172 research outputs found

    Efficient model-correction-based reliability analysis of uncertain dynamical systems

    Get PDF
    The scope of this paper is to apply a model-correction-based strategy for efficient reliability analysis of uncertain dynamical systems based on a low-fidelity (LF) model whose outcomes are corrected in a probabilistic sense to represent the more realistic outcomes of a high-fidelity (HF) model. In the model-correction approach utilized, the LF model is calibrated to the HF model close to the so-called most probable point in standard normal space, which allows a more realistic assessment of the considered complex dynamical system. Since only few expensive limit state function evaluations of the HF model are required, an efficient reliability analysis is enabled. In an application example, the LF model describes an existing single-span railway bridge modelled as simply supported Euler–Bernoulli beam subjected to moving single forces representing the axle loads of a moving train. The HF modelling approach accounts for the bridge–train interaction by modelling the passing train as mass-spring-damper system, however increasing the computational effort of the limit state function evaluations. Failure probabilities evaluated with the model-correction approach are contrasted and discussed with failure probabilities of the sophisticated bridge–train interaction model evaluated with the first-order reliability method (FORM). It is demonstrated that the efficiency of the method depends on the correlation between the LF and the HF model. A comparison of the results of FORM and the model-correction-based approach shows that the latter provides reliable failure probability prediction of the HF model while leading to a significant reduction in computational effort

    Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)

    Full text link
    Multifidelity simulation methodologies are often used in an attempt to judiciously combine low-fidelity and high-fidelity simulation results in an accuracy-increasing, cost-saving way. Candidates for this approach are simulation methodologies for which there are fidelity differences connected with significant computational cost differences. Physics-informed Neural Networks (PINNs) are candidates for these types of approaches due to the significant difference in training times required when different fidelities (expressed in terms of architecture width and depth as well as optimization criteria) are employed. In this paper, we propose a particular multifidelity approach applied to PINNs that exploits low-rank structure. We demonstrate that width, depth, and optimization criteria can be used as parameters related to model fidelity, and show numerical justification of cost differences in training due to fidelity parameter choices. We test our multifidelity scheme on various canonical forward PDE models that have been presented in the emerging PINNs literature

    Multifidelity prediction in wildfire spread simulation: Modeling, uncertainty quantification and sensitivity analysis

    Get PDF
    Wildfire behavior predictions typically suffer from significant uncertainty. However, wildfire modeling uncertainties remain largely unquantified in the literature, mainly due to computing constraints. New multifidelity techniques provide a promising opportunity to overcome these limitations. Therefore, this paper explores the applicability of multifidelity approaches to wildland fire spread prediction problems. Using a canonical simulation scenario, we assessed the performance of control variates Monte-Carlo (MC) and multilevel MC strategies, achieving speedups of up to 100x in comparison to a standard MC method. This improvement was leveraged to quantify aleatoric uncertainties and analyze the sensitivity of the fire rate of spread (RoS) to weather and fuel parameters using a full-physics fire model, namely the Wildland-Urban Interface Fire Dynamics Simulator (WFDS), at an affordable computation cost. The proposed methodology may also be used to analyze uncertainty in other relevant fire behavior metrics such as heat transfer, fuel consumption and smoke production indicators

    Scalable Environment for Quantification of Uncertainty and Optimization in Industrial Applications (SEQUOIA)

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143027/1/6.2017-1327.pd

    Effective Simulation and Optimization of a Laser Peening Process

    Get PDF
    Laser peening (LP) is a surface enhancement technique that has been applied to improve fatigue and corrosion properties of metals. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbomachinery, airframe structures, and medical appliances. In the past, researchers have investigated the effects of LP parameters experimentally and performed a limited number of simulations on simple geometries. However, monitoring the dynamic, intricate relationships of peened materials experimentally is time consuming, expensive, and challenging. With increasing applications of LP on complex geometries, these limited experimental and simulation capabilities are not sufficient for an effective LP process design. Due to high speed, dynamic process parameters, it is difficult to achieve a consistent residual stress field in each treatment and constrain detrimental effects. With increased computer speed as well as increased sophistication in non-linear finite element analysis software, it is now possible to develop simulations that can consider several LP parameters. In this research, a finite element simulation capability of the LP process is developed. These simulations are validated with the available experimental results. Based on the validated model, simplifications to complex models are developed. These models include quarter symmetric 3D model, a cylindrical coupon, a parametric plate, and a bending coupon model. The developed models can perform simulations incorporating the LP process parameters, such as pressure pulse properties, spot properties, number of shots, locations, sequences, overlapping configurations, and complex geometries. These models are employed in parametric investigations and residual stress profile optimization at single and multiple locations. In parametric investigations, quarter symmetric 3D model is used to investigate temporal variations of pressure pulse, pressure magnitude, and shot shape and size. The LP optimization problem is divided into two parts: single and multiple locations peening optimization. The single-location peening optimization problems have mixed design variables and multiple optimal solutions. In the optimization literature, many researchers have solved problems involving mixed variables or multiple optima, but it is difficult to find multiple solutions for mixed-variable problems. A mixed-variable Niche Particle Swarm Optimization (MNPSO) is proposed that incorporates a mixed-variable handling technique and a niching technique to solve the problem. Designing an optimal residual stress profile for multiple-location peening is a challenging task due to the computational cost and the nonlinear behavior of LP. A Progressive Multifidelity Optimization Strategy (PMOS) is proposed to solve the problem. The three-stage PMOS, combines low- and high- fidelity simulations and respective surrogate models and a mixed-variable handling strategy. This strategy employs comparatively low computational-intensity models in the first two stages to locate the design space that may contain the optimal solution. The third stage employs high fidelity simulation and surrogate models to determine the optimal solution. The overall objective of this research is to employ finite element simulations and effective optimization techniques to achieve optimal residual stress fields

    Multifidelity domain-aware learning for the design of re-entry vehicles

    Get PDF
    The multidisciplinary design optimization (MDO) of re-entry vehicles presents many challenges associated with the plurality of the domains that characterize the design problem and the multi-physics interactions. Aerodynamic and thermodynamic phenomena are strongly coupled and relate to the heat loads that affect the vehicle along the re-entry trajectory, which drive the design of the thermal protection system (TPS). The preliminary design and optimization of re-entry vehicles would benefit from accurate high-fidelity aerothermodynamic analysis, which are usually expensive computational fluid dynamic simulations. We propose an original formulation for multifidelity active learning that considers both the information extracted from data and domain-specific knowledge. Our scheme is developed for the design of re-entry vehicles and is demonstrated for the case of an Orion-like capsule entering the Earth atmosphere. The design process aims to minimize the mass of propellant burned during the entry maneuver, the mass of the TPS, and the temperature experienced by the TPS along the re-entry. The results demonstrate that our multifidelity strategy allows to achieve a sensitive improvement of the design solution with respect to the baseline. In particular, the outcomes of our method are superior to the design obtained through a single-fidelity framework, as a result of the principled selection of a limited number of high-fidelity evaluations
    • …
    corecore