
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Research, Scholarly, and Creative Activity 

4-30-2021 

Multifidelity prediction in wildfire spread simulation: Modeling, Multifidelity prediction in wildfire spread simulation: Modeling, 

uncertainty quantification and sensitivity analysis uncertainty quantification and sensitivity analysis 

Mario Miguel Valero 
San Jose State University, mm.valero@sjsu.edu 

Lluís Jofre 
Stanford University 

Ricardo Torres 
Technical University of Catalonia - BarcelonaTech 

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca 

 Part of the Emergency and Disaster Management Commons, Fire Science and Firefighting Commons, 

and the Meteorology Commons 

Recommended Citation Recommended Citation 
Mario Miguel Valero, Lluís Jofre, and Ricardo Torres. "Multifidelity prediction in wildfire spread simulation: 
Modeling, uncertainty quantification and sensitivity analysis" Environmental Modelling & Software (2021). 
https://doi.org/10.1016/j.envsoft.2021.105050 

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in 
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more 
information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1321?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1411?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/190?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F799&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.envsoft.2021.105050
mailto:scholarworks@sjsu.edu


Environmental Modelling and Software 141 (2021) 105050

Available online 13 April 2021
1364-8152/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Multifidelity prediction in wildfire spread simulation: Modeling, 
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A B S T R A C T   

Wildfire behavior predictions typically suffer from significant uncertainty. However, wildfire modeling un-
certainties remain largely unquantified in the literature, mainly due to computing constraints. New multifidelity 
techniques provide a promising opportunity to overcome these limitations. Therefore, this paper explores the 
applicability of multifidelity approaches to wildland fire spread prediction problems. Using a canonical simu-
lation scenario, we assessed the performance of control variates Monte-Carlo (MC) and multilevel MC strategies, 
achieving speedups of up to 100x in comparison to a standard MC method. This improvement was leveraged to 
quantify aleatoric uncertainties and analyze the sensitivity of the fire rate of spread (RoS) to weather and fuel 
parameters using a full-physics fire model, namely the Wildland-Urban Interface Fire Dynamics Simulator 
(WFDS), at an affordable computation cost. The proposed methodology may also be used to analyze uncertainty 
in other relevant fire behavior metrics such as heat transfer, fuel consumption and smoke production indicators.   

1. Introduction 

The number of uncertainties involved in the study of wildfire spread 
is typically large due to (i) the modeling assumptions required to 
mathematically describe the different physics and their couplings, i.e., 
epistemic uncertainty, and (ii) the aleatoric incertitude resulting, for 
instance, from the lack of detailed evidence regarding initial and 
boundary conditions. Therefore, numerical analyses based on a single 
deterministic realization for a particular set of input parameters are 
typically not conclusive and neither truly predictive (Arca et al., 2007; 
Alexander and Cruz, 2013; Cruz and Alexander, 2013; Filippi et al., 
2014; Sá et al., 2017; Cruz et al., 2018). A solution to this problem is to 
consider the system under study stochastic and analyze the relationship 
between input and output probability distributions by means of efficient 
statistical methods. In this regard, the fields of uncertainty quantifica-
tion (UQ) and sensitivity analysis (SA) have remarkably grown over the 
last decades within the computational fluid dynamics (CFD) community 
(Najm, 2009; Masquelet et al., 2017; Jofre et al., 2018, 2019), and it is 
now extensively accepted that the potential of estimating and mini-
mizing uncertainties, in combination with numerical verification and 
physics validation (V&V), is crucial for augmenting the confidence in 
the numerical predictions. 

In the specific case of wildfire spread modeling and prediction, un-
certainty quantification is essential to prioritize the needs in data 
collection, inform decisions about future research investments and 
improve communication between modelers and managers, leading to 
more informed fire management decisions (Riley and Thompson, 2016). 
The benefits of quantifying uncertainty in wildfire spread studies have 
already been demonstrated — see, for instance, Cruz (2010)—, and 
multiple authors have emphasized the need to improve the statistical 
characterization of fire model outputs (Benali et al., 2016; Pinto et al., 
2016; Ramirez et al., 2019). However, previous attempts to quantify 
uncertainty in forest fire modeling suffer from significant limitations, 
primarily caused by unattainable computing requirements. Full-physics 
models, which carefully resolve and/or model the physical and chemical 
phenomena involved in fire spread, are too computationally expensive 
to be used within Monte Carlo (MC) analyses. Consequently, most of the 
previous studies on fire spread uncertainty have been restricted to 
Rothermel’s semi-empirical model (Rothermel, 1972) and a few other 
completely empirical formulations (e.g. Cheney and Gould (1997); Cruz 
et al. (2008); Liu et al. (2014)). 

One of the first attempts to apply Global Sensitivity Analysis (GSA) 
techniques to Rothermel’s model was carried out by Salvador et al. 
(2001). Since then, several authors have extended their work. Anderson 
et al. (2007) quantified aleatoric uncertainties by applying random 
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perturbations to weather variables (namely, temperature, relative hu-
midity, wind speed and wind direction) in a Monte Carlo fashion. A 
similar approach was followed by Finney et al. (2011), who proposed a 
probabilistic framework to account for uncertainties in weather vari-
ables based on ensemble simulations of the fire spread model described 
by Finney (2002). Cruz (2010) studied the response of another fully 
empirical model to 10-m open wind speed and dead fuel moisture 
content. Later, Cruz and Alexander (2017) extended the work of Cruz 
(2010) to account for crown fire ignition and spread. They continued to 
use fuel moisture content and wind speed as uncertain inputs, and they 
added uncertainty ranges to fuel structure parameters such as fuel load, 
surface fuel depth, canopy base height, stand height, and canopy bulk 
density. 

Alternatively to the MC approach, which may become computa-
tionally prohibitive for large sample sizes, Bachmann and Allöwer 
(2002) assessed uncertainty propagation in Rothermel’s model using a 
first-order approximation based on a Taylor series expansion. In a 
similar attempt to reduce the computational cost of the original MC 
method, Jimenez et al. (2008) proposed a sampling algorithm to 
accelerate convergence using sensitivity derivative information. Such 
algorithms prioritize the input variables that have a larger impact on the 
model outputs to reduce the dimensionality of the problem. However, 
that approach can only be applied to differentiable formulations that 
meet certain smoothness conditions. Liu et al. (2015) extended the work 
of Jimenez et al. (2008) by using GSA techniques to simplify the fuel 
representation required in Rothermel’s fire spread model. Afterwards, 
they combined a Sensitivity Derivative Enhanced Sampling (SDES) al-
gorithm with a control variates scheme to accelerate the convergence of 
a randomized quasi-MC method to quantify aleatoric uncertainties. 
Recently, Yuan et al. (2020) presented a first attempt to characterize 
epistemic uncertainty in a semi-physical fire spread model developed by 
Liu et al. (2014). Specifically, they studied the effect on fire rate of 
spread of model parameters that describe energy transfer, including 
flame temperature and emissivity, flame length and tilt angle, fuel 
temperature of ignition, fuel consumption efficiency and the heat con-
vection coefficient. 

Despite the recent improvements in uncertainty quantification 
studies focused on wildfire spread, no study so far has included full- 
physics models in the analysis. While empirical and semi-empirical 
fire spread models are of most value for rapid operational purposes, 
they do not resolve physical and chemical phenomena essential to 
accurately describe fire behavior. This fact has two important implica-
tions. First, not resolving fundamental physics mechanisms prevents the 
study of epistemic uncertainties related to such phenomena. Second, 
because empirical models are built upon statistical relationships be-
tween macroscopic variables rather than physical principles, their 
application cannot be easily extrapolated beyond the conditions used to 
develop the models; acquiring experimental data in a range of condi-
tions wide enough to generalize empirical models is practically unfea-
sible, which also limits the study of aleatoric uncertainties. 

Conversely, physics-based CFD simulators, which are intended to 
resolve and/or model all relevant physical and chemical mechanisms 
that characterize wildfire spread, are exceedingly expensive to be used 
within uncertainty quantification studies based on standard MC meth-
odologies. The resulting high-dimensional parameter space, in 
conjunction with the large computational demands of the simulation 
runs required, necessitates cost-efficient, non-intrusive — i.e., sampling- 
based — UQ methods that accurately estimate the statistics of the 
quantities of interest (QoI). Many widely-used non-intrusive methods, 
such as stochastic collocation (Mathelin and Hussaini, 2003; Xiu and 
Hesthaven, 2005) and polynomial chaos expansions (PCE) (Ghanem and 
Spanos, 2003; Xiu and Karniadakis, 2002; Doostan and Owhadi, 2011), 
suffer from a rapid (up to exponential) growth of computational cost as a 
function of the number of input variables characterizing the uncertainty. 
On the other hand, MC methods are popular and powerful approaches 
for the estimation of statistical parameters due to their robust conver-
gence behavior independent of the number of uncertainties. However, it 
is well-known that the mean square error (MSE) of the MC estimator 
converges slowly as a function of the sample size N. This slow conver-
gence may thus become a critical issue, or even prohibitive, especially if 
sampling involves computationally expensive operations, such as solv-
ing a (discretized) partial differential equation (PDE). Recent research 
has targeted the development of cost reduction techniques to improve 
MC sampling methods, which are usually based on multifidelity (MF) 
methodologies. In MF frameworks, high-fidelity (HF) models are 
exploited to provide the required level of accuracy and insight into 
detailed physical phenomena, whereas low-fidelity (LF) simulations are 
leveraged to economically improve the statistical characterization of 
modeled QoIs. At present, the performance of these strategies has been 
mainly assessed on canonical PDEs and rather simplified flow problems. 
However, to the best of the authors’ knowledge, very few UQ studies of 
complex, large-scale, high-dimensional systems have been conducted 
and published in the literature. Selected recent examples include 
shock/turbulent-boundary-layer interaction in scramjet engines (Ber-
mejo-Moreno et al., 2012), analysis and optimization of 
high-performance aircraft nozzles (Alonso et al., 2017), multiphase flow 
simulations of cloud cavitation collapse (Sukys et al., 2017), and the 
study of radiative heat transfer in particle-laden turbulence (Jofre et al., 
2020). 

Therefore, the objective of this work is to demonstrate the potential 
of MF techniques to reduce the computing requirements of performing 
uncertainty quantification and sensitivity analysis in physics-based 
wildfire spread computational predictions, allowing in this manner a 
more complete characterization of aleatoric and epistemic uncertainties. 
The paper is organized as follows. First, a description of the considered 
MF strategies is provided in Section 2. Next, Section 3 introduces the 
wildfire models utilized. Section 4 presents the canonical simulation 
problem analyzed in this paper, and Section 5 describes and discusses 
the results obtained. Finally, Section 6 summarizes the work, provides 
conclusions, and proposes future research. 

Glossary of acronyms 

CFD Computational Fluid Dynamics 
CoV Coefficient of Variation 
CV Control Variates 
CSIRO Commonwealth Scientific and Industrial Research 

Organisation 
FDS Fire Dynamics Simulator 
GSA Global Sensitivity Analysis 
HF High Fidelity 
LF Low Fidelity 
MC Monte Carlo 

MF Multifidelity 
ML Multilevel 
MSE Mean Squared Error 
PCE Polynomial Chaos Expansion 
PDE Partial Differential Equation 
QoI Quantity of Interest 
RoS Rate of Spread 
SA Sensitivity Analysis 
SAV Surface Area to Volume ratio 
UQ Uncertainty Quantification 
V&V Verification and Validation 
WFDS Wildland-Urban Interface Fire Dynamics Simulator  
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2. Multifidelity sampling strategies 

In computational science and engineering, multiple physical/mathe-
matical/numerical models with different features can be constructed to 
characterize a system of interest. Typically, computationally expensive HF 
models are designed to describe the system with the degree of accuracy 
required by the problem under study, while LF models are formulated as 
cheaper representations, usually at the expense of lower accuracy, 
robustness or generality. Outer-loop problems, such as inference, UQ and 
optimization, require large numbers of model evaluations for different 
input values, resulting in unaffordable computational requirements in the 
case of large-scale, multiphysics calculations. The objective of MF 
methods, therefore, is to reduce the cost of the outer-loop problem by 
combining the accuracy of the HF models with the speedup achieved by 
the LF representations. Different MF UQ strategies exist in the literature; 
see, for example, the reviews by Peherstorfer et al. (2018) and Fernan-
dez-Godino et al. (2016, 2019). However, due to the high-dimensional 
input space and the complexity of the conservation equations involved, 
this study is restricted to a reduced subset of acceleration strategies 
appertaining to surrogate-based MC type sampling approaches. 

As its name indicates, MC-type approaches are derived from the 
original Monte Carlo method, in which the expectation of the QoI as a 
function of the stochastic inputs ξ, Q = Q(ξ), is estimated via a sample 
average. Let E[Q] and V[Q] denote the mean and variance of Q. Given N 
independent realizations of the stochastic input, denoted ξ(i), the MC 

estimator of E[Q] is defined as Q̂
MC
N = N− 1∑N

i=1Q(i), where Q(i) = Q(ξ(i)). 

Although unbiased, the precision of Q̂
MC
N , measured by its standard de-

viation 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V[Q]/N

√
, decays slowly as a function of N. Therefore, for a fixed 

computational budget (∝N), a viable alternative to increase the MC 
precision is to possibly replace Q with other quantities with smaller 
variances. 

2.1. Multilevel Monte Carlo 

One of the most popular acceleration strategies is the multilevel (ML) 
method (Giles, 2008; Adcock et al., 2020). This technique, inspired by 
the multigrid solver idea in linear algebra, is based on evaluating re-
alizations of Q from a hierarchy of models with different levels ℓ, ℓ = 0,
…L, with L the most accurate model, in which Q is replaced by the sum 
of differences Yℓ = Qℓ − Qℓ− 1; to simplify the notation for level 0, the 
expression is redefined to Y0 = Q0. As a result, the QoIs of the original 
and new ML problems have the same mean E[Q]. An example of a level is 
the grid resolution considered for solving the system of equations, so 
that a LF (or HF) model can be established by simulating Q on a coarse 
(or fine) grid. Then, E[Q] can be computed using the ML QoI and an 
independent MC estimator on each level ℓ as 

Q̂
ML

=
∑L

ℓ=0

Ŷ
MC
ℓ =

∑L

ℓ=0

1
Nℓ

∑Nℓ

i=1
Y (i)

ℓ . (1) 

This approach is referred to as multilevel Monte Carlo (MLMC), or 
simply ML, and the resulting estimator has a variance equal to 

V
[

Q̂
ML]

=
∑L

ℓ=0

V[Yℓ]

Nℓ
. (2) 

Consequently, if the level definition is such that Qℓ→ Q in mean 
square sense, then V[Yℓ]→0 as ℓ→∞, and therefore fewer samples are 
required on the finer level L. In particular, it is possible to show that the 
optimal sample allocation across levels Nℓ is obtained in closed form 
given a target variance of the ML estimator equal to ε2/ 2, and resulting 
in (Giles, 2008) 

Nℓ =

∑L
k=0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C kV[Yk]

√

ε2/2

̅̅̅̅̅̅̅̅̅̅̅̅

V[Yℓ]

C ℓ

√

, (3)  

where the computational cost of the individual Yℓ evaluations is denoted 
by C ℓ, and ε2 represents the MSE of the estimator. It is important to note 
that the variance decay can be proven to be satisfied only for levels 
based on a numerical discretization (spatial/temporal meshes), and not 
for general hierarchies of models, such as 2-D versus 1-D, large-eddy 
simulation (LES) versus Reynolds-Averaged Navier Stokes (RANS), etc. 

2.2. Control variates Monte Carlo 

To accommodate LF representations that are not obtained directly 
from coarsening the HF models, a common approach is to utilize LF 
realizations as a control variate (Peherstorfer et al., 2018; Pasupathy 
et al., 2014; Geraci et al., 2017). In statistics, the control variates 
approach replaces a generic quantity q by q+ α(E[g] − g), where g is a 
function chosen for its high correlation with q and for which the value of 
E[g] is readily available. However, in the problem of interest here the LF 
correlations and expected values are not available a priori, and conse-
quently need to be established during the computations along with the 
HF calculations. As a consequence, the expected values of the LF models 
are generally approximated by means of MC estimators requiring a set of 
additional (independent) LF computations. The control variates (CV) 
MC estimator is defined as 

Q̂
CV

= Q̂
MC
HF + α

(

E[QLF] − Q̂
MC
LF

)

, (4)  

where Q̂
MC
HF = N− 1

HF
∑NHF

i=1 Q(i)
HF, E[QLF] ≈ (NLF − NHF + 1)− 1∑NLF

i=NHF+1Q(i)
LF, 

Q̂
MC
LF = N− 1

HF
∑NHF

i=1 Q(i)
LF, NHF and NLF are the number of HF and LF samples, 

respectively, and α = C[QHF,QLF]/V[QLF] is the control variates coeffi-

cient chosen to minimize the variance of Q̂
CV

. C[QHF,QLF] denotes the 
covariance between QHF and QLF. The optimal α selection leads to 

V
[

Q̂
CV]

=V[QHF]
(

1 − ρ2 r
r + 1

)
, (5)  

with − 1 ≤ ρ = C[QHF,QLF]/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V[QHF]V[QLF]

√
≤ 1 the Pearson correlation 

coefficient between the HF and LF models, and r is used to parameterize 
the additional rNHF LF realizations with respect to HF. As described by 
Geraci et al. (2017), the optimal control variates is obtained for 

r=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C HF

C LF

ρ2

1 − ρ2

√

− 1, (6)  

where C HF and C LF are the costs of a HF and LF sample, respectively. A 
comprehensive description of the control variates MC estimator, like for 
example the derivation of optimal coefficients and number of samples 
per fidelity, is detailed in Peherstorfer et al. (2018). 

3. Wildfire spread models 

Over the past decades, numerous approaches have been proposed to 
model and predict wildfire behavior. These strategies range from 
completely empirical correlations to detailed physics-based simulation 
frameworks; see, for instance, Sullivan (2009a, 2009b, 2009c) for a 
comprehensive review. Tools designed to be used operationally for de-
cision support need to be computationally fast and provide 
easy-to-interpret information regarding macroscopic variables, such as 
rate of spread, flame height and fire line intensity. Therefore, opera-
tional simulators are frequently built upon empirical or semi-empirical 
models. Conversely, the detailed study of fire dynamics requires addi-
tional insight into the physical and chemical phenomena involved in fire 
spread, including, among others, pyrolysis, combustion, heat transfer 
and turbulence. Such level of detail can only be achieved by means of 
CFD approaches, which typically require intense computing resources 
that are several orders of magnitude larger than what operational 
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simulators demand. 
One of the most popular solutions among operational wildfire sim-

ulators is the Rothermel model (Rothermel, 1972). Based on 
semi-empirical relationships between the parameters that determine the 
heat emitted by the fire and the energy needed by the unburned fuel to 
ignite, the Rothermel model provides a well-balanced combination of 
physical insight and operational capabilities. While its application re-
quires empirical adjustment of fuel and wind parameters, the fact that 
such parameters are defined following physical principles facilitates 
extrapolating the use of the model to new vegetation types and diverse 
weather conditions. Nonetheless, the Rothermel model has important 
limitations, and consequently it is usually coupled with additional 
models that account for phenomena not considered initially, such as 
crown ignition and spotting. 

From a full-physics modeling perspective, several CFD simulation 
frameworks have been designed specifically for wildfire applications. 
Some of the most popular solutions include the Wildland-Urban Inter-
face Fire Dynamics Simulator (WFDS) (Mell et al., 2007), FIRETEC (Linn 
et al., 2002), and FIRESTAR (Morvan et al., 2006, 2018). WFDS was 
selected in this study due to its widespread adoption by the scientific 
community. WFDS is currently part of the broader Fire Dynamics 
Simulator (FDS) (Forney et al., 2003; Floyd and McGrattan, 2008), a 
CFD fire and smoke simulation tool widely used for fire safety applica-
tions. FDS is an open-source solver,1 maintained by the US National 
Institute of Standards and Technology (NIST) and jointly developed by 
several academic institutions in multiple countries. 

Finally, there exist a variety of fully empirical fire models that have 
demonstrated high accuracy and applicability when used within specific 
parameter ranges. These models were not included in the present 
analysis due to the wide range of alternatives available, but they 
constitute an important pool of LF candidates to be considered in the MF 
strategies introduced in Section 2. The subsections below provide 
further details on the wildfire models used in this study. 

3.1. The rothermel model 

Rothermel’s original formulation, initially published in 1972 
(Rothermel, 1972), is based on an energy balance between the heat 
emitted by a flaming fire front and the energy required to ignite the fuel 
ahead of it. The model is given by (Andrews, 2018) 

R=
IRξ(1 + φw + φs)

ρbεQig
, (7)  

where R is the fire rate of spread, IR is the reaction intensity, ρb is the fuel 
bulk density, and Qig is the heat required to ignite the fuel. The 
remaining variables are empirical parameters that allow matching 
observed fire behavior to this simple formulation. ξ is the propagating 
flux ratio and represents the portion of reaction intensity that propagates 
toward the unburned fuel. φw and φs are named wind and slope factors, 
respectively, and account for the increase in heat transfer that occurs 
when the fire spreads in the direction of the wind and/or upslope. 
Finally, ε is an efficiency parameter dependent on the fuel particle size 
and shape. Rothermel developed empirical functions so that the value of 
these variables could be derived directly from fuel and environmental 
parameters, providing in this manner physical intuition to their cali-
bration. Through such empirical relationships, the fire rate of spread can 
ultimately be expressed as a function of fuel heat content (h), fuel total 
mineral content (ST), fuel effective mineral content (Se), oven-dry fuel 
particle density (ρp), fuel particle surface-area-to-volume (SAV) ratio 
(σ), oven-dry fuel load (w0), fuel bed depth (δ), dead fuel moisture of 
extinction (Mx), fuel moisture content (Mf ), wind velocity at midflame 
height (U), and terrain slope (φ) in the form 

R=F
(
h, ST , Se, ρp, σ,w0, δ,Mx,Mf ,U,φ

)
. (8) 

Following the formulation outlined in Eq. (8), the fuel-related pa-
rameters are usually grouped into standard categories that broadly 
represent the most common vegetation distributions. Such categories 
are known as fuel models and have experienced substantial development 
since the first version proposed by Rothermel. Multiple authors have 
highlighted the importance of the fuel input parameters on the predic-
tive capability of fire spread achieved by the Rothermel model (e.g., 
Arca et al. (2007)). For this reason, ad-hoc fuel models are usually 
developed prior to applying the Rothermel model to a new geographical 
area and/or vegetation type. 

The original Rothermel model is one-dimensional (1D), and conse-
quently its practical application requires coupling it with a two- 
dimensional (2D) propagation scheme. Several propagation methodol-
ogies have been proposed following Eulerian and Lagrangian ap-
proaches (Bova et al., 2016). Furthermore, the Rothermel model has 
been incorporated into a significant number of 1D and 2D simulators, 
such as BehavePlus (Heinsch and Andrews, 2010), FARSITE (Finney, 
1998) and WRF-SFIRE (Mandel et al., 2011), which are at present 
extensively used internationally by fire managers and researchers. 

3.2. Wildland-Urban Interface Fire Dynamics Simulator 

WFDS was designed as an extension of FDS to include fire spread in 
vegetative fuels (Mell et al., 2007). FDS is a CFD model of fire-driven 
fluid flow, which numerically solves a form of the Navier-Stokes equa-
tions appropriate for low-speed (Mach numbers below Ma < 0.3), 
thermally-driven flow, with an emphasis on smoke and heat transport 
from fires. It is widely used in fire protection engineering problems and 
its applicability to study fundamental fire dynamics and combustion 
phenomena is gaining increasing attention. 

The core hydrodynamic formulation is solved by an explicit 
predictor-corrector scheme, which is second-order accurate in space and 
time, and spatially discretized on a rectilinear mesh. By default, the 
small-scale turbulent fluctuations are modeled by means of LES strate-
gies, although it is possible to perform Direct Numerical Simulations 
(DNS) if the underlying numerical mesh is fine enough. For most ap-
plications, combustion is modeled through a single step, mixing 
controlled chemical reaction. Radiative heat transfer is included in the 
model and solved via a Discrete Ordinates Method (DOM) with a default 
number of 100 discretization angles. The radiation transport equation is 
solved for a grey gas, and in some limited cases using a wide-band 
model. In addition, FDS includes Langrangian particle tracking capa-
bilities to represent elements that are not captured by the Eulerian grid 
(McGrattan et al., 2019a), like for example fuel and soot particles. The 
WFDS extension, now merged into FDS, added the functionalities 
needed to (i) describe vegetative fuels, (ii) resolve convective and 
radiative heat transfer within those fuels, and (iii) calculate their ther-
mal degradation, pyrolysis and combustion. 

4. Description of the wildfire spread scenario 

The MF techniques presented in Section 2 were applied to the ca-
nonical wildfire spread simulation problem described below. The 
analyzed scenario belongs to a set of medium-scale field fire experiments 
conducted by the Commonwealth Scientific and Industrial Research 
Organisation (CSIRO) in the Northern Territory of Australia in 1986 
(Cheney et al., 1993). These tests were monitored to measure the fire 
rate of spread and evaluate its correlation with fuel and weather vari-
ables such as fuel height, fuel moisture content, fuel load, fuel bulk 
density, and wind speed. Two of the experiments had been simulated 
using WFDS (Mell et al., 2007) and incorporated into the FDS test suite 
as validation examples (McGrattan et al., 2019b). Furthermore, the fact 
that the experiments were conducted on horizontal grassland fields 1 https://github.com/firemodels/fds. 
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facilitates the application of Rothermel’s model for surface fire spread. 
Particularly, this study considers the CSIRO grassland F19 experiment, 
which burned a square field of 200m × 200m using a 175-m long igni-
tion line. This type of experiment design is very frequent in wildfire 
behavior studies. 

4.1. Problem setup 

The setup of the problem is depicted in Fig. 1. This configuration was 
generated with WFDS by reproducing the validation study performed by 
Mell et al. (2007). For the HF samples, the computational domain of size 
240m × 240m × 20m was discretized using a uniform Cartesian grid 
with Δ = 0.5m resolution. Turbulence was solved by means of a LES 
strategy based on Deardorff’s turbulent viscosity model. Time integra-
tion was performed by limiting the Courant-Friedrichs-Lewy (CFL) value 
to CFL < 1, and radiation transport was calculated utilizing a DOM 
method with 100 discrete angles (McGrattan et al., 2019a). 

Vegetation (grass) was represented as a homogeneous bed of 
Lagrangian combustible particles, whose main physical and chemical 
properties are summarized in Table 1. Grass particles were arranged in a 
rectangular prismatic space with a predefined bulk density and fuel bed 
depth. These two parameters were included into the list of uncertainties 
analyzed, together with the fuel moisture fraction and the particle SAV 
ratio. See Section 4.2 for a detailed discussion of their values. 

4.2. Uncertainties and quantities of interest 

Wildfire spread modeling requires the selection of a large number of 
parameters. However, most of the aleatoric uncertainty is usually 
concentrated in a limited subset of the input variables. Previous works 
identified the following variables as significant sources of aleatoric un-
certainty in wildfire spread: 1-h fuel moisture content (Salvador et al., 
2001; Clark et al., 2008; Finney et al., 2011; Ervilha et al., 2017), 1-h 
fuel load (Liu et al., 2015; Cai et al., 2019), fuel bed depth (Salvador 
et al., 2001; Jimenez et al., 2008; Liu et al., 2015; Ervilha et al., 2017; 
Cai et al., 2019), fuel particle SAV ratio (Jimenez et al., 2008; Liu et al., 
2015; Ervilha et al., 2017; Cai et al., 2019), and wind speed (Salvador 
et al., 2001; Anderson et al., 2007; Jimenez et al., 2008; Clark et al., 
2008; Finney et al., 2011; Liu et al., 2015; Benali et al., 2016; Ervilha 
et al., 2017). Consequently, this list of variables were considered as 
uncertain inputs (ξi) in this work, with their stochastic ranges charac-
terized from studies and experiments available in the scientific litera-
ture. Scott and Burgan (2005) summarized a series of standardized fuel 
models, which are extensively used at present to model fire behavior. 
Their list of models contains 9 grass-type options, each of them with a 
characteristic value of fine fuel load, SAV ratio and packing ratio. 
Additionally, they suggested a range of dead fuel moisture and wind 

conditions to evaluate these fuel models. The data variability considered 
by Scott and Burgan (2005) was used in the present study to limit the 
sampling space as detailed in Table 2. In the case of wind speed, 
mid-flame estimations were converted to values at a 20-feet height using 
a conversion factor of 0.4 as recommended by the US National Wildfire 
Coordinating Group (Estimating Winds for Fire Behavior, 2019). 

Amidst the large number of output statistics that can be obtained 
from a wildfire spread calculation, the fire rate of spread (RoS) is one of 
the most critical quantities to understand fire behavior and its effects on 
the environment (O’Brien et al., 2016). Among other applications, RoS 
provides a quantitative representation of fire evolution, and it can be 
used to analyze the effect of varying weather conditions or possible fuel 
treatments in a specific area. Consequently, this study uses the rate of 
spread, averaged in the simulation domain, as QoI. Simulated RoS was 
measured by recording the longitudinal coordinate of the point with 
maximum gas temperature at every time step. The search for maximum 
temperatures was restricted to a narrow longitudinal band placed along 
the domain symmetry plane and close to the ground. The resulting 
time-distance distribution was fitted to a linear function in order to es-
timate the average RoS. 

4.3. Multifidelity modeling strategy 

The MF strategies described in Section 2 rely on the construction of 
levels with different ratios of fidelity and computational cost to accel-
erate the process of reducing the variance of the estimators. Diverse 
approaches can be pursued to develop such cheaper models, with the 
only requirement that these lower-fidelity representations need to be 
orders of magnitude faster to compute while maintaining some degree of 
interdependence, the higher the better, with the QoI calculated at the 
different levels. In this work, two different methods to build coarser 

Fig. 1. Computational domain of size 240m × 240m × 20m used to reproduce the CSIRO grassland F19 experiment (Cheney et al., 1993; Mell et al., 2007; McGrattan 
et al., 2019b). The image is a snapshot outputted from WFDS for a sample run and displayed using Smokeview (Forney, 2016). The yellow surface represents the field, 
the black dots correspond to the grass particles, the red line is the ignition line, and the orange region indicates the distribution of the fire as it spreads. 

Table 1 
Main physical and chemical properties used to represent grass particles in the 
simulation experiments; see (Mell et al., 2007) and (McGrattan et al., 2019b) for 
additional details.  

Property Units Value 

Chemical composition — C6H10O5  

Oven-dry density kg/m3  512 

Conductivity W/(m ⋅K) 0.1 
Specific Heat kJ/(kg ⋅C) = 1.11+ 0.0037T  
Heat of combustion kJ/kg  15,600 
Soot yield — 0.02 
Heat of pyrolysis kJ/kg  416 
Char yield — 0.02 
SAV ratio — stochastic (see Table 2) 
Moisture fraction — stochastic (see Table 2)  
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representations of the HF simulation were tested. 
The first strategy is based on the ML method in which the HF CFD 

scenario is resolved using decreasing levels of resolution in (i) flow cell 
size, (ii) integration time-step (Δt), and (iii) number of discrete angles 
utilized to resolve the radiative heat transport. Based on preliminary 
tests, we designed three different levels named LF-2x, LF-5x and LF-10x, 
which are 25× , 250× and 2500× cheaper to compute than the HF level, 
respectively. The different resolution levels for (i) and (iii) are specified 
in Table 3. The integration time-step was automatically adjusted at 
every iteration based on the CFL constraint; approximately, a cell-size 
increase of 2× corresponds to a two-fold increase of Δt. 

The second approach explores the benefits of introducing the output 
of the Rothermel fire spread model as a control variate. This was 
accomplished through the execution of FARSITE simulations for a 
similar scenario and with the same input parameters. This fidelity is 
referred to as LF-CV, and is 2500× faster to compute than the HF level. A 
visualization of a sample output obtained from FARSITE is depicted in 
Fig. 2. The map of fire time of arrival was used to compute an average 
value for the RoS. 

5. Results and discussion 

This section presents and analyzes the data and results for the 
problem described in Section 4, which were obtained by running HF and 
LF simulations based on the modeling approaches described in Section 3, 
and provides a discussion of the statistics calculated by utilizing the 
methodologies introduced in Section 2. First, Section 5.1 presents a 
concise statistical characterization of the RoS — the QoI considered in 
this work — for the different fidelities. Next, in Section 5.2, the per-
formance of various MF estimators is studied to select the optimal 
strategies in terms of balancing variance reduction/correlation and 
computational costs. The list of MF designs considered is visually sum-
marized in Table 4. In Section 5.3, the uncertainty of the problem is 
propagated through the model and quantified by making use of the 
acceleration techniques chosen in the previous subsection. Finally, 
Section 5.4 discusses a variance-based sensitivity analysis performed to 
rank the effect of the uncertainties on QoI variability. 

5.1. Pilot sampling of the quantity of interest 

As a first step to construct efficient MF estimators, exploratory data 
was collected by running the same 32 pilot samples for the 5 fidelities 
designed. This set of samples were generated following a design of 
experiment (DoE) based on the KDOE approach (Roy et al., 2020). KDOE 
is an iterative method that introduces stochasticity in the sampling 
process by means of a variable kernel density estimation to optimize the 
uniformity of the DoE. This approach provides a more homogeneous 
exploration of the input parameter space, especially when the number of 
samples is relatively small. For example, instantaneous snapshots of the 
vertical velocity field for the first sample generated by the HF, LF-2x, 
LF-5x and LF-10x fidelities are depicted in Fig. 3. It can be inferred 
from these snapshots that (i) the lowest-resolution fidelities (e.g., 
LF-10x) tend to underresolve eddies located at the fire front, which 
could affect the rate of convective heat transfer, and consequently the 
predicted fire rate of spread; (ii) nonetheless, larger-scale turbulent 

motions are sufficiently resolved, with buoyancy pulses present in all 
fidelity levels; (iii) velocity values maintain similar absolute ranges 
across all fidelity levels, although (iv) the velocity field becomes 
increasingly diffused in space as spatial resolution decreases. Conclusive 
arguments, however, cannot be obtained by solely analyzing Fig. 3 as (i) 
the QoI targeted in this work is the average RoS, and (ii) the perfor-
mance of the MF estimators is not directly related (to a first-order 
approximation) to the accuracy of the LF results with respect to the 
HF data. 

The data generated from the pilot samples for the different fidelities 
were collected and visually summarized in Fig. 4 by means of boxplots. 
The fidelities are sorted (left to right) in decreasing computational cost 
starting from HF, ending with LF-10x, and spanning a total of 4 orders of 
magnitude. As stated in the paragraph above, the accuracy of the LF data 
with respect to the HF results is not the principal component for the 
performance of the ML and CV estimators as they are, respectively, 
formulated in terms of variance reduction and correlation. Nevertheless, 
it is instructive to analyze the relations between the HF and LF data from 
a statistical perspective to gain insight and facilitate the effective con-
struction of the MF estimators. The distributions in Fig. 4 show that the 
data are organized in 2 main blocks across fidelities: (i) HF, LF-2x, LF-5x, 
and LF-10x generate data distributed around Q ≈ 2.5 and displaying 

Table 2 
Sources of aleatoric uncertainty (stochastic variables, ξi) considered in this 
study. Ranges were characterized based on Scott and Burgan (2005).  

No. Parameter Units Uncertainty range 

1 Fuel moisture fraction – [0.03 : 0.12] 
2 Fuel bed depth m [0.122 : 1.5] 
3 Fine fuel load kg/m2  [0.09 : 2.25] 

4 Fuel particle SAV ratio 1/m  [4265 : 7218] 
5 Wind speed at 20-feet height m/s  [0 : 25]  

Table 3 
ML levels designed for the computation of the canonical fire spread scenario.  

Level Cell size (m) # Discrete angles HF-equivalent sample cost 

HF 0.50 100 1 
LF-2x 1.00 50 1/25 
LF-5x 1.25 20 1/250 
LF-10x 2.00 10 1/2500  

Fig. 2. Example of FARSITE’s output corresponding to a snapshot of a sample 
for the canonical fire spread scenario. 

Table 4 
MF designs studied based on the CV and ML strategies and fidelities LF-CV, LF- 
2x, LF-5x and LF-10x.  

Estimator type \ Fidelity levels HF LF-CV LF-2x LF-5x LF-10x 

Monte-Carlo (MC) ×

Control Variates MC (CV) × ×

Multilevel MC (ML) × ×

Multilevel MC (ML) × × ×

Multilevel MC (ML) × × × ×
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coefficients of variation with values CoV ≡
̅̅̅̅̅̅̅̅̅̅
V[Q]

√
/E[Q] ≈ 0.4, whereas 

(ii) LF-CV tends to underestimate Q by approximately 1.6× and presents 
a significantly larger CoV ≈ 0.7. 

5.2. Performance of the multifidelity estimators 

The performance of various candidate MF estimators constructed by 
means of CV and ML strategies was analyzed by utilizing the pilot data 
described in the previous subsection. As discussed in Section 2, the 
speedup obtained by the ML and CV approaches is function, respec-
tively, of the variance of Yℓ (V[Yℓ]) in Eq. (2) and the Pearson correla-
tion coefficient (ρ) between fidelities in Eq. (5). Consequently, V[Yℓ] and 
ρ for all potential combinations are listed in Table 5. In the case of CV- 
based MF estimators, which are constructed utilizing HF information 
and LF samples as a control variate, the best LF candidates are LF-2x and 
LF-5x as they present correlations of ρ = 0.995 and ρ = 0.990 with 

speedups of approximately 25× and 250× , respectively. Instead, LF-CV 
and LF-10x are slightly less correlated with HF as their values are ρ =

0.884 and ρ = 0.869. If considering ML strategies, in which HF and 
different LF are combined forming a telescopic sum, a good hierarchical 
structure is composed by the lower fidelities LF-2x, LF-5x and LF-10x as 
their V[Yℓ] values decay orders of magnitude, 0.002, 0.017 and 0.224 
specifically, while becoming 25× , 250× and 2500× faster to compute 
than HF. 

The extrapolated performances of a straightforward MC approach 
and the CV and ML estimators proposed above are reported in Fig. 5. The 
horizontal logarithmic-scale axis corresponds to the total cost of each 
estimator normalized by the cost of a HF sample. The total costs are 
evaluated as C

MC = NHFC HF, C
CV = NHF(C HF +rC LF) and C

ML =
∑L

ℓ=0NℓC ℓ for the MC, CV and ML, respectively. On the vertical 
logarithmic-scale axis, target estimators’ MSE, ε2 ≡ V[Q̂], normalized by 
a reference MC value εMC2

0 obtained from the 32 pilot samples, are shown 

Fig. 3. Snapshots of vertical velocity for the first sample from the different fidelities: lateral view of the longitudinal symmetry plane (left), and top view of the 
horizontal plane at a 2-m height (right). 
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for MC and ML estimators through evaluating Eq. 3, and for the CV es-
timators utilizing the expression (Peherstorfer et al., 2018) 

ε2

εMC2
0

=

[
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C LF

C HF
ρ2

√ ]2

. (9) 

The results depicted in Fig. 5 show that the speedups of the MF es-
timators with respect to MC are in the order of 100× to 1000× for the 
best-performant CV (constructed with HF and LF-5x) and ML (generated 
by levels Y0 : LF-10x, Y1 : LF-5x − LF-10x, Y2 : LF-2x − LF-5x and Y3 :

HF − LF-2x) strategies, respectively. For example, to reduce ε2 by an 

order of magnitude with respect to εMC2
0 , the MC approach requires 

computing 320 HF runs, while the CV (composed by 1 HF and 493 LF-5x 
samples) and ML (composed by 1 HF, 19 LF-2x, 222 LF-5x and 1556 LF- 
10x samples) demand only 3.0 and 2.8 equivalent HF runs. 

Studying in detail the differences in performance between the 
candidate CV estimators considered at the beginning of this subsection, 
it is clear from Fig. 5 that ρ is a very important parameter for maximizing 
the speedup. In particular, the lower fidelities LF-CV and LF-10x, which 
present correlation coefficients slightly smaller than LF-2x and LF-5x, 
performed only 10× faster than MC (instead of 100× ) even in the 
case of using LF-10x that is 10× and 100× faster than LF-2x and LF-5x, 
respectively. This observation is corroborated by the mathematical 
expression of the CV estimator’s variance given in Eq. (5), in which the 

impact of ρ on the reduction of V[Q̂
CV
] is quadratic, while sublinearly 

proportional to the ratio C HF/C LF through the parameter r. However, if 
two or more fidelities have similar correlation with HF, the computa-
tional cost becomes the dominant parameter, and the cheapest LF gen-
erates the most efficient CV estimator as in the case of LF-2x and LF-5x, 
in which the latter is the best-performant option. 

Carefully analyzing the speedups of the ML estimators considered in 
Fig. 5, two observations can be made. The first observation is that ML 
strategies based on utilizing LF-CV realizations, which are not generated 
from coarsening the HF model, notably underperformed with respect to 
standard ML estimators created by coarsening the HF resolution as in the 
case of LF-2x, LF-5x and LF-10x. For instance, the 2-level ML estimator 
generated by HF and LF-2x outperformed by 10× the same-cost ML 
estimator constructed with HF and LF-CV. This observation agrees with 
the statement made at the end of Section 2.1 that the variance decay can 
be proven to be satisfied only for levels based on numerical discretiza-
tions (spatial/temporal meshes), and not for general hierarchies of 
models. The second observation is that the combination of variance 
decay and cheaper calculations across levels provides the optimal recipe 
for constructing efficient ML estimators as the 4-level one generated in 
this work with fidelities HF, LF-2x, LF-5x and LF-10x (levels Y0 : LF-10x, 
Y1 : LF-5x − LF-10x, Y2 : LF-2x − LF-5x and Y3 : HF − LF-2x). The 
mathematical explanation of this behavior can be inferred from the ML 
estimator’s variance provided in Eq. (2) as it is composed by a sum of 
V[Yℓ]/Nℓ, and therefore reducing each of the addends results in an 
decrease of the total sum. 

The results shown in Fig. 5 highlight the better performance of the 
ML with respect to the CV estimators in the case of LF models/levels that 
present small bias and moderate CoV as revealed in Fig. 4. However, in a 
more general problem involving very complex, non-linear fire spreads, 
in which such “good” LF models are more challenging to design and/or 
discover, the CV approach may be a more robust option. Thus, hybrid-
ization strategies, like for example the bi-fidelity (BF) approximation 
(Fairbanks et al., 2017, 2020; Jofre et al., 2017) and the multilevel 

Fig. 4. RoS data distribution of the pilot samples for the different fidelities. 
Boxplots display the minimum (small horizontal lines at Q1-1.5× IQR), 
maximum (small horizontal lines at Q3+1.5× IQR), whiskers (vertical lines), 
interquartile range (boxes spanning IQR = Q3-Q1), median (large horizontal 
lines), outliers (diamonds), and data points (colored circles, with one color per 
sample across fidelities) of the distributions. 

Table 5 
Pearson correlation coefficient ρ (elements below diagonal) and variance of 
levels V[Yℓ] (elements above diagonal) for all the potential combinations of 
fidelities.  

ρ \ V[Yℓ] HF LF-CV LF-2x LF-5x LF-10x 

HF 1.0 \ 0.0 0.303 0.002 0.024 0.312 
LF-CV 0.884 1.0 \ 0.0 0.300 0.284 0.539 
LF-2x 0.995 0.885 1.0 \ 0.0 0.017 0.291 
LF-5x 0.990 0.889 0.993 1.0 \ 0.0 0.224 
LF-10x 0.869 0.784 0.877 0.901 1.0 \ 0.0  

Fig. 5. Extrapolated MSE (normalized by the pilot εMC2
0 value) of the MC and potential combinations of MF estimators as function of the overall computational cost in 

terms of equivalent number of HF runs. Solid black lines correspond to plain MC with HF samples. 
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multifidelity (MLMF) approach (Geraci et al., 2017; Gorodetsky et al., 
2019), are promising extensions of the standard ML and CV methods for 
accelerating the convergence rate of statistical estimators in challenging 
wildfire spread scenarios. 

5.3. Uncertainty propagation and quantification 

As discussed in the previous subsection, the best-performant MF es-
timators correspond to the CV constructed with HF and LF-5x, and the 
ML generated by levels Y0 : LF-10x, Y1 : LF-5x − LF-10x, Y2 :

LF-2x − LF-5x and Y3 : HF − LF-2x. The next step, therefore, is to utilize 
these MF estimators to propagate the uncertainty and quantify its impact 
on the QoI for the problem described in Section 4. 

The precision in the prediction of the QoI by means of the MF esti-
mators is given in terms of a coefficient of variation defined as CoVMF ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V[Q̂
MF

]

√

/Q̂
MF

. In the case of targeting CoVMF≲2%, the best-performant 
CV estimator requires (approximately) 4 HF and 1540 LF-5x realizations 
with an equivalent cost of 10 HF runs, and the optimal ML estimator 
demands (approximately) 4 HF, 61 LF-2x, 695 LF-5x and 4862 LF-10x 
samples with an equivalent cost of 9 HF runs. In contrast, the same 
CoV for a MC strategy based on HF, i.e., CoVMC≲2%, would require 1000 
HF runs, which is approximately 100× more expensive than using the 
MF estimators selected. 

The estimation of RoS under uncertainty using the MF and MC es-
timators for different HF-equivalent costs is shown in Fig. 6. For all three 
estimators, the predictions were not accurate when utilizing 2 HF- 
equivalent runs. However, starting from 4 HF-equivalent runs, the CV 
and ML predictions rapidly improved by approaching the “expected” 
estimation (approximated from 128 HF samples) and reducing their 
variance, whereas the MC estimator converged very slowly as revealed 
by the wide boxplots. In fact, even when utilizing the total 128 HF 
samples available, the coefficient of variation of the MC prediction was 
CoVMC ≈ 9%, while it was CoVMF≲2% (approximately 5× smaller) for 
the MF strategies with less than 10 HF-equivalent runs. Finally, as 
indicated by the MC and MF approaches, the prediction of RoS tends to 
Q ≃ 3.1 m/s when increasing the precision of the three estimators. 

This estimation of RoS convergence can be understood as a conser-
vative approximation due to the wide uncertainty ranges defined for the 
input parameters (Table 2). Such a broad sampling space was used in 

this study to demonstrate the potential of MF approaches even when 
knowledge about critical fuel and weather variables is extremely scarce. 
However, at least a rough characterization of the wind field and easy to 
measure fuel properties such as fuel load and fuel bed depth will 
frequently be available in field experiments. This knowledge allows 
narrowing the uncertainty input distribution, thus reducing spread in 
the simulated QoIs and accelerating convergence. In these cases, the 
convergence trends shown in Fig. 6 are expected to improve for all MF 
estimators. The relative efficiency of MF estimators, however, is not 
likely to change. 

5.4. Variance-based sensitivity analysis 

The final step is to characterize how the variability of the QoI is 
divided and allocated to the different sources of uncertainty present in 
the inputs of the problem by means of SA. The classification of un-
certainties is of main importance as it clearly indicates the modeler 
where to concentrate resources to decrease the input incertitude by 
means of, for example, improved physics modeling or by acquiring 
additional experimental data with the objective to maximize the 
reduction of output’s variability. There are many methods to perform SA 
(Ghanem et al., 2017), for example regression analysis, derivative-based 
local methods, screening, variogram analysis of response surfaces, 
variance-based methods, and scatter plots. In this work, the 
variance-based approach based on Sobol’ indices (Sobol, 1993) was 
selected as it allows full exploration of the stochastic input space, ac-
counting for interactions and nonlinear responses. The underlying 
principle of the methodology is to quantify the input and output un-
certainties as probability distributions, and decompose the output 
variance into parts attributable to input variables and their combina-
tions. The sensitivity of the output to an input variable is therefore 
measured by the amount of variance in the output caused by that input. 

For the SA discussion, focus was placed on the ML estimator as it 
performed moderately better than the MF CV strategy; see Sections 5.2 
and 5.3 for details. Originally designed for the estimation of expecta-
tions, as presented in Section 2.1, ML has been recently extended to the 
estimation of higher-order statistical moments, such as variances (Bierig 
and Chernov, 2015) and covariances (Mycek and De Lozzo, 2020). The 
combination of these extensions allows to formulate Sobol’ indices 
within a ML framework. Following the work by Mycek & De Lozzo 
(2020), the first-order Sobol’ index Si associated to the i-th random input 
ξi, and corresponding to the share of output variance attributable to ξi 
individually, can be written in “pick-and-freeze” formulation (Janon 
et al., 2014) as 

Si =
Vξi [Eξ− i [Q|ξi]]

V[Q]
≃

V

[

Q̂
ML
ξi

]

V
[

Q̂
ML], (10)  

where subindex ξi indicates the stochastic input variable picked and held 
frozen. 

Based on the best-performant ML estimator (levels Y0 : LF-10x, Y1 :

LF-5x − LF-10x, Y2 : LF-2x − LF-5x and Y3 : HF − LF-2x) characterized 
in Sections 5.2 and 5.3 for a CoVMF≲2%, a SA study for Q ≡ RoS is 
depicted in Fig. 7 utilizing Sobol’ indices accelerated by means of the MF 
strategy described in the paragraph above. Computationally, the savings 
with respect to a straightforward MC-based SA are proportional to the 
speedup achieved by the MF estimator, and it scales linearly with the 
number of stochastic input parameters. In terms of impact on the QoI, 
the SA results indicate that the fuel moisture fraction (ξ1), the fine fuel 
load (ξ3) and the speed of wind (ξ5) are the uncertainties responsible for 
most of the variation (approximately 20% − 30% each), followed in 
decreasing SML

i value by the depth of the fuel bed (ξ2) and the fuel 
particle SAV ratio (ξ4), each of which account for a slightly smaller share 
of the total variance (approximately 10% − 15%). 

Fig. 6. Estimation of RoS using the MC (red), CV (white), and ML (grey) 
strategies as a function of equivalent number of HF runs. Boxplots display the 
minimum (small horizontal lines at Q1-1.5× IQR), maximum (small horizontal 
lines at Q3+1.5× IQR), whiskers (vertical lines), interquartile range (boxes 
spanning IQR = Q3-Q1), and median (large horizontal lines). The dashed grey 
lines correspond to the MC estimation (minimum/median/maximum) using 
128 HF samples. 
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These results are in line with previous findings obtained utilizing 
empirical and semi-empirical fire spread models. For example, Salvador 
et al. (2001) identified fuel depth and dead fuel moisture as the most 
influential parameters on fire rate of spread under moderate winds, with 
the importance of wind speed increasing in high-wind scenarios. Simi-
larly, Anderson et al. (2007) found that variations in wind speed and 
ambient humidity have the largest impact on the variability of the ex-
tensions burned. Moreover, Clark et al. (2008) reported that wind speed 
and dead fuel moisture accounted for the majority of the variation on the 
rate of spread, followed by fuel model parameters. More recently, the 
analysis performed by Ervilha et al. (2017) using PCE identified the dead 
fuel moisture content as the most influencing parameter in the vari-
ability of Rothermel’s rate of spread, followed in decreasing order by 
wind speed, fuel bed depth and fuel particle SAV ratio. Finally, Liu et al. 
(2015) reported a slightly different order in parameter importance, 
presenting highest Sobol’ indices for wind speed, followed by fuel bed 
depth and fuel particle SAV ratio, and lower contributions to RoS vari-
ance by fuel load and fuel moisture. 

6. Summary, conclusions and future work 

Performing uncertainty quantification in wildfire modeling studies is 
usually challenging due to the expensive high-fidelity calculations 
required and the large number of uncertainties typically encountered. 
Consequently, this work explored the applicability of state-of-the-art 
multifidelity techniques to quantify uncertainty and conduct sensi-
tivity analyses in wildland fire simulations. By constructing and using 
multifidelity estimators, this study was able to notably accelerate the 
propagation of aleatoric uncertainty through a CFD framework and 
quantify the sensitivity of the fire rate of spread to different weather and 
fuel variables. 

On the basis of the problem of interest and methods considered, the 
multifidelity estimators achieved speedups larger than 100× with 
respect to straightforward Monte Carlo methods. Particularly, the 
multilevel method performed slightly better than the control variates 
due to the small bias and moderate variability of the low-fidelity data 
generated. However, in a more general problem involving very complex 
fire behavior, in which “good” low-fidelity models are challenging to 
design and/or discover, the control variates approach may be a more 
robust option. The acceleration of propagating uncertainty through the 
problem was leveraged to perform a sensitivity analysis. The results 
indicate that the fuel moisture fraction, the fine fuel load and the wind 
speed are the uncertainties responsible for most of the variation in fire 

rate of spread, followed in decreasing order by the depth of the fuel bed 
and the fuel particle SAV ratio. 

To the best of the authors’ knowledge, this work is the first study in 
which wildfire spread uncertainty is propagated and quantified using 
full-physics CFD models. The notable reduction in computing re-
quirements achieved opens an avenue of further research. In addition to 
the analysis of other QoIs, this study may be extended to quantify 
aleatoric uncertainty emanating from additional weather, fuel and 
terrain dependent variables that are not resolved in empirical and semi- 
empirical models. Furthermore, multifidelity strategies may facilitate, 
for the first time, a detailed analysis of parametric uncertainties related 
to specific physical and chemical phenomena, such as pyrolysis and 
combustion reactions. 
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Sá, A.C.L., Benali, A., Fernandes, P.M., Pinto, R.M.S., Trigo, R.M., Salis, M., Russo, A., 
Jerez, S., Soares, P.M.M., Schroeder, W., Pereira, J.M.C., 2017. Evaluating fire 
growth simulations using satellite active fire data. Remote Sens. Environ. 190, 
302–317. https://doi.org/10.1016/j.rse.2016.12.023, 0034-4257. https://www.sci 
encedirect.com/science/article/pii/S0034425716305028. 

Scott, J.H., Burgan, R.E., 2005. Standard Fire Behavior Fuel Models: a Comprehensive Set 
for Use with Rothermel’s Surface Fire Spread Model. U.S. Department of Agriculture, 
Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp. 1–72. General 
Technical Report RMRS-GTR-153.  

Sobol, I., 1993. Sensitivity estimates for nonlinear mathematical models. Math. Modeling 
Comput. Experiment 4, 407–414. 

Sukys, J., Rasthofer, U., Wermelinger, F., Hadjidoukas, P., Koumoutsakos, P., 2017. 
Optimal Fidelity Multi-Level Monte Carlo for Quantification of Uncertainty in 
Simulations of Cloud Cavitation Collapse arXiv preprint arXiv:1705.04374.  

Sullivan, A.L., 2009a. Wildland surface fire spread modelling, 1990–2007. 1: physical 
and quasi-physical models. Int. J. Wildland Fire 18, 349–368. 

Sullivan, A.L., 2009b. Wildland surface fire spread modelling, 1990–2007. 2: empirical 
and quasi-empirical models. Int. J. Wildland Fire 18, 369–386. 

Sullivan, A.L., 2009c. Wildland surface fire spread modelling, 1990–2007. 3: simulation 
and mathematical analogue models. Int. J. Wildland Fire 18, 387–403. 

Xiu, D., Hesthaven, J.S., 2005. High-order collocation methods for differential equations 
with random inputs. SIAM J. Sci. Comput. 27, 1118–1139. 

Xiu, D., Karniadakis, G.M., 2002. The Wiener-Askey polynomial chaos for stochastic 
differential equations. SIAM J. Sci. Comput. 24, 619–644. 

Yuan, X., Liu, N., Xie, X., Viegas, D.X., 2020. Physical model of wildland fire spread: 
parametric uncertainty analysis. Combust. Flame 217, 285–293. 

M.M. Valero et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S1364-8152(21)00093-1/sref15
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref15
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref16
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref16
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref16
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref17
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref17
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref18
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref18
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref19
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref19
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref19
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref20
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref20
https://doi.org/10.1016/j.envsoft.2018.03.027
https://doi.org/10.1016/j.envsoft.2018.03.027
https://www.sciencedirect.com/science/article/pii/S1364815218300161
https://www.sciencedirect.com/science/article/pii/S1364815218300161
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref21
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref21
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref22
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref22
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref22
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref23
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref23
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref25
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref25
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref25
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref26
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref26
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref26
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref27
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref27
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref28
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref28
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref29
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref29
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref30
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref30
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref30
https://doi.org/10.1139/x02-068
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref31
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref31
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref31
https://doi.org/10.3801/IAFSS.FSS.9-117
https://doi.org/10.3801/IAFSS.FSS.9-117
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref34
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref34
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref34
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref35
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref35
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref35
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref36
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref36
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref36
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref37
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref38
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref38
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref39
https://doi.org/10.1016/j.jcp.2020.109257
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref41
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref41
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref41
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref42
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref42
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref43
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref43
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref44
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref44
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref44
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref45
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref45
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref45
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref46
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref46
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref46
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref47
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref47
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref47
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref48
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref48
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref49
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref49
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref49
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref50
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref50
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref50
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref51
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref51
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref52
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref52
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref52
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref53
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref53
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref53
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref54
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref54
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref55
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref55
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref56
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref56
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref57
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref57
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref58
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref58
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref59
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref59
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref60
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref60
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref61
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref61
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref61
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref62
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref62
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref63
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref63
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref64
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref64
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref64
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref65
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref65
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref65
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref66
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref66
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref67
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref67
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref68
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref68
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref69
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref69
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref69
https://doi.org/10.1016/j.rse.2016.12.023
https://www.sciencedirect.com/science/article/pii/S0034425716305028
https://www.sciencedirect.com/science/article/pii/S0034425716305028
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref70
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref70
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref70
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref70
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref71
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref71
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref72
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref72
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref72
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref73
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref73
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref74
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref74
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref75
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref75
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref76
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref76
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref77
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref77
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref78
http://refhub.elsevier.com/S1364-8152(21)00093-1/sref78

	Multifidelity prediction in wildfire spread simulation: Modeling, uncertainty quantification and sensitivity analysis
	Recommended Citation

	Multifidelity prediction in wildfire spread simulation: Modeling, uncertainty quantification and sensitivity analysis
	1 Introduction
	2 Multifidelity sampling strategies
	2.1 Multilevel Monte Carlo
	2.2 Control variates Monte Carlo

	3 Wildfire spread models
	3.1 The rothermel model
	3.2 Wildland-Urban Interface Fire Dynamics Simulator

	4 Description of the wildfire spread scenario
	4.1 Problem setup
	4.2 Uncertainties and quantities of interest
	4.3 Multifidelity modeling strategy

	5 Results and discussion
	5.1 Pilot sampling of the quantity of interest
	5.2 Performance of the multifidelity estimators
	5.3 Uncertainty propagation and quantification
	5.4 Variance-based sensitivity analysis

	6 Summary, conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References


