131 research outputs found

    A M\"untz-Collocation spectral method for weakly singular volterra integral equations

    Get PDF
    In this paper we propose and analyze a fractional Jacobi-collocation spectral method for the second kind Volterra integral equations (VIEs) with weakly singular kernel (xs)μ,0<μ<1(x-s)^{-\mu},0<\mu<1. First we develop a family of fractional Jacobi polynomials, along with basic approximation results for some weighted projection and interpolation operators defined in suitable weighted Sobolev spaces. Then we construct an efficient fractional Jacobi-collocation spectral method for the VIEs using the zeros of the new developed fractional Jacobi polynomial. A detailed convergence analysis is carried out to derive error estimates of the numerical solution in both LL^{\infty}- and weighted L2L^{2}-norms. The main novelty of the paper is that the proposed method is highly efficient for typical solutions that VIEs usually possess. Precisely, it is proved that the exponential convergence rate can be achieved for solutions which are smooth after the variable change xx1/λx\rightarrow x^{1/\lambda} for a suitable real number λ\lambda. Finally a series of numerical examples are presented to demonstrate the efficiency of the method

    An efficient spectral method for solving third-kind Volterra integral equations with non-smooth solutions

    Full text link
    This paper is concerned with the numerical solution of the third kind Volterra integral equations with non-smooth solutions based on the recursive approach of the spectral Tau method. To this end, a new set of the fractional version of canonical basis polynomials (called FC-polynomials) is introduced. The approximate polynomial solution (called Tau-solution) is expressed in terms of FC-polynomials. The fractional structure of Tau-solution allows recovering the standard degree of accuracy of spectral methods even in the case of non-smooth solutions. The convergence analysis of the method is studied. The obtained numerical results show the accuracy and efficiency of the method compared to other existing methods

    High-Order Multivariate Spectral Algorithms for High-Dimensional Nonlinear Weakly Singular Integral Equations with Delay

    Full text link
    One of the open problems in the numerical analysis of solutions to high-dimensional nonlinear integral equations with memory kernel and proportional delay is how to preserve the high-order accuracy for nonsmooth solutions. It is well-known that the solutions to these equations display a typical weak singularity at the initial time, which causes challenges in developing high-order and efficient numerical algorithms. The key idea of the proposed approach is to adopt a smoothing transformation for the multivariate spectral collocation method to circumvent the curse of singularity at the beginning of time. Therefore, the singularity of the approximate solution can be tailored to that of the exact one, resulting in high-order spectral collocation algorithms. Moreover, we provide a framework for studying the rate of convergence of the proposed algorithm. Finally, we give a numerical test example to show that the approach can preserve the nonsmooth solution to the underlying problems. © 2022 by the authors.King Saud University, KSUM. A. Zaky and A. Aldraiweesh extend their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia)

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    Numerical solution of fractional Fredholm integro-differential equations by spectral method with fractional basis functions

    Full text link
    This paper presents an efficient spectral method for solving the fractional Fredholm integro-differential equations. The non-smoothness of the solutions to such problems leads to the performance of spectral methods based on the classical polynomials such as Chebyshev, Legendre, Laguerre, etc, with a low order of convergence. For this reason, the development of classic numerical methods to solve such problems becomes a challenging issue. Since the non-smooth solutions have the same asymptotic behavior with polynomials of fractional powers, therefore, fractional basis functions are the best candidate to overcome the drawbacks of the accuracy of the spectral methods. On the other hand, the fractional integration of the fractional polynomials functions is in the class of fractional polynomials and this is one of the main advantages of using the fractional basis functions. In this paper, an implicit spectral collocation method based on the fractional Chelyshkov basis functions is introduced. The framework of the method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton's iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with smooth and non-smooth solutions in comparison with other existing methods
    corecore