63 research outputs found

    A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

    Full text link
    [EN] The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev¿Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for ¿ = 2,which corresponds to an optimal method in the sense of Kung and Traub¿s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under Grant MTM2014-52016-C2-1-2-P and by the project of Generalitat Valenciana Prometeo/2016/089Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alarcon-Correa, D. (2019). A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots. Mathematics. 7(4):1-12. https://doi.org/10.3390/math7040339S11274Gutiérrez, J. M., & Hernández, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. Bulletin of the Australian Mathematical Society, 55(1), 113-130. doi:10.1017/s0004972700030586Kanwar, V., Singh, S., & Bakshi, S. (2008). Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations. Numerical Algorithms, 47(1), 95-107. doi:10.1007/s11075-007-9149-4Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Xiaojian, Z. (2008). Modified Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 203(2), 824-827. doi:10.1016/j.amc.2008.05.092Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Kou, J., & Li, Y. (2007). Modified Chebyshev–Halley methods with sixth-order convergence. Applied Mathematics and Computation, 188(1), 681-685. doi:10.1016/j.amc.2006.10.018Li, D., Liu, P., & Kou, J. (2014). An improvement of Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 235, 221-225. doi:10.1016/j.amc.2014.02.083Sharma, J. R. (2015). Improved Chebyshev–Halley methods with sixth and eighth order convergence. Applied Mathematics and Computation, 256, 119-124. doi:10.1016/j.amc.2015.01.002Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Behl, R., Alshomrani, A. S., & Motsa, S. S. (2018). An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. Journal of Mathematical Chemistry, 56(7), 2069-2084. doi:10.1007/s10910-018-0857-xMcNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence

    Get PDF
    This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv.In this paper we give methodological survey of “contemporary methods” for solving the nonlinear equation f(x) = 0. The reason for this review is that many authors in present days rediscovered such classical methods. Here we develop one methodological schema for constructing nonstationary methods with a preliminary chosen speed of convergence

    Study of iterative methods though the Cayley quadratic test

    Full text link
    [EN] Many iterative methods for solving nonlinear equations have been developed recently. The main advantage claimed by their authors is the improvement of the order of convergence. In this work, we compare their dynamical behavior on quadratic polynomials with the one of Newton's scheme. This comparison is defined in what we call Cayley Quadratic Test (CQT) which can be used as a first test to check the efficiency of such methods. Moreover we make a brief insight in cubic polynomials. (C) 2014 Elsevier B.V. All rights reserved.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Babajee, D.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2016). Study of iterative methods though the Cayley quadratic test. Journal of Computational and Applied Mathematics. 291:358-369. https://doi.org/10.1016/j.cam.2014.09.020S35836929

    Extending the applicability of a fourth-order method under Lipschitz continuous derivative in Banach spaces

    Get PDF
    We extend the applicability of a fourth-order convergent nonlinear system solver by providing its local convergence analysis under Lipschitz continuous Fréchet derivative in Banach spaces. Our analysis only uses the first-order Fréchet derivative to ensure the convergence and provides the uniqueness of the solution, the radius of convergence ball and the computable error bounds. This study is applicable in solving such problems for which earlier studies are not effective. Furthermore, the convergence region for the scheme to approximate the zeros of various polynomials is studied using basins of attraction tool. Various computational tests are conducted to validate that our analysis is beneficial when prior studies fail to solve problems.The first author has been supported by the University Grants Commission, India.Publisher's Versio

    Modelado matemático y simulación numérica de disipadores de calor para luminarias LED. Aplicaciones a alumbrado público

    Full text link
    [ES] En esta tesis se plasma un ejemplo paradigmático de Matemática Industrial: se define un problema real de enorme interés actual, se presenta un modelo matemático del mismo, se resuelve numéricamente mediante métodos de elementos Finitos, se realiza diferentes prototipos y se verifican experimentalmente las predicciones teóricas; además, en este caso particular, los prototipos aquí analizados se llevaron al mercado, cerrando un ciclo que se inicia con el modelado matemático y se termina con la transferencia a la sociedad de una solución competitiva a un problema real. El problema que se aborda en esta tesis se enmarca en el desarrollo de soluciones de iluminación basadas en tecnología de diodos emisores de luz (LED, por su abreviación en inglés) de alta potencia. De hecho, el problema que se afronta es el desarrollo de disipadores pasivos de calor que garanticen la correcta evacuación del calor producido en el dispositivo LED y aseguren su adecuado funcionamiento. Para ello, se modela el problema de transferencia de calor (incluyendo conducción, radiación y convección) en diferentes prototipos, se resuelve con técnicas de Elementos Finitos y se optimizan los diseños propuestos, garantizando siempre que la temperatura de operación del chip LED sea correcta. Una vez realizado este análisis teórico, se construyen los prototipos y se verifican experimentalmente las predicciones realizadas. Por último, en los anexos se recoge una serie de aportaciones complementarias: una sobre el gas de van der Waals y la Geometría de Contacto y otras dos sobre la convergencia de métodos iterativos.[CA] En aquesta tesi es plasma un exemple paradigmàtic de Matemàtica Industrial: es defineix un problema real d'enorme interès actual, es presenta un model matemàtic del mateix, es resol numèricament mitjançant mètodes d'Elements Finits, es realitza diferents prototips i es verifiquen experimentalment les prediccions teòriques; a més, en aquest cas particular, els prototips aquí analitzats es van dur a mercat, tancant un cicle que s'inicia amb el modelatge matemàtic i s'acaba amb la transferència a la societat d'una solució competitiva a un problema real. El problema que s'aborda en aquesta tesi s'emmarca en el desenvolupament de solucions d'il·luminació basades en tecnologia LED d'alta potència. De fet, el problema que s'afronta és el desenvolupament de dissipadors passius de calor que garanteixin la correcta evacuació de la calor produïda da en el dispositiu LED i assegurin la seva adequat funcionament. Per a això, es modela el problema de transferència de calor (incloent conducció, radiació i convecció) en diferents prototips, es resol amb tècniques d'Elements Finits i s'optimitzen els dissenys proposats, garantint sempre que la temperatura d'operació de l'xip LED sigui correcta. Un cop realitzat aquest anàlisi teòrica, es construeixen els prototips i es verifiquen experimentalment les prediccions realitzades. Finalment, en els annexos es recull una sèrie d'aportacions complementàries: una sobre el gas de van der Waals i la Geometria de Contacte i dues sobre la convergència de mètodes iteratius.[EN] In this thesis, a paradigmatic example of Industrial Mathematics is captured: a real problem of enormous current interest is defined, a mathematical model of it is presented, it is solved numerically using Finite Element methods, different prototypes are made and the theoretical predictions are experimentally verified; Furthermore, in this particular case, the prototypes analyzed here were brought to the market, closing a cycle that begins with mathematical modeling and ends with the transfer to society of a competitive solution to a real problem. The problem addressed in this thesis is part of the development of lighting solutions based on high-power LED technology. In fact, the problem being faced is the development of passive heat sinks that guarantee the correct evacuation of the heat produced in the LED device and ensure its proper operation. For this, the heat transfer problem (including conduction, radiation and convection) is modeled in different prototypes, it is solved with Finite Element techniques and the proposed designs are optimized, always guaranteeing that the operating temperature of the LED chip is correct. Once this theoretical analysis has been carried out, the prototypes are built and the predictions made are experimentally verified. Finally, the annexes contain a series of complementary contributions: one on van der Waals gas and Contact Geometry and two others on the convergence of iterative methods.A la Secretarıa de Educación Superior, Ciencia,Tecnología e Innovación (SENESCYT) por el apoyo económico para poder realizar mis estudios en el extranjero con el fin de fortalecer el talento humano en el Ecuador.Alarcón Correa, DF. (2020). Modelado matemático y simulación numérica de disipadores de calor para luminarias LED. Aplicaciones a alumbrado público [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/155989TESI

    Two New Predictor-Corrector Iterative Methods with Third- and Ninth-Order Convergence for Solving Nonlinear Equations

    Get PDF
    In this paper, we suggest and analyze two new predictor-corrector iterative methods with third and ninth-order convergence for solving nonlinear equations. The first method is a development of [M. A. Noor, K. I. Noor and K. Aftab, Some New Iterative Methods for Solving Nonlinear Equations, World Applied Science Journal, 20(6),(2012):870-874.] based on the trapezoidal integration rule and the centroid mean. The second method is an improvement of the first new proposed method by using the technique of updating the solution. The order of convergence and corresponding error equations of new proposed methods are proved. Several numerical examples are given to illustrate the efficiency and performance of these new methods and compared them with the Newton's method and other relevant iterative methods. Keywords: Nonlinear equations, Predictor–corrector methods, Trapezoidal integral rule, Centroid mean, Technique of updating the solution; Order of convergence

    Chaos and convergence of a family generalizing Homeier's method with damping parameters

    Full text link
    [EN] In this paper, a family of parametric iterative methods for solving nonlinear equations, including Homeier's scheme, is presented. Its local convergence is obtained and the dynamical behavior on quadratic polynomials of the resulting family is studied in order to choose those values of the parameter that ensure stable behavior. To get this aim, the analysis of fixed and critical points and the associated parameter plane show the dynamical richness of the family and allow us to find members of this class with good numerical properties and also other ones with pathological conduct. To check the stable behavior of the good selected ones, the discretized planar 1D-Bratu problem is solved. Some of those chosen members of the family achieve good results when Homeier's scheme fails.This research was supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P.Cordero Barbero, A.; Franques, A.; Torregrosa Sánchez, JR. (2016). Chaos and convergence of a family generalizing Homeier's method with damping parameters. Nonlinear Dynamics. 85(3):1939-1954. https://doi.org/10.1007/s11071-016-2807-0S19391954853Amat, S., Busquier, S., Bermúdez, C., Magreñán, Á.A.: On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. doi: 10.1007/s11071-015-2179-xAmat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012)Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)Babajee, D.K.R., Cordero, A., Torregrosa, J.R.: Study of iterative methods through the Cayley Quadratic Test. J. Comput. Appl. Math. 291, 358–369 (2016)Babajee, D.K.R., Thukral, R.: On a 4-point sixteenth-order king family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012, ID 979245, 13 (2012)Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)Boyd, J.P.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)Bratu, G.: Sur les equation integrals non-lineaires. Bull. Math. Soc. Fr. 42, 113–142 (1914)Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013, Article ID 780153 (2013)Chun, C., Lee, M.Y.: A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl. Math. Comput. 223, 506–519 (2013)Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev–Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013)Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. Fr. 47, 161–271 (1919); 48, 33–94; 208–314 (1920)Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Transl. Am. Math. Soc. Ser. 2, 295–381 (1963)Gutiérrez, J.M., Hernández, M.A., Romero, N.: Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233, 2688–2695 (2010)Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)Jacobsen, J., Schmitt, K.: The Liouville–Bratu–Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)Jalilian, R.: Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Commun. 181, 1868–1872 (2010)Julia, G.: Mémoire sur l’iteration des fonctions rationnelles. J. Math. Pure Appl. 8, 47–245 (1918)Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)Mohsen, A.: A simple solution of the Bratu problem. Comput. Math. Appl. 67, 26–33 (2014)Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equation. Appl. Math. Comput. 227, 567–592 (2014)Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1960)Petković, M., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Amsterdam (2013)Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)Sharma, J.R.: Improved Chebyshev–Halley method with sixth and eighth order of convergence. Appl. Math. Comput. 256, 119–124 (2015)Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24, 37–46 (2002)Wan, Y.Q., Guo, Q., Pan, N.: Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 5, 5–8 (2004

    Estudio sobre convergencia y dinámica de los métodos de Newton, Stirling y alto orden

    Get PDF
    Las matemáticas, desde el origen de esta ciencia, han estado al servicio de la sociedad tratando de dar respuesta a los problemas que surgían. Hoy en día sigue siendo así, el desarrollo de las matemáticas está ligado a la demanda de otras ciencias que necesitan dar solución a situaciones concretas y reales. La mayoría de los problemas de ciencia e ingeniería no pueden resolverse usando ecuaciones lineales, es por tanto que hay que recurrir a las ecuaciones no lineales para modelizar dichos problemas (Amat, 2008; véase también Argyros y Magreñán, 2017, 2018), entre otros. El conflicto que presentan las ecuaciones no lineales es que solo en unos pocos casos es posible encontrar una solución única, por tanto, en la mayor parte de los casos, para resolverlas hay que recurrir a los métodos iterativos. Los métodos iterativos generan, a partir de un punto inicial, una sucesión que puede converger o no a la solución
    corecore