48,921 research outputs found

    Mapping the Evolution of "Clusters": A Meta-analysis

    Get PDF
    This paper presents a meta-analysis of the “cluster literature” contained in scientific journals from 1969 to 2007. Thanks to an original database we study the evolution of a stream of literature which focuses on a research object which is both a theoretical puzzle and an empirical widespread evidence. We identify different growth stages, from take-off to development and maturity. We test the existence of a life-cycle within the authorships and we discover the existence of a substitutability relation between different collaborative behaviours. We study the relationships between a “spatial” and an “industrial” approach within the textual corpus of cluster literature and we show the existence of a “predatory” interaction. We detect the relevance of clustering behaviours in the location of authors working on clusters and in measuring the influence of geographical distance in co-authorship. We measure the extent of a convergence process of the vocabulary of scientists working on clusters.Cluster, Life-Cycle, Cluster Literature, Textual Analysis, Agglomeration, Co-Authorship

    Sharp transition towards shared vocabularies in multi-agent systems

    Get PDF
    What processes can explain how very large populations are able to converge on the use of a particular word or grammatical construction without global coordination? Answering this question helps to understand why new language constructs usually propagate along an S-shaped curve with a rather sudden transition towards global agreement. It also helps to analyze and design new technologies that support or orchestrate self-organizing communication systems, such as recent social tagging systems for the web. The article introduces and studies a microscopic model of communicating autonomous agents performing language games without any central control. We show that the system undergoes a disorder/order transition, going trough a sharp symmetry breaking process to reach a shared set of conventions. Before the transition, the system builds up non-trivial scale-invariant correlations, for instance in the distribution of competing synonyms, which display a Zipf-like law. These correlations make the system ready for the transition towards shared conventions, which, observed on the time-scale of collective behaviors, becomes sharper and sharper with system size. This surprising result not only explains why human language can scale up to very large populations but also suggests ways to optimize artificial semiotic dynamics.Comment: 12 pages, 4 figure

    Biomedical Terminologies and Ontologies: Enabling Biomedical Semantic Interoperability and Standards in Europe

    Get PDF
    In the management of biomedical data, vocabularies such as ontologies and terminologies (O/Ts) are used for (i) domain knowledge representation and (ii) interoperability. The knowledge representation role supports the automated reasoning on, and analysis of, data annotated with O/Ts. At an interoperability level, the use of a communal vocabulary standard for a particular domain is essential for large data repositories and information management systems to communicate consistently with one other. Consequently, the interoperability benefit of selecting a particular O/T as a standard for data exchange purposes is often seen by the end-user as a function of the number of applications using that vocabulary (and, by extension, the size of the user base). Furthermore, the adoption of an O/T as an interoperability standard requires confidence in its stability and guaranteed continuity as a resource

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    The Effect of Collective Attention on Controversial Debates on Social Media

    Full text link
    We study the evolution of long-lived controversial debates as manifested on Twitter from 2011 to 2016. Specifically, we explore how the structure of interactions and content of discussion varies with the level of collective attention, as evidenced by the number of users discussing a topic. Spikes in the volume of users typically correspond to external events that increase the public attention on the topic -- as, for instance, discussions about `gun control' often erupt after a mass shooting. This work is the first to study the dynamic evolution of polarized online debates at such scale. By employing a wide array of network and content analysis measures, we find consistent evidence that increased collective attention is associated with increased network polarization and network concentration within each side of the debate; and overall more uniform lexicon usage across all users.Comment: accepted at ACM WebScience 201

    A Trio Neural Model for Dynamic Entity Relatedness Ranking

    Full text link
    Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.Comment: In Proceedings of CoNLL 201
    • 

    corecore