118,328 research outputs found

    SuperSpike: Supervised learning in multi-layer spiking neural networks

    Full text link
    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in-vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in-silico. Here we revisit the problem of supervised learning in temporally coding multi-layer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three factor learning rule capable of training multi-layer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike-time patterns

    Neural Network Models of Learning and Memory: Leading Questions and an Emerging Framework

    Full text link
    Office of Naval Research and the Defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657); National Institutes of Health (NIH 20-316-4304-5

    Information theory, complexity and neural networks

    Get PDF
    Some of the main results in the mathematical evaluation of neural networks as information processing systems are discussed. The basic operation of feedback and feed-forward neural networks is described. Their memory capacity and computing power are considered. The concept of learning by example as it applies to neural networks is examined

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    A two step algorithm for learning from unspecific reinforcement

    Get PDF
    We study a simple learning model based on the Hebb rule to cope with "delayed", unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non- universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Moreover, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic variant of the algorithm adde

    Contrastive Hebbian Learning with Random Feedback Weights

    Full text link
    Neural networks are commonly trained to make predictions through learning algorithms. Contrastive Hebbian learning, which is a powerful rule inspired by gradient backpropagation, is based on Hebb's rule and the contrastive divergence algorithm. It operates in two phases, the forward (or free) phase, where the data are fed to the network, and a backward (or clamped) phase, where the target signals are clamped to the output layer of the network and the feedback signals are transformed through the transpose synaptic weight matrices. This implies symmetries at the synaptic level, for which there is no evidence in the brain. In this work, we propose a new variant of the algorithm, called random contrastive Hebbian learning, which does not rely on any synaptic weights symmetries. Instead, it uses random matrices to transform the feedback signals during the clamped phase, and the neural dynamics are described by first order non-linear differential equations. The algorithm is experimentally verified by solving a Boolean logic task, classification tasks (handwritten digits and letters), and an autoencoding task. This article also shows how the parameters affect learning, especially the random matrices. We use the pseudospectra analysis to investigate further how random matrices impact the learning process. Finally, we discuss the biological plausibility of the proposed algorithm, and how it can give rise to better computational models for learning
    corecore