16,634 research outputs found

    Convergence rates of general regularization methods for statistical inverse problems and applications

    Get PDF
    During the past the convergence analysis for linear statistical inverse problems has mainly focused on spectral cut-off and Tikhonov type estimators. Spectral cut-off estimators achieve minimax rates for a broad range of smoothness classes and operators, but their practical usefulness is limited by the fact that they require a complete spectral decomposition of the operator. Tikhonov estimators are simpler to compute, but still involve the inversion of an operator and achieve minimax rates only in restricted smoothness classes. In this paper we introduce a unifying technique to study the mean square error of a large class of regularization methods (spectral methods) including the aforementioned estimators as well as many iterative methods, such as í-methods and the Landweber iteration. The latter estimators converge at the same rate as spectral cut-off, but only require matrixvector products. Our results are applied to various problems, in particular we obtain precise convergence rates for satellite gradiometry, L2-boosting, and errors in variable problems. --Statistical inverse problems,iterative regularization methods,Tikhonov regularization,nonparametric regression,minimax convergence rates,satellite gradiometry,Hilbert scales,boosting,errors in variable

    Convergence rates of general regularization methods for statistical inverse problems and applications

    Get PDF
    During the past the convergence analysis for linear statistical inverse problems has mainly focused on spectral cut-off and Tikhonov type estimators. Spectral cut-off estimators achieve minimax rates for a broad range of smoothness classes and operators, but their practical usefulness is limited by the fact that they require a complete spectral decomposition of the operator. Tikhonov estimators are simpler to compute, but still involve the inversion of an operator and achieve minimax rates only in restricted smoothness classes. In this paper we introduce a unifying technique to study the mean square error of a large class of regularization methods (spectral methods) including the aforementioned estimators as well as many iterative methods, such as ν-methods and the Landweber iteration. The latter estimators converge at the same rate as spectral cut-off, but only require matrixvector products. Our results are applied to various problems, in particular we obtain precise convergence rates for satellite gradiometry, L2-boosting, and errors in variable problems. AMS subject classifications: 62G05, 62J05, 62P35, 65J10, 35R3

    Regularization of statistical inverse problems and the Bakushinskii veto

    Get PDF
    In the deterministic context Bakushinskii's theorem excludes the existence of purely data driven convergent regularization for ill-posed problems. We will prove in the present work that in the statistical setting we can either construct a counter example or develop an equivalent formulation depending on the considered class of probability distributions. Hence, Bakushinskii's theorem does not generalize to the statistical context, although this has often been assumed in the past. To arrive at this conclusion, we will deduce from the classic theory new concepts for a general study of statistical inverse problems and perform a systematic clarification of the key ideas of statistical regularization.Comment: 20 page

    Empirical risk minimization as parameter choice rule for general linear regularization methods.

    No full text
    We consider the statistical inverse problem to recover f from noisy measurements Y = Tf + sigma xi where xi is Gaussian white noise and T a compact operator between Hilbert spaces. Considering general reconstruction methods of the form (f) over cap (alpha) = q(alpha) (T*T)T*Y with an ordered filter q(alpha), we investigate the choice of the regularization parameter alpha by minimizing an unbiased estiate of the predictive risk E[parallel to T f - T (f) over cap (alpha)parallel to(2)]. The corresponding parameter alpha(pred) and its usage are well-known in the literature, but oracle inequalities and optimality results in this general setting are unknown. We prove a (generalized) oracle inequality, which relates the direct risk E[parallel to f - (f) over cap (alpha pred)parallel to(2)] with the oracle prediction risk inf(alpha>0) E[parallel to T f - T (f) over cap (alpha)parallel to(2)]. From this oracle inequality we are then able to conclude that the investigated parameter choice rule is of optimal order in the minimax sense. Finally we also present numerical simulations, which support the order optimality of the method and the quality of the parameter choice in finite sample situations

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Adaptive complexity regularization for linear inverse problems

    Full text link
    We tackle the problem of building adaptive estimation procedures for ill-posed inverse problems. For general regularization methods depending on tuning parameters, we construct a penalized method that selects the optimal smoothing sequence without prior knowledge of the regularity of the function to be estimated. We provide for such estimators oracle inequalities and optimal rates of convergence. This penalized approach is applied to Tikhonov regularization and to regularization by projection.Comment: Published in at http://dx.doi.org/10.1214/07-EJS115 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore