research

A M\"untz-Collocation spectral method for weakly singular volterra integral equations

Abstract

In this paper we propose and analyze a fractional Jacobi-collocation spectral method for the second kind Volterra integral equations (VIEs) with weakly singular kernel (xs)μ,0<μ<1(x-s)^{-\mu},0<\mu<1. First we develop a family of fractional Jacobi polynomials, along with basic approximation results for some weighted projection and interpolation operators defined in suitable weighted Sobolev spaces. Then we construct an efficient fractional Jacobi-collocation spectral method for the VIEs using the zeros of the new developed fractional Jacobi polynomial. A detailed convergence analysis is carried out to derive error estimates of the numerical solution in both LL^{\infty}- and weighted L2L^{2}-norms. The main novelty of the paper is that the proposed method is highly efficient for typical solutions that VIEs usually possess. Precisely, it is proved that the exponential convergence rate can be achieved for solutions which are smooth after the variable change xx1/λx\rightarrow x^{1/\lambda} for a suitable real number λ\lambda. Finally a series of numerical examples are presented to demonstrate the efficiency of the method

    Similar works