Measuring entity relatedness is a fundamental task for many natural language
processing and information retrieval applications. Prior work often studies
entity relatedness in static settings and an unsupervised manner. However,
entities in real-world are often involved in many different relationships,
consequently entity-relations are very dynamic over time. In this work, we
propose a neural networkbased approach for dynamic entity relatedness,
leveraging the collective attention as supervision. Our model is capable of
learning rich and different entity representations in a joint framework.
Through extensive experiments on large-scale datasets, we demonstrate that our
method achieves better results than competitive baselines.Comment: In Proceedings of CoNLL 201