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Abstract The scope of this paper is to apply a model-correction-based strategy for efficient reliability analysis
of uncertain dynamical systems based on a low-fidelity (LF) model whose outcomes are corrected in a proba-
bilistic sense to represent the more realistic outcomes of a high-fidelity (HF) model. In the model-correction
approach utilized, the LF model is calibrated to the HF model close to the so-called most probable point in
standard normal space, which allows a more realistic assessment of the considered complex dynamical system.
Since only few expensive limit state function evaluations of the HF model are required, an efficient reliability
analysis is enabled. In an application example, the LF model describes an existing single-span railway bridge
modelled as simply supported Euler–Bernoulli beam subjected to moving single forces representing the axle
loads of a moving train. The HF modelling approach accounts for the bridge–train interaction by modelling
the passing train as mass-spring-damper system, however increasing the computational effort of the limit state
function evaluations. Failure probabilities evaluated with the model-correction approach are contrasted and
discussed with failure probabilities of the sophisticated bridge–train interaction model evaluated with the first-
order reliabilitymethod (FORM). It is demonstrated that the efficiency of themethod depends on the correlation
between the LF and the HF model. A comparison of the results of FORM and the model-correction-based
approach shows that the latter provides reliable failure probability prediction of the HF model while leading
to a significant reduction in computational effort.

1 Introduction

Dynamical systems find a wide range of applications for problems involving response analysis, reliability
assessment, and system control of engineering structures, biomechanical structures, and biological models,
among others. Especially in civil engineering, structural responses of, for example, buildings, bridges, and
offshore structures under time-dependent excitation are determined by dynamic simulations and subsequently
the outcomes serve as basis for further performance analyses. In this context, reliability assessment of structures
and the use of tailor made methods for reliability assessment is of great interest; however, as the behaviour of
structures varies, identifying the most appropriate reliability assessment method is challenging. Recently, a lot
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of research is going on trying to provide optimal reliability assessment strategies for the system of interest. In
[1], an active learning framework for solving complex reliability problems is discussed and 39 strategies for
solving 20 reliability benchmark problems are investigated with the intention to provide recommendations for
practitioners.

For linear and moderate nonlinear systems, the first-order reliability method (FORM) [2–4] is a well-
established, fast, and accuratemethodwith less limit state function evaluations required than, for example, crude
Monte Carlo simulation (MCS). Based on a description of the reliability problem in standard Gaussian space,
which requires the transformation of correlated non-Gaussian variables to uncorrelated Gaussian variables
in FORM, the limit state function is linearized by a Taylor series approximation of first-order at the so-
called most probable point (MPP) [4]. The evaluation of the most probable point, defined as point located to
maximize theprobability density functionwithin the failure domain, requires solving a constrainedoptimization
problem and subsequently enables the evaluation of the tail probability, respectively, the linearized systems
failure probability [4–7]. The FORM method is widely used and has been applied, for example, for reliability
assessment of a simply supported railway bridge [8]. Allahvirdizadeh et al. [8] focus on the reliability of
an Euler–Bernoulli beam bridge model subjected to high-speed trains represented as moving static axle loads
based on the bridge deck accelerations evaluated utilizing closed form solutions from literature. In [8], uncertain
load models according to Annex E in Eurocode (EN) 1991-2 [9] are utilized for the response evaluation and
omission sensitivity factors [10] are used as sensitivity measure of random variables depending on the limit
state function.

In order to enhance the accuracy of FORM, principal curvatures at the MPP can be incorporated in the
linear FORM approach for evaluating the failure probability leading to the second-order reliability method
(SORM) [5,11–13]. For evaluating the failure probability, Breitung [11] derived an asymptotic equation that
includes principal curvatures at the MPP and approaches the exact failure probability. In [14], a three-term
approximation of the failure probability is presented in which the last two terms can be interpreted as extension
of the asymptotic formula provided in [11]. Provided that the most probable point is accurately identified and
unique, the FORM and SORM approximations have been shown by experience to be sufficiently accurate for
engineering demands [15]. In [16], an extension of the first-order reliabilitymethod based on series expansion is
provided for solving time-dependent reliability problems, also referred to as first passage problems. Thewidely
used combination of the FORMmethod with Rice’s formula (Rice/FORMmethod) for solving time-dependent
reliability [17,18] is replaced by a combination of FORM and series expansion for enhancing accuracy and
efficiency [16].

When dealing with highly nonlinear limit state functions which are typically only implicitly available e.g.
by a finite element algorithm response surface methods (RSM)s can be applied with reasonable computational
costs [4,19–21]. Commonly response surface models use first- or second-order polynomials as approximation
function for the limit state function of the reliability problem in the region of the random variable space that has
the most contribution to the probability of failure [20]. Consequently, the limit state function is expressed as an
explicit function in dependence of the vector of basic random variables and conventional structural reliability
methods such as FORM developed to deal with explicit limit state functions can then be used to compute
structural failure probabilities at reduced computational cost [4].

Iourtchenko et al. [22] introduce a path integration method for strong nonlinear single-degree-of-freedom
dynamical systems dealing with a first passage type reliability analysis. Therefore, the path integration method
is adapted to first passage type reliability problems and tested on four different types of controlled systems,
i.e. a system with dry friction and other three single-degree-of-freedom systems with parametric control
of their parameters. The evaluation procedure is based on discrete versions of the Chapman–Kolmogorov
equation enabling the determination of the response probability density function tails with high accuracy
for small probabilities of failure (< 10−6) and additionally providing first passage time statistics [22,23].
Recently, a Wiener path integral variational formulation with free boundaries for computationally efficient
stochastic response evaluation of high-dimensional nonlinear dynamical systems is introduced in [24]. The
proposed technique based on theWiener path integral concept is capable of accurately determining the response
probability density function of high-dimensional systems circumventing the curse of dimensionality atminimal
computational cost.

Another approach to deal with complex systems represented by elaborate models that are highly compu-
tationally demanding is to incorporate knowledge of a simplified model following similar physical principles
into the reliability evaluation process of the elaborate model. In [25], a survey onmodernMonte Carlo methods
for efficient uncertainty quantification and propagation is presented and in [26] so-called multifidelity methods
for uncertainty propagation including multifidelity model management strategies are outlined. Peherstorfer et
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al. [27] present a framework for multifidelity Monte Carlo estimation adopting an optimal model manage-
ment strategy that decides which models to evaluate and when based on an optimization approach distributing
the computational effort among the different models such that the mean squared error of the multifidelity
estimator is minimized for a certain computational budget. This framework allows for a combination of an
arbitrary number of surrogate models with different degree of sophistication and does not rely on a multi-
level hierarchy with known error and cost rates. Typical surrogate models also referred to as low-fidelity (LF)
models include projection-based reduced order models, data-fit models, machine learning-based models, e.g.
neural networks, support vector machines, and simplified-physics models. A deep learning-based multifidelity
surrogate model for robust aerodynamic design optimization is utilized in [28,29] using a multifidelity mod-
elling framework based on recursive co-Kriging and Gaussian–Markov random fields. In [30], issues on the
effective usage of multifidelity surrogates are discussed. Multifidelity modelling approaches for reliability
estimation are discussed in [31] and an extension of the moving particles method [32,33] incorporating mul-
tifidelity models is provided in [34,35]. Proppe and Kaupp [36] present efficient multifidelity estimators for
failure probabilities by combining additive and multiplicative information fusion with importance sampling
and importance splitting. Recently, [37] propose an active learning multifidelity model framework for rare
event simulation based on adaptive subset simulation. For robustly predicting small failure probabilities, the
proposed framework uses a dynamic active learning function that decides when to call the high-fidelity (HF)
model. Ditlevsen and Arnbjerg-Nielsen [38] propose a model-correction-factor method based on FORM that
calibrates the reliability analysis procedure using outcomes of a simplified (LF) modelling approach with
outcomes of a more sophisticated (HF) modelling approach in order to enhance the efficiency and accuracy
of the reliability assessment. The LF model is calibrated to the HF model near the most probable point in
standard normal space, which allows a more realistic assessment of the considered complex system [38]. In
[39], the model-correction-factor method is applied to evaluate the reliability of a composite blade structure.
As low-fidelity model of the blade profile, a cantilever Euler–Bernoulli beam is chosen, and as realistic model,
a nonlinear shell-element finite element (FE) model is utilized. Dimitrov et al. [39] approximate the model-
correction factor by a zero-order Taylor series expansion around the MPP and by a first-order Taylor series
expansion around the MPP, respectively. It is shown that the first-order approximation is able to capture the
influence of the parameters more accurately than the zero-order approximation in the application example.
However, the first-order Taylor series approximation of the model-correction factor requires the evaluation of
the gradient and therefore leads to significantly increased computational cost [39]. In case of the zero-order
Taylor series expansion convergence was achieved after five iterations, consequently five limit state function
evaluations of the elaborate nonlinear FE model are required. The first-order Taylor series expansion provided
convergence after six iterations, leading to twelve limit state function in every iteration (one at theMPP and one
additional call for each of the stochastic variables in order to determine the partial derivatives of the gradient)
resulting in a twelve times higher computational effort for each iteration [39]. The model-correction-factor
method is used by [40] for solving structural reliability problems where random fields are present in the def-
inition of the limit state function. Based on the initial model-correction-factor framework, Alibrandi and Der
Kiureghian [41] integrate a response surface technique and apply the enhanced methodology for evaluation of
the design point and the FORM solution when dealing with nonlinear stochastic dynamic problems. Within
the model-correction-based reliability analysis, framework efficient evaluation of failure probabilities based
on a simplified model capturing basic structural behaviour is enabled while incorporating the modelling accu-
racy of a more sophisticated model. In comparison to response surface methods, in which even sophisticated
techniques may require a substantial number of computationally challenging high-fidelity limit state function
evaluations applying the model-correction-based approach the time-consuming HF model is evaluated only a
few times until the LF model is calibrated.

In this study, the model-correction approach is utilized to conduct a reliability assessment of an simply
supported railway bridge subjected to trains with high travelling speeds. As the dynamic behaviour of railway
bridges is depending on multiple aspects such as boundary conditions [soil–structure interaction (SSI)], inter-
action between the bridge and the train (bridge–train interaction), among others, the underlying mechanical
model capturing influential aspects is complex and should involve uncertainties treated as random variables
[42–44]. The complex HF model utilized in this study explicitly accounts for SSI and bridge–train interaction,
however the computational cost evaluating the limit state function is substantial. In an efficient simplified LF
modelling approach the railway bridge ismodelled as Euler–Bernoulli beam and the passing train is represented
by its moving static axle loads [44], thus enabling efficient limit state function evaluations while incorporating
the basic underlying physical behaviour of the complex system. It is shown that the model-correction-based
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reliability assessment approach is able to efficiently predict failure probabilities of the complex system of
interest.

2 Model-correction-based reliability analysis

In the context of a reliability analysis typically the probability of failure pf of the considered system is of
interest and uncertainties often associated with the structural loading, the material parameters of the structure,
and environmental conditions, to name but a few are considered in the response evaluation procedure as random
variables. Based on limit state function g(X) with X = (X1, X2, . . . , XNr ) as random input vector including
Nr random variables, that divides the basic variables space into a safe domain S (g(X) > 0) and a failure
domain F (g(X) ≤ 0) given a response limit state failure of a structure indicating a threshold exceedance
can be expressed. Categorizing the random input variables into variables related with the structural demand
XS (load variables), variables related with the system capacity XR (strength variables), and variables XD
related with the remaining parameters that do not necessarily have to be random the limit state function can
be expressed with X = (XS,XR,XD) as g(XS,XR,XD). Probability of failure pf , defined as probability
P that an undesired state is reached pf = P(g(XS,XR,XD) ≤ 0) can be computed as multifold integral
of joint probability density function fX over failure domain F : pf = P(g(X) ≤ 0) = ∫ ··· ∫F fX(x)dx.
Analytical solutions of the multifold integral exist for special cases only, numerical integration of the integral
is computationally highly expansive, and it is difficult to appropriately locate integration points for numerical
integration [4]. Consequently, Monte Carlo simulation is commonly applied to predict failure probabilities,
however for complex limit state functions and small failure probabilities it becomes cumbersome whereas
FORM and SORM are not strongly influenced by the order of the failures probability [7]. For linear and mod-
erate nonlinear problems often FORMand SORMare straightforward failure probability evaluation techniques
[4]. In case of correlated non-Gaussian input variablesX = (X1, X2, . . . , XNr ), they need to be transformed as
FORM and SORM involve uncorrelated Gaussian distributed input variables U = (U1,U2, . . . ,UNr ) [7]. The
constrained optimization problem of FORM and SORM provided in “Appendix A” can be solved using, for
example, sequential quadratic programming (SQP) procedures [4] leading to the MPP u∗ in standard normal
space. Consequently, the failure probability is given as [4]

pf = �(−β) (1)

with standard normal cumulative distribution � and reliability index β representing the distance between u∗
and the origin in standard normal space O. In case of a linear system the FORM method provides the exact
result of the failure probability pf . In “Appendix A”, a detailed outline of FORM is provided.

In order to achieve accurate and reliable results, it is desirable to represent the system of interest by a
detailed high-fidelity (HF) analysis model. However, prediction of failure probabilities for computationally
demanding analysismodels becomes cumbersomewhen a substantial number of limit state function evaluations
is required. In this section, a model-correction approach for efficient computation of failure probabilities for
a complex high-fidelity (HF) analysis model is outlined, which is based on outcomes of a simplified (LF)
modelling approach that captures the main physical properties of the system.

2.1 Model-correction-factor method

The limit state function of a HF model that defines the division of the entire space of basic variables in to a
safe domain SHF and a failure domain FHF, respectively, can be represented with xS , xR , and xD as samples
of random variables XS , XR , and XD by [38]

gHF(xS, xR, xD) = 0 (2)

with xS denoting the load or demand variables, xR the strength or capacity variables, and xD the remaining
parameters. It should be noted that limit state function gHF is not necessary provided in explicit form, it could
be, for example, represented in implicit form by a finite element algorithm. The limit state function of a
low-fidelity model [38]

gLF(xS, xR, xD) = 0 (3)
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divides the space in an safe domain SLF (gLF > 0) and a failure domain FLF (gLF ≤ 0) and is considered
to be a less-elaborate function than gHF. For evaluation of the failure probability P(FHF), it is desirable to
incorporate basic physical information provided by the LF model, such that P(FHF) can be determined with
less computational cost. Assuming star-shaped safe sets (SLF and SHF) in terms of xS with respect to the origin
of xS for the HF model and the LF model, respectively, for any xS , xR , xD the following equations [38]

gHF(κHFxS, xR, xD) = 0 (4)

gLF(κLFxS, xR, xD) = 0 (5)

have a unique solution with respect to capacity factor κHF and κLF, respectively. Due to the homogeneity of
physical dimension of (2) and (3), respectively, limit state function gHF [Eq. (2)] is equal to [38]

gLF(xS, ν(x)xR, xD) = 0 (6)

With κHF(x) and κLF(x) providing unique solutions of (4) and (5) effectivity factor ν(x) = κHF(x)
κLF(x) with

x = (xS, xR, xD) is defined. As the two models describe the same physical phenomenon and consequently
qualitatively behave in a similar manner, it is reasonable to assume that ν(x) can be locally approximated by a
constant ν∗ [38,41]. Subsequently, resulting in the zero-order corrected idealized model gLF(xS, ν∗xR, x)D =
0. Commonly ν(x) is approximated at the MPP of the HFmodel ν(u∗

HF) = ν∗. The task is to find a value for ν∗
such that theMPP of the corrected LFmodel u∗

LF is as close as possible to the target MPP of the HFmodel u∗
HF.

A detailed outline of the algorithm finding the optimal ν∗ based on the first-order reliability method (FORM)
is provided in [38].

2.2 Adaption to time-dependent systems

Assuming an uncertain structural system under time-dependent excitation F(t) and introducing random vector
u, with u = (u1, u2, . . . , uNr ) comprised of samples of Nr independent standard normal random variables the
time-dependent response of stochastic nature can be denoted as Z(t,u). Given a limit state γ and time t the
failure probability of the dynamical system is given as pf = P(γ ≤ Z(t,u)). A FORM solution is constructed
by defining the limit state function g(u, γ, t) = γ − Z(t,u) and finding MPP u∗ by solving the constrained
optimization problem, providing a first-order approximation of the tail probability pf = P[γ ≤ Z(t,u)] ≈
�[−β(γ, t)]. A detailed outline is provided in “Appendix A”.

Interpreting the demand variables xs as time history response Z(t,u), the time-dependent limit state
function gHF of the HF model [Eq. (2)] reads [41]

gHF(ZHF(t,u), γ ) = γ − ZHF(t,u) (7)

and time-dependent limit state function gLF of the simplified LF model is given as [41],

gLF(ZLF(t,u), γ ) = γ − ZLF(t,u) , (8)

respectively, where the response threshold γ can be considered as a capacity variable. Introducing capacity
factors κHF and κLF [41], yields

gHF(ZHF(t, u), κHFγ ) = κHFγ − ZHF(t,u) (9)

and

gLF(ZLF(t,u), κLFγ ) = κLFγ − ZLF(t,u) (10)

In equivalence to Sect. 2.1, a unique solution of the limit state function gHF [Eq. (7)] and gLF [Eq. (8)] with
respect to capacity factor κHF(u) = ZHF(t,u)

γ
and κLF(u) = ZLF(t,u)

γ
is assumed, leading to effectivity factor

ν(u) of the uncertain dynamical models given as [41],

ν(u) = κHF(u)

κLF(u)
= ZHF(t, u)

ZLF(t,u)
(11)
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Consequently, the corrected LF model is defined as the original LF model with the demand random variable
corrected by effectivity factor ν(u) [41], yielding

gLF(ν(u)ZLF(t,u), γ ) = γ − ν(u)ZLF(t, u) (12)

By inserting Eq. (11) in Eq. (12), it can be shown that the corrected LF model is equivalent to the HF model
[41]

gLF(ν(u)ZLF(t, u), γ ) = γ − ZHF(t,u)

ZLF(t, u)
ZLF(t,u) (13)

= γ − ZHF(t,u) =̂ gHF(ZHF(t, u), γ ) (14)

The zero-order corrected LF model is obtained by approximation of ν(u) with constant ν∗ [41], yielding

gLF(ν
∗ZLF(t,u), γ ) = γ − ν∗ZLF(t, u) (15)

Consequently, a FORM-based algorithm can be utilized in order to find an optimal value for ν∗ such that the
MPP u∗

LF of the LF model is as close as possible to the MPP of the HF model u∗
HF [41].

2.3 Algorithm of model-correction-based reliability analysis

In a first step, an initial value for u(0)
LF is chosen and κ

(1)
LF is set to 1. Next utilizing Eq. (9) an initial estimate of

κ
(1)
HF = ZHF(t, u

(0)
LF )/x is determined. Based on a first estimate of the model-correction factor ν(1) = κ

(1)
HF/κ

(1)
LF

the corresponding corrected low-fidelity model g(1)
LF = x − ν(1)ZLF(t,u) is solved by FORM providing u(1)

LF

and β
(1)
LF [38]. Using u(1)

LF and repeating the outlined analysis steps, κ(2)
HF = ZHF(t, u

(1)
LF )/x , ν(2) = κ

(2)
HF/κ

(2)
LF ,

and applying FORM on g(2)
LF = x − ν(2)ZLF(t,u) provides u(2)

LF and β
(2)
LF . Consequently, proceeding with

the previous procedure results in a set of (κ
(1)
HF , β̂

(1)
HF), (κ

(2)
HF , β̂

(2)
HF), . . . , (κ

(k)
HF , β̂

(k)
HF). In case of convergence,

κ
(k)
HF → 1, β̂(k)

HF → β̂HF, û
(k)
HF → û∗

HF, with k = 1, 2, . . ., the most probable point of the corrected low-fidelity
model û∗

HF, and the corresponding reliability index β̂HF. Due to κHF = 1, û∗
HF is located on the limit state

surface of the high-fidelity model. As a consequence of the corrected MPP of the LF model u∗ being on the
limit state surface of both the low-fidelity model and the high-fidelity model, the corresponding reliability
index βLF is an upper bound to the reliability index of the high-fidelity system [41]. In Fig. 1, a flowchart of
the model-correction-based reliability approach is depicted.

Assuming that the response of the low-fidelity model is close to the response of the realistic high-fidelity
model, it can be concluded that u∗

LF is close to the target u
∗ = u∗

HF. No convergence of the algorithm indicates
that the low-fidelity model is not representing the main behaviour of the high-fidelity model and consequently
an adapted simplified model should be chosen [41].

3 Application example

In this section, the model-correction-based analysis approach is performed in order to evaluate failure prob-
abilities of an existing railway bridge subjected to a moving train. Two different modelling approaches with
different degree of sophistication are applied. In the simplified LF approach, the railway bridge is modelled
as Euler–Bernoulli beam bridge passed by moving single forces representing the axle loads of a moving train.
The sophisticated HF modelling approach explicitly considers bridge–train interaction effects by modelling
the passing train as mass-spring-damper (MSD) system.

3.1 Multifidelity modelling approach

The Euler–Bernoulli beam bridge model representing a single-span railway bridge can be mathematically
expressed by the partial differential equation of motion [45]

ρAẅ(x, t) + EIw,xxxx (x, t) = f (x, t) (16)
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Fig. 1 Flow of the model-correction-based reliability approach

with w(x, t) denoting the vertical beam bridge displacement at point x and time t . Extended boundary condi-
tions of the Euler–Bernoulli beam (cf. Fig. 2), which take into account the influence of soil–structure interaction
(SSI), result in the beam being non-classically damped and therefore a complex modal analysis is used to eval-
uate structural responses. Rearranging Eq. (16) and adding the identity ρAν(x, t) = ρAẇ(x, t) yields the
initial partial differential equation Eq. (16) transformed into state-space [46],

Ex̂(x, t) + F ˙̂x(x, t) = p(x, t) (17)

with

x̂ =
[
w(x, t)
ν(x, t)

]

, E =
[
EI ∂4

∂x4
0

0 −ρA

]

, F =
[

0 ρA
ρA 0

]

, p =
[
f (x, t)
0

]

(18)

Modal expansion of state-space vector x̂(x, t) [46]

x̂ =
∞∑

r=1

x∗
r (t)

[
�r (x)

�r (x)sr

]

+
∞∑

r=1

x̄∗
r (t)

[
�̄r (x)

�̄r (x)s̄r

]

= 2R
( ∞∑

r=1

x∗
r (t)

[
�r (x)

�r (x)sr

])

(19)

leads in combination with the two orthogonality relations in state-space (cf. [46]) to the following ordinary
decoupled modal differential equations [46],

ar ẋ
∗
r (t) + br x

∗
r (t) = fr (t) , ār ˙̄x∗

r (t) + b̄r x̄
∗
r (t) = f̄r (t) (20)

with x̄∗
r (t), ār , b̄r , f̄r as complex conjugates of x∗

r , ar , br , and fr .
In a simplified modelling approach, the moving train is considered as moving single forces representing

the static axle loads of the train (cf. Fig. 2) with the load function of the time dependent forces [46]

f (x, t) =
Nw∑

i=1

F (i)
b (t)δ(x − ξi (t))�

(
t, t (B)

i , t (C)
i

)
(21)

controlling the amplitude and location of the moving forces on the beam bridge, as well as their appearance
and disappearance [46]. In Eq. (21), Dirac delta function δ(x − ξi (t)) denotes the i-th force with amplitude
F (i)
b (t) at position ξi (t)(= vt − li ). This force enters the beam at time t (B)

i = li/v and leaves the beam at

time t (C)
i = (li + L)/v, controlled by the Heaviside functions H(t − t (B)

i ) and H(t − t (C)
i ), respectively,
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Fig. 2 Euler–Bernoulli beam bridge model subjected to the moving single axle load F (i)
b with constant speed v, modified from

[46]

i.e. �(t, t (B)
i , t (C)

i ) = H(t − t (B)
i ) − H(t − t (C)

i ). The r -th modal load fr reads in general form fr (t) =∫
L �r (x) f (x, t)dx [46]. Evaluation of this relation for the assembly of the Nw moving single forces passing

the beam bridge described by Eq. (21) yields the following expression for the r -th modal load on the beam
bridge [46],

f (r)
b (t) =

∫

L

Nw∑

i=1

F (i)
b (t)δ(x − ξi )�

(
t, t (B)

i , t (C)
i

)
�r (x)dx

=
Nw∑

i=1

F (i)
b (t)�

(
t, t (B)

i , t (C)
i

)
�r (ξi )

(22)

The effect of the train before arriving on the beam bridge and after leaving the beam bridge is considered
in the modelling approach and is outlined in detail in [46]. Consequently, the r -th modal load reads fr =
f (r)
0 + f (r)

b + f (r)
L [46].

Considering the first N� modes, the modal state-space equations of motion Eqs (20) of the Euler–Bernoulli
beam read [46]

Abẋ∗ + Bbx∗ = f∗b (23)

with x∗ = [x∗
1 , . . . , x

∗
r , . . . , x∗

N�
, x̄∗

1 , . . . , x̄
∗
r , . . . , x̄∗

N�
]T,Ab = diag[a1, . . . , ar , . . . , aN� , ā1, . . . , ār , . . . ,

āN�],Bb = diag[b1, . . . , br , . . . , bN� , b̄1, . . . , b̄r , . . . , b̄N�], and f∗b = [ f1, . . . , fr , . . . , fN�, f̄1, . . . , f̄r , . . . ,
f̄N�]T. This set of decoupled ordinary first-order differential equations is solved by time integration. Since
Eq. (20) appear in complex conjugate pairs, x∗ + x̄∗ = 2R(x∗) applies. The system responses beam dis-
placement w(x, t), velocity ẇ(x, t), and acceleration ẅ(x, t) are consequently obtained by approximating the
modal series by N� modes [46],

w(x, t) ≈
N�∑

r=1

�r (x)x
∗
r (t) +

N�∑

r=1

�̄r (x)x̄
∗
r (t) = 2R

{
N�∑

r=1

�r (x)x
∗
r (t)

}

,

ẇ(x, t) ≈
N�∑

r=1

�r (x)ẋ
∗
r (t) +

N�∑

r=1

�̄r (x) ˙̄x∗
r (t) = 2R

{
N�∑

r=1

�r (x)ẋ
∗
r (t)

}

,

ẅ(x, t) ≈
N�∑

r=1

�r (x)sr ẋ
∗
r (t) +

N�∑

r=1

�̄r (x)s̄r ˙̄x∗
r (t) = 2R

{
N�∑

r=1

�r (x)sr ẋ
∗
r (t)

}

(24)

The elaborate HFmodel considers the moving train asMSD system, consequently accounting for effects of
bridge–train interaction (cf. Fig. 3). Based on the substructure approach, the equations of motion are specified
for both the bridge and the train subsystemmodel separately, and then coupled by imposing coupling conditions
at the interface of the subsystems. The Nc vehicles of the train subsystem are modelled as planar MSD systems
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Fig. 3 Viscoelastically supported Euler–Bernoulli beam model and planar MSD model, modified form [46]

consisting of rigid bodies with mass, which represent passenger stage, two bogies and and four wheel pairs,
connected by spring-dashpot elements. The equations of motion of a planar MSD subsystem read as [47],

Mcüc + Ccu̇c + Kcuc = Fc (25)

whereMc is the mass matrix, Cc is the damping matrix, andKc is the stiffness matrix of the MSD subsystem.
In the corresponding state-space representation [48],

Acḋc(t) + Bcdc(t) = fc(t) (26)

with the matrices Ac, Bc, and vector fc

Ac =
[
Cc Mc
Ic 0

]

, Bc =
[
Kc 0
0 −Ic

]

, fc =
[
Fc
0

]

(27)

and the identity matrix Ic, vector dc = {u(1)
c , . . . ,u( j)

c , . . . ,u(Nc)
c , u̇(1)

c , . . . , u̇( j)
c , . . . , u̇(Nc)

c }T contains all
DOFs of the MSD system and their first derivative in time [46].

In the next step, the equations of motion in state-space of both subsystems are coupled using the so-called
generalized corresponding assumption and applying a dynamic substructure technique (DST) in which the
involved DOFs are condensed into the modal coordinates of the beam bridge model [46]. In vertical direction,
it is assumed that the displacement of the beam and the MSD system at the point of contact are equal, and
consequently, lift-off of the wheels is not admitted. The generalized corresponding assumption yields for the
vertical displacement u(i)

w of the i-th wheel, which is at time t at position ξi (t), together with Eq. (24) the
following expression [46],

u(i)
w (ξi ) = w(ξi , t) + Ir (ξi ) ≈

N�∑

r=1

�r (ξi )yr (t) +
N�∑

r=1

�̄r (ξi )ȳr (t) + Ir (ξi ) (28)

The variable Ir (ξi = vt − li ) represents a random irregularity profile function, which is applied to the beam
surface to consider the effect of track irregularities, cf. Fig. 3. The transformation according to [46]

x(t) = �1(t)x∗(t) + �2(t)ẋ∗(t) + ϒ(t), x∗(t) =
[
y, d̃c

]T

ẋ(t) = �̇1(t)x∗(t) + �1(t)ẋ∗(t) + �̇2(t)ẋ∗(t) + �̇2(t)ẍ∗(t) + ϒ̇(t)
(29)
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with �1(t) and �2(t) as time-dependent transformation matrices, imposes the corresponding assumption
Eq. (28) on the two subsystems, which are consolidated [46]. Consequently, the equations of motion in state-
space of the coupled beam-MSD system reads [46],

A∗(t)ẋ∗(t) + B∗(t)x∗(t) = f∗(t) (30)

with the time-dependent system matrices

A∗(t) = �T
1 (t)

[
A�1(t) + A�̇2(t) + A�2(t)S + B�2(t)

]
,

B∗(t) = �T
1 (t)

[
A�̇1(t) + B�1(t)

] (31)

and

f∗(t) = �T
1 (t)

[
f(t) − Aϒ̇(t) − Bϒ(t)

]
(32)

The state-space solution vector x∗ is computed by time integration using seven modes (i.e. N� = 7). For a
detailed outline of the elaborate modelling strategy, it is referred to [43,46,47].

3.2 Considered bridge and subsoil, uncertainties, and limit state

The analysed single-span railway bridge is a ballasted steel bridge of span L = 16.8 m with bending stiffness
EI = 3.262 × 1010 Nm2 and mass per unit length ρA = 1.220 × 104 kg/m. Natural frequencies of the beam
bridge are f1 = 9.10 Hz, f2 = 36.4 Hz, f3 = 81.9 Hz, f4 = 145 Hz, f5 = 227 Hz, f6 = 327 Hz, and
f7 = 445 Hz. The considered train is the Austrian high-speed train Railjet with a configuration of one power
car and seven passenger cars whose parameters, i.e. mass matrixMc, damping matrix Cc, stiffness matrix Kc

are provided in [42]. It should be noted that at a critical train speed, defined as v
(r)
l = d fr/ l , l = 1, 2, 3, . . .,

the r -th natural bridge frequency fr = ωr/(2π) is excited to a state of resonance due to the repetitive axle
loads with constant distance d [49]. This distance corresponds to wagon length d = 16.5 m for the Railjet
train. Uncertainties that are included in the system response evaluation are the structural parameters, structural
damping ζ , moment of inertia I of the bridge beam, and parameters describing the subsoil quality comprised of
subsoil Young’s modulus Es, subsoil Poisson’s ration νs, subsoil density ρs, and the bedding stiffness k̄ related
with the subsoil [46]. Sources of energy dissipation in the bridge, for example, inherent structural damping,
material damping, and viscous elements of the track are captured globally by a modal damping coefficient ζ
[46]. Parameters c1 and c2 of the discrete dashpot elements at both ends of the beam bridge accounting for
geometrical damping are derived by utilizing the so-called Wolf cone model based on the subsoil properties
[46]. The Wolf cone model is also used for the evaluation of the discrete spring coefficients k1 and k2, for
the torsional spring coefficients k3 and k4 accounting for the influence of the bending stiffness of the rails,
and for the lumped masses m1 and m2, respectively [46]. In order to avoid unlikely low damping values log-
normally distributed damping coefficient ζ is truncated at ζ = 0.05%. Furthermore track irregularities, which
are modelled as random field representing deviations in vertical direction from the perfect rail, are considered
as source of uncertainty related with the excitation of the structure.

Track irregularities, assuming to represent a stationary Gaussian stochastic process, are modelled through
random irregular track profile functions Ir (x), which are superposed to the beam deflection and generated by
the superposition of random J = 1000 harmonic functions as described in [50]. The uppermost frequency
of the considered harmonic functions is �u = 2.1 rad/m, and the lowermost frequency is �l = 0.07 rad/m,
respectively. Solving the bridge–train interaction problem allows for considering the influence of track irreg-
ularities. In Table 1, the uncertainties considered in the system response evaluation and in the prediction of
failure probabilities pf for the low-fidelity and the high-fidelity model are listed with their corresponding
random distribution as well as the mean value (Mean) and coefficient of variation CV.

The limiting factor in the dynamic design of railway bridges for the serviceability limit state (SLS)
commonly is the bridge deck acceleration with possible consequence of ballast instability [9,43]. The
design guideline Eurocode [9] recommends an acceleration limit value of 3.5 m/s2 associated with bal-
last instability and 5.0 m/s2 for ballastless track, respectively. Additionally for SLS, a failure probabil-
ity of p fSLS = 10−3 must not be exceeded [43]. Quite naturally in this contribution the bridge deck
acceleration ẅ(x, t) [cf. Eq. (24)] is considered as governing response quantity and the failure probabil-
ity of the bridge structure is evaluated in dependency of bridge deck acceleration limit γ = alimit. In the
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Table 1 Random variables

Variable Distribution Unit Mean (CV) Min–Max

Damping ζ Trunc. log-norm. % 0.5 (0.3) –
Moment of inertia I Gaussian m4 0.156 (0.1) –
Young’s modulus of subsoil Es Gaussian GPa 400 (0.2)
Poisson’s ratio of subsoil νs Gaussian – 0.25 (0.1)
Density of subsoil ρs Gaussian kg/m3 2367 (0.1)
Bedding modulus k̄ Gaussian GPa 175 (0.1)
Irregularly profile Ir Stochastic process
Phase angle ϕm Uniform rad – 0–2π
Amplitude Q Uniform radm – 0.592 × 10−6–1.586 × 10−6

Fig. 4 Mean value acceleration spectrum of the low-fidelity (LF) model (red line) and the high-fidelity (HF) model (black line)
accounting for uncertain damping ζ for a train speed range from v = 20m/s to v = 100m/s, respectively (Color figure online)

FORM and model-correction-based evaluation approach, the absolute maximum bridge deck acceleration
a(v) = max {‖ẅ(x, t, v)‖ : 0 ≤ x ≤ L , 0 ≤ t ≤ T } at train speed v, location 0 ≤ x ≤ L , and time 0 ≤ t ≤ T
is used as governing response quantity. Structural failure is present if the limit state function of the uncer-
tain time-dependent bridge beam structure is g(alimit, v) = alimit − a(v) ≤ 0. The model-correction-based
reliability analysis algorithm is terminated when the evaluated reliability index β̂

(k)
HF of the current iteration

does not diverge more than tolerance tol = 10−3 from the reliability index β̂
(k−1)
HF of the previous step, i.e.

‖β̂(k−1)
HF − β̂

(k)
HF‖ ≤ tol.

3.3 Failure probability evaluation

Damping with a Pearson correlation coefficient r [51] of rζLF = 0.69 for the LF model considering moving
single forces and rζHF = 0.65 for the HF model accounting for the moving train as MSD system at train speed
v = 70 m/s is the most influential random variable on the structural responses. Consequently, in a preliminary
evaluation of the failure probabilities the model-correction-based approach is applied considering ζ as only
source of uncertainty. The correlation coefficients are computed by crude Monte Carlo simulations with a
sample size of NMC = 500 for the LF and the HFmodel, respectively. Failure probability p̂ fHF of the corrected
LF model is determined with the corresponding reliability index β̂HF and the standard normal cumulative
distribution function �(x), p̂ fHF = �(−β̂HF). Failure probabilities in the range of 10−6 to 100 are of interest
in this study as according to Eurocode [52] pf must be limited to pf = 10−3 for serviceability limit state
(SLS), and for ultimate limit state (ULS) pf = 10−6 must not be exceeded.

Considering the mean value of the uncertain damping parameter ζ the maximum of a(v) appears at train
speed v = 80m/s, close to the second resonance speed of the first mode v

(1)
2 = 75.1 m/s, with amaxLF(80) =

7.45m/s2 for the LF model and amaxHF(80) = 6.52m/s2 for the HF model (cf. Fig. 4).
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Fig. 5 Failure probability p fLF evaluated based on the first-order reliability method (FORM) for the low-fidelity (LF) model and
p fHF for the high-fidelity (HF) model, and p̂ fHF based on the model-correction method for train speeds v = 70 m/s, v = 76 m/s,
and v = 80 m/s depicted over the acceleration limit alimit

Consequently, pf is evaluated at train speed v = 80m/s, which is close to resonance speed v
(1)
2 , at

v = 80m/s the maximum bridge deck acceleration occurs, and maximum pf is expected for the LF model and
the HF model, respectively. Additional train speeds at which pf is evaluated are v = 70m/s (v = 70m/s leads
to the maximum acceleration considering six uncertain parameters) and v = 76m/s.

As starting point for the FORM algorithm u0 = 0.01 is chosen, which is the initial value for ζ in standard
normal space. The determination of the failure probability p fLF of the LF modelling approach considering
a train speed of v = 70 m/s takes t = 36 s and is resulting in p fLF = 0.048 when applying FORM. For
the sophisticated HF bridge–train interaction model the evaluation of the failure probability p fHF = 0.342
takes t = 1880 s based on FORM. When applying the model-correction-based approach considering train
speed v = 70 m/s failure probability of p̂ fHF = 0.342 is evaluated with computation time t = 1030 s. While
achieving an approximately equal failure probability p̂ fHF ≈ p fHF , the computation time can be reduced by
45.2% when utilizing the model-correction-based approach. In Fig. 5, the failure probability p fLF for the LF
modelling approach evaluated with FORM, p fHF for the HF modelling approach evaluated with FORM, and
p̂ fHF for the HF modelling approach evaluated based on the model-correction method are depicted over the
acceleration threshold alimit. For trains speeds v = 76 m/s and v = 80 m/s, the failure probabilities p fHF of
the HF analysis model evaluated with FORM match the failure probabilities p̂ fHF of the corrected LF model
when the model-correction-based approach is applied.

Considering six uncertain parameters the mean value acceleration response spectrum of the LF model (red
line) and the HFmodel (black line) is depicted in Fig. 6 for a train speed range from v = 20m/s to v = 100m/s.
Additionally Fig. 6 shows the mean value spectrum of the HF model including track irregularities (blue line).
Maximum bridge deck acceleration a(v) of the LF model, the HF model, and the HF model including track
irregularities of amaxLF(70) = 4.32 m/s2, amaxHF(70) = 3.36 m/s2, and amaxHFtrackirr (70) = 3.56 m/s2 occur at
train speed v = 70 m/s, which is close to the third resonance speed of the second mode v

(3)
2 = 72.4 m/s.

The failure probabilities of the LF model, the HF model, and the HF model considering track irregularities
are evaluated at train speed v = 70 m/s, where the maximum bridge deck acceleration occurs and the largest
failure probability is expected. Additionally pf is evaluated at v = 76 m/s and v = 80 m/s. Figure7a depicts
failure probabilities pf of the LF model (p fLF , blue line) and the HF model (p fHF , black circles) based on
FORM, and of the HF model ( p̂ fHF , red line with + markers) predicted with the model-correction-based
approach.

The FORM algorithm is initially started at u0 = (0.01, 0.01, 0.01, 0.01, 0.01, 0.01). Failure probabil-
ities p fHF of the high-fidelity model evaluated for distinct acceleration limits alimit are in agreement with
p̂ fHF -predictions utilizing the model-correction-based approach. At train speed v = 80 m/s, predicted failure
probabilities p̂ fHF = 0.202 and p̂ fHF = 0.057 utilizing FORM for alimit = 2.5 m/s2 and alimit = 3 m/s2 corre-
spond with the p fHF results obtained by FORM. Failure probabilities p̂ fHF evaluated with the model-correction
algorithm are compared with p fHF -predictions for acceleration limits alimit = 4 m/s2, and 5 m/s2 at train speed
v = 70 m/s, and alimit = 6, 7, 8.5, and 9 m/s2 for train speed v = 76 m/s. The comparison shows that
predictions of both p̂ fHF and p fHF are in agreement, respectively.
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Fig. 6 Mean value acceleration spectrum of the low-fidelity (LF) model (red line) and the high-fidelity (HF) model (black line)
considering six random variables, respectively, and the HF model accounting for track irregularities (blue line) for a train speed
range from v = 20 m/s to v = 100 m/s (Color figure online)

Fig. 7 Failure probabilities evaluated based on the first-order reliability method (FORM) for the low-fidelity (LF) model p fLF
and the high-fidelity (HF) model p fHF , and p̂ fHF based on the model-correction method for train speeds v = 70, 76, and 80 m/s
depicted over the acceleration limit alimit a considering six random variables and b additionally accounting for track irregularities

The LF model results in higher pf -predictions for the same alimit compared with the HF model indicating
higher acceleration responses and consequently a more conservative modelling approach. At a train speed of
v = 76 m/s and alimit = 7 m/s2, the LF model provides p fLF = 0.201 and p̂ fHF = 0.128 resulting an a
difference of 36.3 %. It should be noted that when six random variables are considered, the beam bridge is
viscoelastically supported and soil–structure interaction (SSI) is considered resulting in structural responses
and failure probabilities that are significantly different than shown in Fig. 5 where a simply supported beam
bridge is considered.

In the presence of track irregularities, failure probabilities of the HF model are slightly increased, for
example, for v = 70 m/s p fHF = p̂ fHF = 5.287 × 10−4 neglecting track irregularities and p fHF = p̂ fHF =
6.287 × 10−4 accounting for track irregularities (cf. Fig. 7b). In particular at a train speed of v = 80 m/s,
the failure probability of the HF fidelity model exceeds the failure probability of the LF model. For alimit =
3 m/s2, failure probability of the LF model is with p fLF = 0.105 31.4% lower than p̂ fHF = 0.153. Failure
probabilities of the HF model (p fHF , black circles) are evaluated for the considered train speeds v = 70 m/s
(alimit = 3.5 m/s2), v = 76 m/s (alimit = 3.5, 4.5 m/s2), v = 80 m/s (alimit = 6.5, 8, 9 m/s2) match the
model-correction-based pf -predictions ( p̂ fHF , red line with + markers).
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3.4 Convergence rate of the model-correction-based algorithm and correlation between the multifidelity
models

When considering damping ζ as only source of uncertainty the LF analysismodel and theHF analysismodel are
with a Pearson correlations coefficient of rLF−HF = 0.9998 for v = 70m/s, rLF−HF = −0.9995 for v = 76m/s,
and rLF−HF = 0.9999 for v = 80 m/s highly correlated and as a consequence the model-correction-based
algorithm typically converges after 5–7 iterations based on the convergence criterion provided in Sect. 3.2. In
correspondence with the convergence behaviour NHF = 5–7 computationally demanding evaluations of limit
state function gHF are required, whereas when applying the FORMmethodwith the HFmodel, for example, for
a train speed v = 80 m/s and alimit = 9 m/s2 NHF = 30 evaluations of gHF are required with a computational
time of t = 85 min and 43 s. At v = 80 m/s and alimit = 9 m/s2, the model-correction-based approach requires
NHF = 6 evaluations of gHF resulting in an analysis time of t = 18 min and 25 s, which is a reduction of
78.4%.

Pearson correlation coefficients accounting for six random variables (cf. Table 1) in the structural response
evaluation are rLF−HF = 0.9281, rLF−HF = −0.9624, and rLF−HF = 0.9473 for train speeds v = 70 m/s,
v = 76 m/s, and v = 80 m/s, respectively. Convergence of the model-correction-based approach when the
six random variables are considered occurs after 6–9 iterations utilizing the introduced convergence criterion.
With convergence after 6 iterations and NHF = 6 evaluations of gHF at v = 80 m/s and alimit = 3 m/s2 the
model-correction-based approach takes t = 17 min and 24 s and is 81.3% faster than FORM for computing
p fHF with NHF = 33 required evaluations of gHF and t = 93 min and 23 s. When considering v = 70 m/s and
alimit = 9m/s2, themodel-correction-based approach requires 9 iterations for convergence and an analysis time
t = 26 min and 12 s, which is 72.9%more efficient than prediction p fHF utilizing FORMwith NHF = 34 limit
state function evaluations with an analysis time t = 96 min and 46 s. Accounting for six random variables and
track irregularities results in a slight reduction of the correlation between the LF and the HF model, however
with Pearson correlation coefficients of rLF−HF = 0.9032, rLF−HF = −0.9118, and rLF−HF = 0.9341 for
v = 70 m/s, v = 76 m/s, and v = 80 m/s the models are still highly correlated. Hence the LF model captures
the fundamental physical behaviour of the HFmodel well. Convergence of the model-correction-basedmethod
for v = 76 m/s and alimit = 3.5 m/s2 is reached after 7 iterations and an analysis time t = 20 min and 22 s for
NHF = 7 limit state function evaluations of gHF. FORM requires NHF = 34 limit state function evaluations
of gHF and t = 97 min and 2 s for v = 76 m/s and alimit = 3.5 m/s2 resulting in an increase of 376.4%
in the analysis time. At v = 70 m/s for alimit = 8.5 m/s2 10, iterations are required for convergence of the
model-correction based approach and an analysis time of t = 28 min and 23 s for NHF = 10 computationally
demanding limit state function evaluations of gHF. The FORM algorithm requires NHF = 36 evaluations of
gHF and an analysis time of t = 103 min and 10 s, which is an increase of 263.6% in the analysis time.

The model-correction-based algorithm shows a slightly impaired convergence rate when considering six
random variables and track irregularities. When analysing the convergence rate of the model-correction-based
algorithm based on the introduced convergence criterion and the correlation coefficient of the LF and the HF
model (cf. Fig. 8), it can be seen that the convergence of the algorithm is slightly reduced for a reduction in
the correlation coefficient.

In Table 2, the convergence behaviour of the model-correction-based algorithm at v = 76 m/s is provided
when considering structural damping ζ as stochastic variable.With a failure probability of p̂ fHF = 4.188×10−4

after seven iterations of the model-correction-based algorithm p̂ fHF is of 0.9% smaller than p fHF = 4.226 ×
10−4 evaluated with the FORM procedure at v = 76 m/s with alimit = 3.5 m/s2. Consequently, seven
evaluations of the HF model limit state function are required for prediction of p̂ fHF at v = 76 m/s with
alimit = 3.5 m/s2 when using the model-correction-based approach with total analysis time of t = 21m
12s, whereas when applying FORM p fHF nHF = 31 limit state function evaluations of the computationally
demanding HF model are required leading to an 77.3% increased analysis time of t = 93m 15s.

4 Conclusion

In this contribution, a model-correction-based analysis approach based on the first-order reliability method
(FORM) has been introduced for efficient reliability assessment of uncertain dynamical systems and applied
to an application example. The model-correction-based algorithm aims to calibrate a low-fidelity (LF) model
to an elaborate high-fidelity (HF) model close to the most probable point (MPP) in standard normal space such
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Fig. 8 Pearson correlation coefficient of low-fidelity and high-fidelity analysis model including six random variables and addi-
tionally accounting for track irregularities

Table 2 Zero-order model-correction-based approach at train speed v = 76 m/s and alimit = 3.5 m/s2 considering uncertain
structural damping ζ

Variable 1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration 6th iteration 7th iteration

Damping ζ −3.912 −3.127 −3.427 −3.301 −3.353 −3.331 −3.340
Capacity factor κHF 0.958 1.023 0.991 1.994 0.999 1.001 0.999
Reliability index β 3.912 3.127 3.428 3.301 3.353 3.331 3.340
Failure probability p̂ fHF 4.575 × 10−5 8.836 × 10−4 3.043 × 10−4 4.813 × 10−4 4.004 × 10−4 4.320 × 10−4 4.188 × 10−4

that the calibrated LF model provides an accurate estimate of the failure probability for the computationally
demanding HF model.

In an application example, reliability analysis of an existing railway bridge subjected to a high-speed
train was performed based on two models with different degree of sophistication, a simplified low-fidelity
(LF) model and a sophisticated high-fidelity (HF) model explicitly accounting for bridge–train interaction,
respectively. The Euler–Bernoulli beam bridge model with extended boundary conditions accounts for soil–
structure interaction (SSI) and the structural responses has been determined by complex modal analysis due
to non-classical damping of the beam bridge. While the low-fidelity model accounting for the passing train as
moving single forces representing the static axle loads of the train enables an computational efficient structural
response evaluation in the high-fidelity modelling approach the passing train is modelled as mass-spring-
damper (MSD) system considering bridge–train interaction and the effects of track irregularities, however
limit state function evaluations are computationally demanding. In a preliminary study structural damping
has been considered as only source of uncertainty, resulting in highly correlated models and consequently in
fast convergence rates of the model-correction-based algorithm for the computation of failure probabilities
for three different train speeds over varying bridge deck acceleration limits. When considering six random
variables and additionally track irregularities correlation of the models was slightly reduced, however the
evaluated correlation between the models was still high. It was demonstrated that the convergence rate of
the model-correction-based algorithm is influenced by the correlation of the LF and HF model. In case of a
minor reduction of the correlation, the applied approach showed slightly reduced convergence rates. Due to the
substantial correlation of the analysis models, the governing physical properties leading to structural failure
were appropriately captured by the LF model, hence fast convergence of the iterative technique was achieved,
an accurate failure probability has been obtained after few iterations, and theHFmodel had to be evaluated only
a few times for calibrating the LF model. It has been demonstrated that the model-correction-based approach
significantly decreased the analysis time for reliability assessment of the sophisticated HF model accounting
for bridge–train interaction, while leading to accurate failure probability predictions.

An investigation of the model-correction-based approach considering less correlated low-fidelity models,
considering multiple low-fidelity models and optimal distribution of limit state function evaluations, and a
comparison with multifidelity Monte Carlo techniques in terms of accuracy and efficiency is of interest for
future research.



B. Hirzinger, U. Nackenhorst

Acknowledgements Funding of the International Research Training Group (IRTG) 2657 by DFG is gratefully acknowledged
(Grant Reference Number 433082294)

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt DEAL.

Appendix A First-order reliability method

Before applying the FORM algorithm, the problem setup, i.e. the limit state function and the problem related
random variable need to be defined. Therefore, typically the Rosenblatt transformation in combination with
the Nataf-Model is usedUi = �−1(Fi (Xi | X1)) [4]. Most probable point (MPP) u∗ is defined as the point in
the failure set F with the largest probability density, that is, the closest point on the failure surface g(u) = 0 to
the originO in standard normal space [53]. In order to determine u∗ in standard normal space which coincide
with the design point x∗ in original space an optimization problem [4]

u∗ = argmin

(
1

2
uTu

)

; subjet to : g[x(u)] = 0 (A1)

has to be solved. Therefore, different optimization algorithms, for example, the SQP algorithm implemented
as fmincon-function in MATLAB and the so-called Hasofer–Lind–Rackwitz–Fiessler (HLRF) algorithm can
be applied. The HLRF algorithm is an iterative gradient-based optimization approach adapted to this type of
reliability problems [54]. By applying an optimization procedure, the most probable point u∗ is determined
[4]

u∗ = βα∗ (A2)

with the reliability index β, which is the distance between MPP u∗ and O , and unit normal vector α∗ = ∇g
|∇g| .

Approximating the actual limit state surface g(u) = 0 by its tangent hyperplane [4]

g(u) = β + αTu (A3)

yields the approximation of failure probability pf ,

pf ≈ �(−β) (A4)

Equation (A4) provides the first-order approximation of the failure probability pf and β is the corresponding
first-order approximation to the reliability index. The accuracy of the method depends on how well the true
failure surface is represented by the linear approximation. If g(u) is linear, the FORM procedure leads to the
exact result [4].

Consideration of time-dependent limit state functions the constrained optimization problem of the FORM
method reads [41]

u∗(γ, t) = argmin{‖u‖ | g(u, γ, t) = 0} (A5)

Consequently for dynamical systems, a first-order approximation of the tail probability is given as [41]

P(γ ≤ Z(t,u)] ≈ �[−β(γ, t)] (A6)

with reliability index β(γ, t) = α(γ, t)u∗(γ, t), where α(γ, t) = −∇ug(u∗, x, t)/‖∇ug(u∗, γ, t)‖ represents
the negative normalized gradient vector of limit state function g(u, γ, t) at most probable point u∗ (cf. Fig. 9).

http://creativecommons.org/licenses/by/4.0/


Efficient model-correction-based reliability analysis

uj

ui
O

β(γ, t)

u∗(γ, t) - MPP

u(γ, t)

g(u, γ, t) = 0

{g(u, γ, t) < 0} = {γ < Z(t,u)}

{g(u, γ, t) > 0}

Failure domain F

Safe domain S

Tangent plane

Limit state surface

Fig. 9 First-order reliability method (FORM) accounting for time-dependent systems, modified from [41]
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