <∞.

4 Bayesian Inverse Problems

Our motivation for studying Gaussian process emulators was their use to approximate posterior
distributions in Bayesian inverse problems. The inverse problem of interest is to determine the
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unknown parameters u ∈ U from noisy data y ∈ Rdy given by

y = G(u) + η. (4.1)

We assume that the noise η is a realisation of the Rdy -valued Gaussian random variable N (0,Γ), for
some known, positive-definite covariance matrix Γ, and that the parameter space U is a compact
subset of Rdu , for some finite du ∈ N. The map G will be referred to as the parameter-to-observation
map or forward model. For x ∈ Rm,m ∈ N, we denote by ‖x‖2 = xTx the Euclidean norm, and by
‖x‖A = xTA−1x the norm weighted by (the inverse of) a positive-definite matrix A ∈ Rm×m.

We adopt a Bayesian perspective in which, in the absence of data, u is distributed according to
a prior measure µ0. We are interested in the posterior distribution µy on the conditioned random
variable u|y, which can be characterised as follows.

Proposition 4.1. ([19, 50]) Suppose G : U → Rdy is continuous and µ0(U) = 1. Then the posterior
distribution µy on the conditioned random variable u|y is absolutely continuous with respect to µ0

and given by Bayes’ Theorem:
dµy

dµ0
(u) =

1

Z
exp

(
− Φ(u)

)
,

where

Φ(u) =
1

2
‖y − G(u)‖2Γ and Z = Eµ0

(
exp

(
− Φ(u)

))
.

Common to many of practical applications is that the evaluation of the parameter-to-observation
map G is analytically impossible and computationally very expensive, and, in simulations, it is
therefore often necessary to approximate G (or directly Φ) by a surrogate model. In this work, we
are interested in Gaussian process emulators as surrogate models, as already discussed in [49].

Remark 4.2. (Distribution of the noise η) The assumption that the distribution of the observational
noise η is Gaussian with zero mean is not essential, and is for ease of presentation only. Inclusion
of a non-zero mean, representing for example model discrepancy [21], is straightforward, and leads
only to a shift in the misfit functional Φ. Other distributions, leading to other forms of the log-
likelihood Φ, are also possible, and it is only the smoothness of Φ as a function of u that is important
for the analysis presented in this paper. See for example [24] for a more general formulation.

5 Approximation of the Bayesian Posterior Distribution

We now use the hierarchical Gaussian process emulator to define computationally cheaper ap-
proximations to the Bayesian posterior distribution µy. We will consider emulation of either the
parameter-to-observation map G : U → Rdy or the negative log-likelihood Φ : U → R. An emulator
of G in the case dy > 1 is constructed by emulating each entry independently.

The analysis presented in this section is for the most part independent of the specific covariance
kernel used to construct the Gaussian process emulator. When the analysis does depend on the
covariance kernel, we again consider the classical and separable Matérn families.

5.1 Approximation Based on the Predictive Mean

Using simply the predictive mean of a Gaussian process emulator of the parameter-to-observation
map G or the negative log-likelihood Φ, we can define the approximations µy,N,G,θmean and µy,N,Φ,θmean ,
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given by

dµy,N,G,θmean

dµ0
(u) =

1

ZN,G,θmean

exp
(
− 1

2

∥∥y −mGN (θ;u)
∥∥2

Γ

)
,

ZN,G,θmean = Eµ0

(
exp

(
− 1

2

∥∥y −mGN (θ)
∥∥2

Γ

))
,

dµy,N,Φ,θmean

dµ0
(u) =

1

ZN,Φ,θmean

exp
(
−mΦ

N (θ;u)
)
,

ZN,Φ,θmean = Eµ0

(
exp

(
−mΦ

N (θ)
))
,

where mGN (θ;u) = [mG
1

N (θ;u), . . . ,mG
dy

N (θ;u)] ∈ Rdy .
We have the following result on the convergence of the approximate posterior distributions. A

combination of Theorem 5.1 with Theorem 3.5 or Theorem 3.11 allows us to obtain convergence
rates in N for the error in approximate posterior distributions.

Theorem 5.1. Suppose we have a sequence of estimates {θ̂N}∞N=1 ⊆ S, for some compact set
S ⊆ Rθ. Assume

(a) U ⊆ Rdu is compact,

(b) supu∈U ‖G(u)−mGN (θ̂N ;u)‖ and supu∈U |Φ(u)−mΦ
N (θ̂N ;u)| can be bounded uniformly in N ,

(c) supu∈U ‖G(u)‖ ≤ CG <∞.

Then there exist constants C1 and C2, independent of N , such that

dHell(µ
y, µy,N,G,θ̂Nmean ) ≤ C1

∥∥∥G −mGN (θ̂N )
∥∥∥
L2
µ0

(U ;Rdy )
,

and dHell(µ
y, µy,N,Φ,θ̂Nmean ) ≤ C2

∥∥∥Φ−mΦ
N (θ̂N )

∥∥∥
L2
µ0

(U)
.

Proof. This is essentially [49, Theorem 4.2]. The change from the distribution η ∼ N (0, σ2
ηI),

considered in [49], to the more general distribution η ∼ N (0,Γ) considered here in (4.1), only
influences the values of the constants C1 and C2, since all norms on Rdy are equivalent. The
constants C1 and C2 involve taking the supremum over θ̂N over the corresponding constants in [49,
Theorem 4.2], and we use the compactness of S to make sure this can be bounded independently
of N . Furthermore, it is sufficient for the quantities in (b) to be bounded uniformly in N rather
than converging to 0 as N tends to infinity (cf [49, Proof of Lemma 4.1]).

Since Theorems 3.5 and 3.11 hold only on bounded domains U , we have for simplicity assumed
that U is bounded in assumption (a). This assumption can be relaxed in general (cf [24]). As-
sumption (b) is required to ensure the constants C1 and C2 are independent of N . Assumption (c)
is satisfied for example when G is continuous on U .
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5.2 Approximation Based on the Predictive Process

We now consider approximations to the posterior distribution µy obtained using the full predictive
processes GN and ΦN . In contrast to the mean, the full Gaussian process also carries information
about the uncertainty in the emulator due to only using a finite number of function evaluations to
construct it. Randomising the approximations to G and Φ, with the randomness tuned to represent
the surrogate modelling error, can be crucial to obtaining statistically efficient sampling algorithms
for the approximate posterior distributions [11, 9].

For the remainder of this section, we denote by νG,θN the distribution of GN (θ) and by νΦ,θ
N the

distribution of ΦN (θ), for N ∈ N. The process GN consists of dy independent Gaussian processes

GjN , so the measure νG,θN is a product measure, νG,θN =
∏dy
j=1 ν

Gj ,θ
N . ΦN is a Gaussian process with

mean mΦ
N and covariance kernel kN , and GjN , for j = 1, . . . , dy, is a Gaussian process with mean

mG
j

N and covariance kernel kN . Replacing G by GN in (4.1), we obtain the approximation µy,N,G,θsample

given by

dµy,N,G,θsample

dµ0
(u) =

1

ZN,G,θsample

exp
(
− 1

2
‖y − GN (θ;u)‖2Γ

)
,

where

ZN,G,θsample = Eµ0

(
exp

(
− 1

2
‖y − GN (θ)‖2Γ

))
.

Similarly, we define for the predictive process ΦN the approximation µy,N,Φ,θsample by

dµy,N,Φ,θsample

dµ0
(u) =

1

ZN,Φ,θsample

exp
(
− ΦN (θ;u)

)
, ZN,Φ,θsample = Eµ0

(
exp

(
− ΦN (θ)

))
.

The measures µy,N,G,θsample and µy,N,Φ,θsample are random approximations of the deterministic measure µy. The
uncertainty in the posterior distribution introduced in this way can be thought of representing the
uncertainty in the emulator, which in applications can be large (or comparable) to the uncertainty
present in the observations. A user may want to take this into account to ”inflate” the variance of
the posterior distribution and avoid over-confident inference.

Deterministic approximations of the posterior distribution µy can now be obtained by fixing
a sample of GN or ΦN , or by taking the expected value with respect to the distribution of the
Gaussian processes. The latter results in the marginal approximations

dµy,N,G,θmarginal

dµ0
(u) =

1

E
νG,θN

(ZN,G,θsample)
E
νG,θN

(
exp

(
− 1

2σ2
η

‖y − GN (θ;u)‖2
))
,

dµy,N,Φ,θmarginal

dµ0
(u) =

1

E
νΦ,θ
N

(ZN,Φ,θsample)
E
νΦ,θ
N

(
exp

(
− ΦN (θ;u)

))
.

It can be shown that the above marginal approximation of the likelihood is optimal in the sense
that it minimises a certain L2-error to the true likelihood [46]. The likelihood in the marginal
approximations involves computing an expectation, and methods from the pseudo-marginal MCMC
literature can be used within an MCMC method in this context [4, 9].
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We have the following result on the convergence of the approximate posterior distributions,
which can then be combined with Theorems 3.5 and 3.8 or Theorems 3.11 and 3.12 to obtain
convergence rates in N for the error in approximate posterior distributions (cf [49, Corollary 4.10
and 4.12]). This requires the parameter-to-observation map G to be sufficiently smooth.

Theorem 5.2. Suppose we have a sequence of estimates {θ̂N}∞N=1 ⊆ S, for some compact set
S ⊆ Rθ. Assume

(a) U ⊆ Rdu is bounded,

(b) supu∈U

∥∥∥G(u)−mGN (θ̂N ;u)
∥∥∥ and supu∈U

∣∣∣Φ(u)−mΦ
N (θ̂N ;u)

∣∣∣ can be bounded uniformly in N ,

and supu∈U kN (θ̂N ;u, u) converges to 0 as N tends to infinity,

(c) supu∈U ‖G(u)‖ ≤ CG <∞,

(d) E
(

supu∈U

(
ΦN (u)−mΦ

N (θ̂N ;u)
))

and E
(

supu∈U

(
GjN (u)−mGjN (θ̂N ;u)

))
, for 1 ≤ j ≤ dy,

can be bounded uniformly in N .

Then there exist constants C1, C2, C3 and C4, independent of N , such that for any δ > 0,

dHell(µ
y, µy,N,Gmarginal) ≤ C1

∥∥∥∥(EνGN(‖G − GN (θ̂N )‖1+δ
))1/(1+δ)

∥∥∥∥
L2
µ0

(U)

,

dHell(µ
y, µy,N,Φmarginal) ≤ C2

∥∥∥∥EνΦ
N

(
|Φ− ΦN (θ̂N )|1+δ

)1/(1+δ)
∥∥∥∥
L2
µ0

(U)

.

and (
EνGN

(
dHell(µ

y, µy,N,Gsample)
2
))1/2

≤ C3

∥∥∥∥(EνGN(‖G − GN (θ̂N )‖2+δ
))1/(2+δ)

∥∥∥∥
L2
µ0

(U)

,

(
EνΦ

N

(
dHell(µ

y, µy,N,Φsample)
2
))1/2

≤ C4

∥∥∥∥(EνΦ
N

(
|Φ− ΦN (θ̂N )|2+δ

))1/(2+δ)
∥∥∥∥
L2
µ0

(U)

.

Proof. This is essentially [49, Theorems 4.9 and 4.11]. As in Theorem 5.1, it is sufficient for the
first two quantities in (b) to be bounded uniformly in N rather than converging to 0 as N tends to
infinity (cf [49, Proof of Lemma 4.7]), and the change in the distribution of η in (4.1) only influences
the constants. In [49], assumption (d) is replaced by an assumption involving the Sudakov-Fernique
inequality (see Proposition 5.3 below), which is a sufficient condition for (d) to hold. However, that
assumption is not satisfied in the case of the hierarchical Gaussian process emulators considered
here, so we have introduced the more general assumption (d).

We have for simplicity again assumed that U is bounded in assumption (a). This assumption
can be relaxed in general; see [24] for a more general statement of Theorem 5.2. Assumptions (b)
and (d) are required to ensure the constants C1, C2, C3 and C4 are independent of N . Assumption
(c) is satisfied for example when G is continuous on U .

To verify assumption (d) in Theorem 5.2, we make use of the following two results.
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Proposition 5.3. (Sudakov-Fernique Inequality, [36]) Let g and h be scalar, Gaussian fields on
the compact domain U ⊆ Rdu, and suppose g and h are almost surely bounded, i.e P[supu∈U g(u) <
∞] = P[supu∈U h(u) < ∞] = 1. Suppose E((g(u) − g(u′))2) ≤ E((h(u) − h(u′))2) and E(g(u)) =
E(h(u)), for all u, u′ ∈ U . Then

E(sup
u∈U

g(u)) ≤ E(sup
u∈U

h(u)).

Proposition 5.4. (Dudley’s Inequality, [14, 23]) Let g be a scalar Gaussian field on the compact
domain U ⊆ Rdu, with zero mean E(g(u)) ≡ 0, and define on U the pseudo-metric dg(u, u

′) =

E
(
(g(u) − g(u′))2

)1/2
. For ε > 0, denote by M(U, dg, ε) the minimal number of open dg-balls of

radius ε required to cover U . Then

E(sup
u∈U

g(u)) ≤ CD
∫ ∞

0

√
logM(U, dg, ε)dε,

for a constant CD independent of g.

The Sudakov-Fernique inequality is a comparison inequality between Gaussian processes, whereas
Dudley’s inequality relates extreme values of a Gaussian process to its metric entropy. These results
can be used to verify assumption (d) in Theorem 5.2 for general covariance functions k(θ), but we
will in the following lemma concentrate on the particular case of covariance kernels chosen from
the Matérn family or the separable Matérn family.

Lemma 5.5. Suppose U ⊆ Rdu is compact, and k(θ) is chosen as either the Matérn kernel
in (2.5) with θ = {ν, λ, σ2} and ν > 1, or the separable Matérn kernel in (2.6), with θ =
{{νj}duj=1, {λj}

du
j=1, σ

2} and νj > 1, for 1 ≤ j ≤ du. Assume {θ̂N}N∈N ⊆ S, for some bounded

set S ⊆ (0,∞)dθ . Then there exists a constant C, independent of N , such that

E(sup
u∈U

ΦN (u)−mΦ
N (θ̂N ;u)) ≤ C, and E(sup

u∈U
GjN (u)−mGjN (θ̂N ;u)) ≤ C, j = 1, . . . , dy.

Proof. We will give the proof for Φ, the proof for Gj is similar. By [49, Lemma 4.8], it follows that
the assumptions of Proposition 5.3 are satisfied with g = ΦN −mΦ

N (θ̂N ) and h = Φ̃N , where Φ̃N is

the Gaussian process with mean zero and covariance kernel k(θ̂N ). We hence have

E
(

sup
u∈U

(
ΦN (u)−mΦ

N (θ̂N ;u)
))
≤ E(sup

u∈U
Φ̃N (u)).

We now use Proposition 5.4, and consider separately the two types of covariance functions.
The covariance kernel kMat(θ̂N ) is continuously differentiable, and hence Lipschitz continuous,

jointly in u and u′ for ν > 1 (see e.g. [33, Lemma C.1]), and so

|k(θ̂N ;u, u′)− k(θ̂N ;u, ũ)| ≤ L(θ̂N )‖u′ − ũ‖2.

Thus, for any u, u′ ∈ U ,

dΦ̃N
(u, u′)2 = E

(
(Φ̃N (u)− Φ̃N (u′))2

)
= kMat(θ̂N ;u, u)− kMat(θ̂N ;u, u′)− kMat(θ̂N ;u′, u) + kMat(θ̂N ;u′, u′)

≤ 2L(θ̂N )‖u− u′‖2,
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with Lipschitz constant L(θ̂N ) := supu,u′∈U ‖∇u kMat(θ̂N ;u, u′)‖. Using the formulas d
drr

νBν(r) =
−rνBν−1(r) [1] and Γ(ν) = νΓ(ν − 1), as well as the chain rule, then gives

d

dui
kMat({σ2, λ, ν};u, u′) =

d

dui

σ2

Γ(ν)2ν−1

(
‖u− u′‖2

λ

)ν
Bν

(
‖u− u′‖2

λ

)
= −2(ui − u′i)

‖u− u′‖2
2νλ2

kMat({σ2, λ, ν − 1};u, u′)

Since 0 ≤ kMat({σ2, λ, ν − 1};u, u′) ≤ σ2, it then follows from the compactness of U and S that
L(θ̂N ) can be bounded independently of N : L(θ̂N ) ≤ L := supθ∈S L(θ).

It follows that M(U, dΦ̃N
, ε) ∼ ε−2du can be chosen independently of N , which together with

Proposition 5.4 gives that E(supu∈U Φ̃N (u)) can be bounded independently of N .

The proof for ksepMat(θ̂N ) is similar. Iterating the inequality |ab− cd| ≤ a|b− d|+ d|a− c|, for
real, positive numbers a, b, c, d, and using the Lipschitz continuity of the Matérn kernel for ν > 1,
as well as the bound kMat(θ̂N ;uj , u

′
j) ≤ σ̂2

N , we have for any u, u′ ∈ U ,

dΦ̃N
(u, u′)2 = E

(
(Φ̃N (u)− Φ̃N (u′))2

)
=

du∏
j=1

kMat(θ̂N ;uj , uj)−
du∏
j=1

kMat(θ̂N ;uj , u
′
j)−

du∏
j=1

kMat(θ̂N ;u′j , uj) +

du∏
j=1

kMat(θ̂N ;u′j , u
′
j)

≤ 2du(σ̂2
N )du−1L(θ̂N )

du∑
j=1

|uj − u′j |

≤ L̃‖u− u′‖1,

where L̃ = 2du sup
θ̂N∈S(σ̂2

N )du−1L(θ̂N ). It follows that M(U, dΦ̃N
, ε) ∼ ε−2du , as in the case of

Matérn kernels. This finishes the proof.

6 Conclusions and Discussion

Gaussian process regression is frequently used to approximate complex models. In this work, we
looked at how the accuracy of the approximation depends on the number of model evaluations
used to construct the Gaussian process emulator, in the setting where the hyper-parameters in the
Gaussian process emulator are a-priori unknown and inferred as part of the emulation. The main
results here are Theorems 3.5, 3.8, 3.11 and 3.12. These results show how fast we can expect the
error to decay as a function of the number of model evaluations, and relate the decay rate of the
error to the smoothness of both the function we are approximating and the employed kernel.

Generally speaking, we obtain error estimates of the form

‖f −mf
N‖L2(U) ≤ C1N

−r1(‖f‖+ ‖m‖), and ‖k
1
2
N‖L2(U) ≤ C2N

−r2 ,

for the predictive mean mf
N (as in (2.2)) and predictive variance kN (as in (2.3)). The constants C1

and C2 depend on all hyper-parameters, whereas the rates r1 and r2 depend only on the estimated
smoothness parameter(s) and the true smoothness parameter(s) (i.e. the smoothness of the given
f). For a given function f , convergence of the Gaussian process emulator fN is guaranteed under
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very mild assumptions on the values of the estimated hyper-parameters, cf Theorems 3.5 and 3.11
and the discussions thereafter.

Let us briefly examine the optimality of our results. By [34, Theorem 23], we have the following
bound for the best approximation of f ∈ H τ̃ (U) based on N function values f(u1), . . . , f(uN ):

c1N
− τ̃
du ≤ inf

{u1,...,uN}⊆U
φ1,...,φN∈L2(U)

sup
‖f‖

Hτ̃ (U)
≤1

∥∥∥∥∥f −
N∑
n=1

f(un)φn

∥∥∥∥∥
L2(U)

≤ c2N
− τ̃
du .

We can then draw the following conclusions about the rates in Theorem 3.5:

• We obtain optimal convergence rates when the estimated smoothness matches the true smooth-
ness, i.e. τ(θ̂N ) = τ̃ , for any choice of design points DN with optimal decay of the fill distance

hDN ,U ≤ CN
− 1
du .

• We obtain optimal convergence rates when the estimated smoothness is greater than or equal
to the true smoothness, i.e. τ− ≥ τ̃ , for any choice of quasi-uniform design points DN with

optimal decay of the fill distance hDN ,U ≤ CN
− 1
du .

• We obtain suboptimal convergence rates when the estimated smoothness is greater than the
true smoothness, i.e. τ− ≥ τ̃ , and the design points DN are not quasi-uniform. These issues
arise due to the bound depending on ‖mf

N (θ̂N )‖H τ̃ (U), which can generally blow up as N →∞.

If the mesh ratio grows with ρDN ,U ≤ CN r, Theorem 3.5 still gives ‖f −mf
N‖L2(U) → 0 as

N →∞, provided τ+ ≤ τ̃(1+(rdu)−1). If τ+ is too large, convergence is no longer guaranteed.

• We obtain suboptimal convergence rates when the estimated smoothness is less than the true
smoothness, i.e. τ+ ≤ τ̃ . Theorem 3.5 still gives ‖f −mf

N‖L2(U) → 0 as N →∞, under very
mild conditions on τ−. We note that there are some results that allow to recover a faster
convergence rate in this setting, but these typically require a particular relation between
τ(θ̂N ) and τ̃ , and are hence difficult to apply in a general setting. For example, the results
in [54, Section 11.5] require τ̃ ≥ 2τ(θ̂N ).

A similar discussion applies to ‖k
1
2
N‖L2(U). There are no optimal rates for comparison, but

we note that Theorem 3.8 in some settings gives almost the optimal rate N−
τ̃
du

+ 1
2 for ‖f −∑N

n=1 f(un)φn‖L∞(U) (defined as above, see [34, Theorem 23]), which is crucially used as an upper
bound in the proof.

A similar discussion also applies to Theorems 3.11 and 3.12. By e.g. [15, Theorem 4.5.1], we

have the following bound for the best approximation of f ∈ H{r̃}⊗du (U) based on N function values

f(u1), . . . , f(uN ), in the case of the d-dimensional torus U = Td:

c1N
−r̃ log(N)r̃(du−1) ≤ inf

{u1,...,uN}⊆U
φ1,...,φN∈L2(U)

sup
‖f‖

H
{r̃}
⊗du

(U)
≤1

∥∥∥∥∥f −
N∑
n=1

f(un)φn

∥∥∥∥∥
L2(U)

.

An algorithm that achieves this lower bound is not yet known. Up to the logarithmic factors,
Theorem 3.11 again gives optimal convergence rates when the estimated smoothness matches the
true smoothness and the fill distance of the one-dimensional point sets decays at the optimal rate
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h
X

(i)
j ,Uj

≤ C1m
−1
i . For quasi-uniform one-dimensional point sets, we also get optimal convergence

rates when the smoothness is overestimated. Underestimated smoothness leads to suboptimal
convergence rates, and overestimated smoothness leads to convergence in Theorem 3.11 only if
r+ < r̃(1 + r−1

ρ ).
We note here that the estimation of hyper-parameters in an empirical Bayes’ framework can in

general have severe effects on issues such as consistency of MAP estimators; see the recent work [16]
for a discussion. Gaussian process regression, viewed as an inverse problem to recover the function
f from the function values f(u1), . . . , f(uN ), does however not fit into the framework considered in
[16], and the results in this paper show that we do get consistency of the MAP estimate (i.e. the

convergence of mf
N to f) also with estimated hyper-parameters.

In section 3.3, we briefly examine the point-wise prediction error, and bound the error of using
the predictive meanmf

N or the predictive process fN (as in (2.4)) to predict f(u) at some unobserved
location u ∈ U \DN . Again, we obtain convergence to zero as N tends to infinity under very mild
assumptions on the estimated hyper-parameters.

Furthermore, we looked at the effect of approximating the parameter-to-observation map, or di-
rectly the log-likelihood, in a Bayesian inference problem by a Gaussian process emulator in section
5. This results in a computationally cheaper approximation to the Bayesian posterior distribu-
tion, which is crucial in large scale applications. The main results in this context are Theorems
5.1 and 5.2, which bound the error between the true posterior and the approximate posterior in
terms of the accuracy of the Gaussian process emulator. These results give a justification for using
Gaussian process emulators to approximate the Bayesian posterior, as they show that the approx-
imate Bayesian posterior is close to the true posterior as long as the Gaussian process emulator
approximates the data likelihood sufficiently well.

As a next step, it would be interesting to combine the results in this paper with results on the
convergence of the estimated hyper-parameters θ̂N . For example, the recent work [20] studies the
asymptotics of the maximum likelihood estimator of the marginal variance σ2 in the Matérn model,
under assumptions similar to this work. It would also be useful to include the Gaussian covariance
kernel, corresponding to the limit ν =∞ in the Matérn model, in our results.
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