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Abstract

Singh, Gulshan, Ph.D. in Engineering Program, Wright State University,
2009. Effective Simulation and Optimization of a Laser Peening Process.

Laser peening (LP) is a surface enhancement technique that has been applied

to improve fatigue and corrosion properties of metals. The ability to use a

high energy laser pulse to generate shock waves, inducing a compressive

residual stress field in metallic materials, has applications in multiple fields

such as turbomachinery, airframe structures, and medical appliances. In the

past, researchers have investigated the effects of LP parameters

experimentally and performed a limited number of simulations on simple

geometries. However, monitoring the dynamic, intricate relationships of

peened materials experimentally is time consuming, expensive, and

challenging.

With increasing applications of LP on complex geometries, these limited

experimental and simulation capabilities are not sufficient for an effective LP

process design. Due to high speed, dynamic process parameters, it is difficult

to achieve a consistent residual stress field in each treatment and constrain
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detrimental effects. With increased computer speed as well as increased

sophistication in non-linear finite element analysis software, it is now

possible to develop simulations that can consider several LP parameters.

In this research, a finite element simulation capability of the LP process is

developed. These simulations are validated with the available experimental

results. Based on the validated model, simplifications to complex models are

developed. These models include quarter symmetric 3D model, a cylindrical

coupon, a parametric plate, and a bending coupon model. The developed

models can perform simulations incorporating the LP process parameters,

such as pressure pulse properties, spot properties, number of shots, locations,

sequences, overlapping configurations, and complex geometries. These

models are employed in parametric investigations and residual stress profile

optimization at single and multiple locations.

In parametric investigations, quarter symmetric 3D model is used to

investigate temporal variations of pressure pulse, pressure magnitude, and

shot shape and size. The LP optimization problem is divided into two parts:

single and multiple locations peening optimization. The single-location

peening optimization problems have mixed design variables and multiple

optimal solutions. In the optimization literature, many researchers have

solved problems involving mixed variables or multiple optima, but it is

difficult to find multiple solutions for mixed-variable problems. A

mixed-variable Niche Particle Swarm Optimization (MNPSO) is proposed
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that incorporates a mixed-variable handling technique and a niching

technique to solve the problem.

Designing an optimal residual stress profile for multiple-location peening is a

challenging task due to the computational cost and the nonlinear behavior of

LP. A Progressive Multifidelity Optimization Strategy (PMOS) is proposedto

solve the problem. The three-stage PMOS, combines low- and high- fidelity

simulations and respective surrogate models and a mixed-variable handling

strategy. This strategy employs comparatively low computational-intensity

models in the first two stages to locate the design space that may contain the

optimal solution. The third stage employs high fidelity simulation and

surrogate models to determine the optimal solution. The overall objective of

this research is to employ finite element simulations and effective

optimization techniques to achieve optimal residual stress fields.
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Chapter 1

Surface Enhancement Techniques

Material is subjected to degradation from the moment it is prepared. Mechan-

ical, chemical, or thermal loading continues to degrade the material through-

out its lifetime. Damage by fretting, fatigue, corrosion, and wear are a few

examples of the degradation that can inflict a cost penalty on a material by

requiring design changes to accommodate degradation. Material damage can

also cause loss of performance. Most types of material degradation tend to

originate at the surface of a component. The objective of surface enhancement

techniques is to inhibit degradation by altering material properties at the sur-

face and to maintain the required level of performance without imposing high

cost implications. However, it is an intriguing, but challenging to achieve the

objective by tailoring the surface enhancement techniques. In this research,

a simulation-based strategy is employed on a selected surface enhancement

technique to engineer optimal surface properties.

The main focus of this research is the surface enhancement technique called
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Laser Peening (LP). In the LP process, favorable residual stresses are induced

on a surface to improve fatigue and fretting properties of metals. In the litera-

ture, experimental [1–7] and simulation [8–11] work have been performed to

drive maximum benefits from the process. However, time consuming and ex-

pensive experiments and limited simulations on simple geometries are not suf-

ficient for optimal LP process design. A comprehensive procedure is required

that can not only perform simulations but also can be employed in obtaining

optimal process parameters.

The overall goal of this chapter is to provide a brief introduction of surface

enhancement techniques and to present a detailed description of a specific pro-

cess called Laser Peening. This chapter begins with Section 1.1, an introduc-

tion to surface enhancement techniques such as shot peening, low plasticity

burnishing, and waterjet peening, and their use in manufacturing processes.

Section 1.2 presents an introduction to the LP process. The next three sections

present the laser generation mechanism, component preparation, and shock

wave propagation. In Section 1.3 includes, a preliminary explanation of a

laser generation mechanism. Section 1.4 presents component surface prepara-

tion details. After the component is prepared, a laser is fired on the surface.

Section 1.5 deals with the shock wave propagation and residual stress genera-

tion in a component. Section 1.6 discusses the advantages and disadvantages

of LP compared to other mechanical surface enhancement techniques. Section

1.7 presents the organization of the dissertation, and the final section summa-
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rizes the chapter.

1.1 Surface Enhancement Processes

Connecting rods in automobiles, turbine blades in aircraft engines, and lugs in

aircraft structures are a few components that experience material damage due

to fretting and fatigue loading conditions. These type of loads cause failure by

initializing and propagating cracks. In the case of turbine engines, foreign ob-

ject damages result in early crack initiation and growth, causing a decrease in

fatigue performance. The possibility of such failures leads to increased inspec-

tion and maintenance expenses because the failure of one critical component

limits the operational time and service life of the entire system. Fatigue can

cause catastrophic failure, leading to structural and automobile failure, aircraft

losses, and, at worst, loss of life. Apart from standard design requirements

and inspections, many material treatments have been developed to mitigate

such failures. Surface enhancement techniques treat the intended surfaces to

improve the desired surface properties. These techniques are becoming an in-

tegral part of manufacturing processes because the behavior of manufactured

parts is dependent on the structure and properties both of bulk material and of

the surface.

Every metallic material consists of a micro-structure of small crystals called

grains or crystallites. The properties of these grains (i.e. grain size, orienta-

tion, and composition) determine the overall behavior of the material. Mate-
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rial treatment (and/or surface enhancement techniques) provides an efficient

way to influence the properties of the metal by controlled processes. These

material treatments are generally classified into mechanical, thermal, thermo-

mechanical, and thermo-chemical treatments. In the case of mechanical treat-

ments, some form of mechanical force is employed to modify the properties

of the material to the advantage of an application. Common mechanical treat-

ment techniques are shot peening, low plasticity burnishing, water jet peening,

cold rolling, and case hardening.

In the case of thermal treatments, some form of temperature controls are

used to modify material properties. Common thermal treatment techniques

are hardening, tempering, and annealing. Hot rolling and plating are examples

of thermo-mechanical treatment, a category that combines the effect of both

mechanical and thermal treatments. In the case of thermo-chemical treatments,

a metallic or non-metallic coating is applied on the surface. Painting, oxidiz-

ing, and vapor deposition are a few examples of thermo-chemical treatments.

Depending upon the usage, a few of these processes are also referred to as

surface enhancement techniques. Surface enhancement techniques have sig-

nificant industrial applications. The following section talks about mechanical

surface enhancement techniques.
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1.1.1 Shot Peening

Shot peening (SP) is a traditional surface enhancement technique that has been

used for more than six decades. SP was discovered and patented by Lockheed

Aircraft Corporation in Burbank, California in the late 1940’s. For example,

Boeing Commercial Aircraft Company have standard setup to peening aircraft

components [12]. Many other companies are using SP, or a modified form,

Glass Bead Peening (GBP), to improve fatigue life of mechanical components.

In the SP process, small, spherical metal or ceramic balls are bombarded on

the surface to be peened. In the GBP process, glass balls are used instead of

metallic balls. This bombardment creates elastic and plastic deformation.This

deformation tends to produce compressive stress on the surface and tensile

stress in the interior. The schematic of the SP process is shown in Figure

1.1. SP results in a small depth of induced compressive residual stress. This

process results in a roughened surface due to the physical contact between the

bombarding ball and the peened component. This effect is more severe in soft

materials, and may not be an ideal process if the surface finish is an important

factor for a product. With proper parameters, the SP technique [13–17] is

used to induce compressive residual stresses in components. The physical

principle of changing the mechanical properties is approximately the same for

most mechanical surface enhancement techniques. The principle is that elastic

and plastic deformation result in residual stress generation. This generationis

studied in detail in Section 1.2.
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Figure 1.1: Schematic of shot peening process

1.1.2 Low Plasticity Burnishing

Low Plasticity Burnishing (LPB) is a recently developed (1998) surface en-

hancement technique. The LPB process [18, 19] consists of rolling a high-

modulus ball or roller over the intended surface of the component (Figure 1.2).

Depending upon the controlling parameters, this process alters the mechanical

behavior of the material by low-cold working, just like SP. This is a low-cost,

easy-to set-up process that provides a better surface finish compared to SP.An

advantage of this process is that it can be carried out in any numerically con-

trolled apparatus, including a lathe, mill, or CNC machine. The surface finish

obtained depends upon the finish of the ball used in LPB process; the ball is a

wear-prone component. Just like SP, this process produces elastic and plastic
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Figure 1.2: Schematic of the low plasticity burnishing process

deformation by contact between the burnishing ball and the surface. A disad-

vantage of the LPB process is that it is difficult to apply to curved or complex

geometries.

1.1.3 Waterjet Peening

High pressure waterjets have been studied to understand the mechanisms as-

sociated with the jet material interface and to apply it to multiple processes

such as cleaning, cutting, and paint removal. The application of an ultra-high-

pressure waterjet as a surface enhancement technique is relatively new (2000)

compared to SP and LPB. Waterjet Peening or Water Peening (WP) [20, 21]

is similar to SP except that it uses high pressure droplets that disintegrate in

the waterjet flow field instead of solid shots [22]. Compared to other available

techniques, the lower cost, the absence of heat that could affect the region, and

a clean surface are the major advantages of the process. The WP process is a
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physically complex technique that is difficult to model and requires extensive

further research.

1.2 Laser Peening

High-power Light Amplification by Simulated Emission of Radiation (LASER)

is used in many manufacturing processes of aircraft engine and airframe struc-

tures, such as laser drilling, welding, and glazing. LP is a surface enhancement

technique for metallic components that uses the shock wave generation capa-

bility of lasers to induce favorable residual stresses. Apart from improving

fatigue life, LP has also been applied to improve fretting and corrosion prop-

erties.

The ability of a pulsed laser beam to generate shock waves was first recog-

nized and explored in the early 1960’s. Initial facilities were developed and

feasibility studies were performed at Battelle Laboratories in Columbus, OH.

Also at Battelle, researchers succeeded in the application of LP to enhance

fatigue properties of fastened joints for aeronautical applications. After this

success, further research was performed to examine various fundamental prin-

ciples such as the confined interaction mode, the dielectric breakdown factor,

and analytical modeling of the physical process involved. As a result of these

numerous efforts, LP is emerging as an alternative and complementary process

to conventional peening processes.

Compared with traditional surface enhancement techniques such as SP and
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LPB, a higher depth of compressive residual stress and a lower cold-work am-

plitude are obtained from the LP treatment. Among the major advantages of

the LP process, four important ones are the absence of contact (prevents se-

vere relief of residual stresses during cyclic loading), better surface finish than

shot peening, precise parameter control, and the ability to peen complicated

geometries.

1.2.1 Laser Generation

To generate a laser [23,24], the atoms and molecules of a crystal, gas, or liquid

are excited so that more of these are at higher energy levels than are at lower

energy levels. When a photon of the frequency that corresponds to the energy

difference between the excited and lower states strikes an excited atom, this

process causes atoms to fall back to a lower energy state and to emit a second

photon of the same or a proportional frequency, in phase with and in the same

direction as the striking photon. This process is called stimulated emission, in

which an atom is stimulated to produce a second photon. The striking and the

emitted photon may stimulate further atoms to emit photons, all with the same

frequency and phase. This process is a rapid chain reaction that produces a

sudden burst of coherent radiation as all the atoms discharge.

Based on different laser parameters, there are many varieties of lasers avail-

able. The intensity, duration (mid-span), and wave length of the laser are

significant properties. In the case of the LP process, these properties should
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be such that the laser produces the required volume, depth, and magnitude

of residual stress in the peened material. The LP process requires a laser

with high power (100 to 1000 watts), moderate frequency (10 to 50 shots per

minute), and high laser pulse energy (100 Jules) for suitable industrial applica-

tions. A very high repetition rate may not be needed because in the LP process,

repetition is limited setup for each shot. Consequently, the laser peening speed

is limited by component preparation time rather than laser frequency.

1.2.2 Component Preparation

The ability of a laser to create stresses in a metal component was recognized

far in advance of its practical application. In the process of bringing LP to the

level of industrial application, the use of opaque and transparent overlays have

played a significant role. To generate plasma, the component surface must

be painted with an opaque overlay. The sudden expansion of plasma causes

a pressure pulse in the metal. The pressure pulse peak and mid-span can be

increased if the surface is confined with a transparent overlay. The role of

overlays is further discussed in the following sections.

Opaque Overlay

When the laser beam is directed onto the surface, it passes through the trans-

parent overlay and strikes the opaque overlay. This produces a high tempera-

ture of the order of 10,000oF during the plasma creation stage. Direct contact
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of a metal surface with the high temperature plasma will, in most cases,form

a thin melted layer. Therefore at the nascent stage of the process, the metal

component is covered with a protective coating to avoid the thermal effects of

such high temperatures.

However, the role of this coating has changed over time. At present time,

the opaque overlay has two purposes: augmenting the creation of plasma and

providing protection of the component surface to be peened. For the first pur-

pose, the opaque overlay supplies material for plasma creation. For the sec-

ond purpose, it provides protection to the component surface from high tem-

perature. Because of this protection, the material undergoes reduced thermal

and micro-structural changes. If allowed, these thermal and micro-structural

changes can alleviate the required effects of LP. The important factors in se-

lecting an opaque overlay material for a particular material surface are the

cost, ease of application and removal, layer thickness, interaction withlaser,

opaque integrity for multiple shots, applicability over complex geometries, dis-

posal of used opaque material, and repeatability. Among all opaque coatings

black paint, aluminum, zinc or copper and organic coating are used commonly.

These are preferred because of the ease of handling and disposal.

Transparent Overlay

When a dielectric material, transparent to laser light, is placed over the opaque

overlay, plasma created by LP is trapped between the component and the trans-
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parent overlay. This trapping increases the pressure pulse magnitude by factors

of 5 (for the peak pressure level) and 3 (for the pulse mid-span/duration) com-

pared to a direct ablation mode.

In industrial applications where a large number of shots is needed in less

time, water is used most often for the overlay because of ease of availability

and handling. However, solid overlays of glass, fused quartz, and acrylic have

also been used. As with the opaque overlay, the cost, speed of control, ease of

application and removal, and ease of clean-up and disposal are major factors

in selecting the transparent overlay.

Along with these factors, dielectric breakdown thresholds, degree of trans-

parency, acoustic impedance, and control of thickness also affect selection of

the overlay. Proper selection of the transparent overlay is important because it

ultimately affects the peak and duration of the shock wave in the material.It is

important to remember that in the industrial application of opaque and trans-

parent overlays, a traditional manual application of overlays may not be most

suitable. Instead, a liquid jet is used for efficient processing, as shown in Fig-

ure 1.3. These jets and the laser beam must be properly sequenced to produce

the desired results. Proper positioning of the component is also necessary for

successful completion of the process.
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Figure 1.3: Schematic of Laser Peening process

13



1.2.3 Residual Stresses

The component surface to be peened is coated with a opaque material and cov-

ered with a transparent overlay. When the component is ready for peening, a

high energy laser is fired on the prepared surface. The laser passes through the

transparent layer and causes the opaque overlay to vaporise and then convert

into plasma when it absorbs more energy. As the vapor continues to absorb the

laser energy, it expands. As the confined plasma expands, it generates a high

pressure, short duration shock wave that travels into the base material and the

water. The presence of water tends to confine the energy and increase the in-

tensity of the pressure pulse in the component. Depending upon the magnitude

of the pressure wave in the base metal, this can cause elastic and plasticdefor-

mation. This deformation generates compressive and tensile residual stresses.

The mechanics of the residual stress generation process are explained below.

Shock Wave Propagation

Depending upon its magnitude, an LP pressure pulse can cause plastic de-

formation in the top region of a component. As the shock wave progresses

through the component, its magnitude is reduced according to the attenuation

rate. After a certain depth, the shock wave magnitude is below the proportional

limit and can only cause elastic deformation. The final outcome of the process

is a residual stress field in the component. The top region of the component

tends to have compressive stresses, followed by a tensile region beneath it.
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Figure 1.4: Shock wave in a material

In general, the study of stress propagation in a non-linear medium is ex-

tremely difficult. This section describes the physical behavior of the material

under LP loading. Material behaves differently under different strain-rates. In

the case of LP loading, a typical strain-rate is up to 106/s, which is extremely

higher than conventional strain-rates of 10−6/s. This higher strain-rate is re-

ferred to as shock wave or impact loading. Material behaves differently un-

der static (or low strain-rate) and dynamic (high strain-rate or shock wave,

> 103/s) loadings because higher stress is necessary to reach the yield limit in

an impact loading than in case of slow loading.

The dynamic yield strength of a material is a function of strain, strain-rate,

and temperature. When a shock wave of a magnitude above the dynamic yield
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strength limit travels through a material, it takes a certain shape (Figure 1.4)

based on the pressure magnitude and material properties [25,26]. An important

parameter for this shape is the Hugoniot Elastic Limit (HEL), which is defined

as the axial stress required for plastic deformation in a uniaxial strain state.

The relationship between the HEL (σHEL) and the dynamic yield stress (σyd)

is

σyd = σHEL

(

1−2ν
1−ν

)

(1.1)

whereν is Poission’s ratio.

LP pressure, when applied, generates two stress waves, elastic and plas-

tic, in the material [25, 26]. According to stress wave propagation theory, the

speed of the elastic (Ve) and plastic (Vp) waves are given in Eqs. 1.2 and 1.3,

respectively.

Ve =

[

E(1−ν)

(1+ν)(1−2ν)ρ

]1/2

(1.2)

Vp =

[

E
3(1−2ν)ρ

]1/2

(1.3)

whereρ denotes mass density andE denotes Young’s modulus. The speed of

the elastic wave (Eq. 1.2) is faster than the plastic wave (Eq. 1.3). When the

applied pressure is removed, an unloading (release) wave travels in the same

direction. If the loading is compressive, then the release wave is always tensile.

The LP-generated elastic wave travels until it reaches the boundary of the

material and then reflects back. The speed of the release wave is greater than a

plastic wave, so depending upon the loading time, it is possible for the waves to
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meet. The release wave reduces the amplitude of the plastic wave and reflects

back toward the starting surface. In the meantime, the first elastic wave, which

reflected back from the boundary of the component, also meets the plastic

wave. There is a complicated wave interaction that takes place betweenthese

waves. The timing of the interactions between these waves can be different de-

pending upon many factors such as the material properties, the relative speed

of the elastic and plastic waves, and the total length of the component. This

results in a complex distribution of elastic and plastic strains and stresses, en-

suring complex dynamic response in the laser-peened material. Therefore, the

dynamic responses of the laser peened material are complex. To understand

the above phenomenon and predict the final residual stress profile, an effective

simulation methodology is required.

Residual Stress Generation

The complicated interactions between different waves inside the materialpro-

duce compressive and tensile stress regions. The compressive stress dominates

in the top region of the component. Below this compressive stress region, there

is a tensile stress region. The magnitude of the tensile stress is less than that

of the compressive stress. However, the volume of the tensile stress region is

higher than the volume of the compressive region. Depending upon compo-

nent geometry, material properties, and pressure pulse properties, the tensile

region may be in between the two compressive regions. Depending upon the
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material properties and the component dimensions, the compressive region at

the bottom may or may not be present. The presence of compressive stress

tends to reduce the chances of crack initiation and growth. The tensile stress

region is generated to balance the compressive stress for equilibrium in the

absence of external force.

The physics behind this complex formation of stress is explained below.

Figure 1.5 shows a schematic of the residual stress generation and distribu-

tion. Above the elastic limit, pressure causes the surface layer of the target to

Figure 1.5: Schematic of residual stress generation

expand beyond the elastic limit. Depending upon the magnitude of the pres-
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sure, the layer below the surface layer also expands, but within the elastic limit.

This expansion is in the normal direction to the applied pressure. According to

the attenuation rate, the expansion reduces along the depth in the target. After

a certain depth, the expansion is elastic.

The elastically deformed part of the component attempts to return back to

its original shape, but plastic deformation is permanent. Therefore, as shown

in Figure 1.5, the top layer of the target is subjected to compressive stress,

and the area below this layer is subjected to tensile stress, maintainingequi-

librium in the target without external force. An increase in the compressive

stress volume or magnitude will always come with an increase in the tensile

stress volume or magnitude. An advantage of the LP process is a higher depth

of compressive stress as compare to other peening processes. The depth of

compressive stress is directly related to the depth of plastically affected zone.

Ballard et al. [27,28] provided an empirical expression for plastically affected

depth (Dp) and surface residual stress (σsur f).

Dp =

(

VpVeτ
Ve−Vp

)(

P−σHEL

2σHEL

)

(1.4)

σsur f = µεp

(

1+ν
1−ν

)

(

1− 4
√

2
π

(1+ν)
Dp

a

)

(1.5)

Here,Ve, Vp, τ, P, andσHEL indicate the elastic wave speed, plastic wave

speed, shear stress, shock wave pressure, and Hugoniot Elastic Limit of the

material. Andµ, εp, a indicate pulse duration, plastic surface strain, and the
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side of square impact. Equations 1.4 and 1.5 indicate plastically affected depth

and surface residual stress, respectively. The LP process parameters can be

optimized to generate a higher volume of compressive stress with constraints

on depth of compressive stress and on magnitude of tensile stress.

1.2.4 LP Advantages and Disadvantages

This section lists the advantages and disadvantages of the LP process.

• It is well known that the cyclic behavior of mechanical components de-

pends on the metallurgical, mechanical, and geometrical surface states

of the material involved. Many experimental and practical results have

proved that fatigue properties are improved by LP.

• A critical drawback of SP is that residual stresses are induced by the con-

tact between the bombarding ball and surface; hence residual stresses tend

to relax quickly under repeated loading. Since there is no contact during

the LP treatment, residual stresses tend to relax more slowly than SP.

• In the case of SP or LPB, the surface of the ball or the roller tends to

degrade with prolonged usage. This degradation leads to a rough surface

finish on the target component. The LP process does not use any physical

tool to induce residual stress.

• As mentioned in Section 1.2, the applicability of LP to complicated ge-

ometries is a unique advantage, made possible because a laser is a collec-
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tion of rays that can reach any intricate location within a bulky apparatus.

• The cost of LP is relatively high; however, the cost should decrease as the

advances in laser technology continue.

• For a successful surface enhancement technique, complete control of the

process is essential to generate the required residual stress field. Other-

wise, a technique may carry some risk. In the application of SP, many

probabilistic parameters, such as area of contact, angle of contact, and

speed of strike, are involved. These make the process difficult to control.

LP is a comparatively controllable and repeatable process.

• Although LP is a controllable process, it tends to produce non-uniform

residual stress across the laser spot. This non-uniformity depends upon

the metallurgical properties of the peened component.

1.3 Dissertation Organization

This dissertation is organized in the following order:

• Chapter 1 describes the step-by-step LP process in detail. This includes

brief description of laser generation, overlay application, shock wave prop-

agation, and residual stress generation. The physics behind the generation

of residual stress is also discussed.

• Chapter 2 presents a literature review, starting from the initial inventions

of the laser-induced pressure pulse to the current status of LP and finite
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element (FE) simulation of the process. This chapter also covers experi-

mental and empirical work. The literature review is followed by a discus-

sion of the current needs of LP research. The motivations of this research

are listed at the end of the chapter.

• Chapter 3 shows the different modeling parameters of the LP process, and

available simulation methodology from the literature. A modified method-

ology is presented, which is then used model a sequential, multiple-location

LP treatment, a parametric plate model, and a coupon model. Once de-

veloped, this methodology can be used to perform LP simulations of a

representative realistic component.

• Chapter 4 presents the background of optimization and the issues faced

when solving the mixed-variable design optimization problem of the LP

process. Gradient- and non-gradient-based optimization methods are in-

troduced. The simulation developed in Chapter 3 is employed to perform

parametric studies of the LP parameters.

• Chapter 5 discuss the idea that one location laser peening is a multimodal

mixed-variable optimization problem. To effectively solve the problem a

multimodal mixed-variable optimization method is proposed. This method

is tested on multimodal problems and successfully implemented to solve

the LP problem.

• Chapter 6 presents a strategy to optimize multi-location laser peening. The
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proposed strategy employs multi-fidelity and surrogate models to address

the issue of computational cost.

• Chapter 7 concludes the dissertation with the list of contributions, sum-

mary, and future work.

1.4 Chapter Summary

This chapter presents surface enhancement techniques, justification of LP, and

a brief overview of LP. LP process details are discussed, such as the opaque and

transparent overlays, laser generation, shock wave propagation, and residual

stress generation. In the overall research, this chapter serves to demonstrate a

comprehensive understanding of the process and of the physics involved.
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Chapter 2

Literature Survey

The introduction and theoretical background presented in Chapter 1 make it

clear that LP is a complex and intricate process. An extensive amount of work

has been done to bring the LP process to its current level of industrial ap-

plications. However, little has been done to develop an effective simulation

procedure, using FE analysis, that relates the LP parameters to material prop-

erties (fatigue and fretting strength). Neither has there been any efforttoward

process optimization and reliable design. FE simulations help in understand-

ing the process. An overall history of the process development is presented in

this chapter. There are two major aspects of the LP development to the current

stage. The first aspect is the initial inventions of the technology. The second

aspect is the improvements so far and challenges ahead for the LP process.

There are three sections in this chapter: initial discoveries, developments that

have led to the current stage, and challenges and motivation for this research.
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2.1 Initial Developments

Initially, White [29] identified the shock wave generation ability of high-energy

pulsed lasers. This discovery led to investigations of laser-generated appli-

cations [30]. This ability was explored in many aspects [31, 32] including

altering material properties [33], producing vacancies in thin vanadium and

nickel foils [34], and detonating explosives [35]. In one of the investigations

by Fairand [36], it was discovered that a laser-generated pressure pulse can

alter in-depth material properties in metals. It was observed that the yield

strength of Aluminum was improved by laser-induced shocks, without signifi-

cantly affecting the ultimate tensile strength [36]. In 1974, a patent was issued

to Malozzi and Fairland [33] for LP’s use in modification of material prop-

erties. Upon observing that a higher pressure pulse produces a higher shock

wave, Anderhlom [37] established that higher pressure can be achieved by

applying confined ablation.

After these inventions, Clauer et al. [1,2,38,39] and Fairand et al. [3–5,36]

performed a number of investigations at Battelle Columbus Laboratories, Ohio

(USA) between 1968 and 1991, exploring the potential of this technology.

Many researchers, such as Fox [40], Ford et al. [41], Ortiz and Penny [42],

and Forget [43], also contributed to the development of the process. Fairand

and Clauer [4,5] delved into the characteristic of the laser–material interaction

and the material response to the induced shock waves. In this research, the
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peak pressure was investigated for different ablative overlays and theeffects

of LP on welded joints was reported. After these investigations, LP was ap-

plied to improve the fatigue life of fastener holes [6]. Fairand and Clauer also

performed systematic investigations of the parameters that significantly affect

the LP process. These works led to the first well-known successful indus-

trial use of LP in aircraft gas turbine blades [44] for increased foreign-object

damage resistance. Fox [40] investigated the effects of coating on the target

surface. Ford et al. [41] showed that a decrease in crack growth rate can be

achieved by careful selection of the process parameters under specific condi-

tions. Ortiz and Penny [42] obtained a patent for developing an LP system

that includes a foil aligned with a surface of the workpiece to be peened and

lasing the aligned foil surface. This system improved the speed of peening and

accuracy of peening control. Forget et al. [43] studied the laser beam optical

phenomena and deformation mechanisms and proposed an analytical model

for predicting residual stresses.

2.2 Growth Challenges

The success of initial results generated interest in further investigations [38,39,

41, 45], followed by industrial applications [42, 46] of the technology. Many

researches showed the benefits of the technology and produced extensive lit-

erature. After the initial demonstration of the technology proved it to be ben-

eficial for intended material properties, the number of LP applications grew
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rapidly [47]. At this stage, this enabling technology faced many challenges.

The first challenge was to develop a mechanism that could deliver a powerful,

controllable, and repeatable pressure pulse at a high frequency. The second

challenge was to develop a comprehensive knowledge of the process and a nu-

merical tool to predict the generated residual stress field. The understanding

of the process can guide the research in the field and could assist in developing

a numerical tool. The third challenge was to accurately predict and document

the benefits of the LP process on material strength. Overcoming these chal-

lenges could take the technology to the next level, allow an optimal use of the

technology, and facilitate reduction in the cost of industrial applications.

This section presents the research work performed to overcome the first

challenge. The pressure generated by a laser pulse provides a controllable and

reproducible tool for practical material shock processing applications. Re-

search in the confinement regime [37, 40, 43, 48–51] and laser systems [52]

provided a potential solution to obtain compatible pressure pulse properties.

Anderhlom [37] observed that plasma pressure was significantly increased by

the presence of confinement (as compared to no confinement). Fox [40] fur-

ther developed the idea of confinement regime and studied the effects of the

coating used for confinement. The investigations of confined interaction mode

by Clauer et al. [48] and Sano et al. [50] indicated improvement in the pres-

sure pulse magnitude by a factor of 5 (for the peak pressure level) and in the

pressure pulse duration by a factor of 3 compared to a direct ablation mode.
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Hong et al. [51] also investigated the same problem by researching five dif-

ferent kinds of confinement overlays. The limitations of confinement regime

were observed in the form of dielectric breakdown phenomena by Foret et

al. [43, 49]. The breakdown seems to be due to internal breakdown of the

transparent material such that the energy is absorbed primarily inside the trans-

parent material before reaching the black paint - target interface. Thus dielec-

tric breakdown of the confining medium limits the maximum peak pressure

obtained by increasing laser energy density. Development in the field of con-

finement regime, along with inventions in laser technology [23, 24], helped

in generating an increased pressure pulse. The laser systems that meet the

process requirements are not readily available in the market, but they canbe

custom built. Further developments in the area of laser systems could reduce

the setup cost for the LP processing facility.

The second challenge LP faces is the development of a comprehensive un-

derstanding of the process. The knowledge required is described in three as-

pects: pressure pulse generation, shock wave propagation in materials, and

numerical simulation of the process. Within pressure generation, Fabbro et

al. [53] described the confined ablation mode with a three-step process. Using

this model and considering the plasma to be a perfect gas, the scaling law of

the pressure generation (P) can be estimated by the following relationship:

P = 0.01

√

α
α+3

√
Z
√

I0 (2.1)
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whereI0 is the incident laser power density in (Giga Watt/cm2), P is the pres-

sure in (GPa), Z is the reduced shock impedance between the target and the

confining medium inohm, andα is the efficiency of the interaction. The values

of α range from 0.1 to 0.2. More recently, Wu and Shin [54, 55] developed a

mathematical model to predict pressure pulse properties (magnitude, duration,

and shape).

For shock wave propagation in materials, Love [56] discussed the historical

developments in the field of stress propagation in elastic solids. The propaga-

tion theory of shock and plastic waves in material are found in Kolsky [25].

The experimental data [9, 10] available in the literature for the material under

investigation is up to 103/s strain-rate, whereas during the LP process, strain-

rate goes up to 106/s. Further advances in material data creation will assist

modeling and simulation activity.

The goal of performing LP is to improve the material properties, such as

fatigue and fretting strength. Therefore, a formulation is needed that can eval-

uate the influence of LP parameters in terms of resulting material properties.

This evaluation can be performed in two steps. In the first step, the residual

stress field is determined from the LP parameters. In the second step, material

properties are assessed from the obtained residual stress field. This evaluation

is the third challenge.

In the literature, the analysis and simulations are limited to the first part of

the process. In order to achieve an effective residual stress field, an appropri-
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Figure 2.1: Laser pulse and resulting pressure pulse on a target (Peyre et. al. 1996)

ate selection of the process parameters is required. To select a set of optimal

parameters, an accurate residual stress prediction methodology is essential.

Clauer et al. [1,57], Peyre et al. [6,7], and Fabbro et al. [53] performed numer-

ous experiments to determine residual stress fields for different LP parameters

and materials, and showed the advantages of LP in improving the fatigue life.

In his research, Peyre et. al. obtained a pressure pulse shape shown in Figure

2.1. Peyre et al. also performed experiments for repeated shots, for comparing

residual stress field induced by shot-peening and LP, and finally for compar-

ing fatigue life improvements by shot-peening and LP. The results showed that

fatigue life improvement through laser peening is higher as compare to shot

peening. Clauer et al. [1] obtained the pressure pulse properties by placing
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pressure gauges behind the surface of a thin specimen. Peyre et al. [58, 59]

and Ballard [27] obtained the pressure pulse properties from the VISAR (ve-

locity interferometer system for any reflector) pressure determinationsystem.

Experiments alone are not sufficient to demonstrate, expand, and advance

the needs of the industry because LP experiments are complicated, potentially

tedious, and expensive. The experimental procedure becomes more difficult

because of the use of destructive stress measurement techniques such as X-

ray diffraction. These reasons provide a motivation to develop analytical and

simulation capabilities of the process. Clauer et al. [57] also noted that having

a comprehensive model of the process would save significant time and cost

when developing new applications. A model could provide guidance and what-

if studies in modification and further development of the process. In addition,

a model would be invaluable in enabling close process control in production

use of laser peening. The ideal scenario would be to have a system that needs

a geometric model, material properties, and laser system configuration and

provides the engineer with optimal process parameters to achieve the desired

residual stress field.

In modeling the LP process, the prediction of the resultant residual stress

field is similar to the analysis of shock waves in materials. An analytical model

of LP was first developed by Ballard et al. [28]. This was a one-dimensional

model which calculated plastic deformation and residual stress levels as a func-

tion of impact pressure. A second analytical model was developed by Forget
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et. al. [43, 49], which focused on the surface effects induced by shock waves.

This model applies to circular impacts where shear waves create interference

phenomena. These models were further investigated by Peyre et al. [6] and

Fabbro et al. [53]. Peyre at al. proposed a relation between the peak pressure

pulse magnitude and laser power density(I0). Fabbro et al. [53] discussed the

effects of laser intensity, target materials properties, laser pulseduration, and

laser wavelength in the confinement regime.

These analytical efforts are based on elastic-perfectly plastic material model

assuming uniaxial strain conditions. This assumption is fairly accurate for the

initial shock wave response. However, under many conditions, this assumption

may not hold true because of the presence of non-uniaxial strain affecting the

resultant residual stress field. These analytical models are important stepsin

the development of the overall LP process, however not sufficient to provide

the understanding of the process and practical applications.

To overcome the short comings of analytical modeling, multiple efforts

were involved in developing FE simulation for the process. After extensiveex-

periments, Nam [9] and Noll [10] developed their own FE code for the LP sim-

ulations, which they successfully implemented for a two-dimensional process.

Braisted and Brockman [8] performed FE analysis of one-sided and two-sided

LP for an axi-symmetric 2-D case using ABAQUS for a single LP treatment.

Ding and Ye [11, 60] made initial attempts in the 3-Dimensional simulation;

however, they performed only single and multiple treatments of LP at the same
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location on simple geometries.

In the process of developing an appropriate simulation methodology, var-

ious researchers have used different parameters depending upon the experi-

mental setup at hand. The key differences in these simulation models are the

pressure pulse shape and the material model. Ding and Ye [11, 60] used a

perfectly elasto-plastic material model using dynamic yield strength (HEL).

Zhang et al. [61] investigated the simulation for small impacts with the Stein-

berg model, taking pressure effect into account for the material model. How-

ever Peyre et al. [58,59] found constant shock yield strength HEL at different

LP pressures. As a result, they used the Johnson-Cook model with isotropic

hardening which is a strain, strain-rate, and temperature dependent model. In

this research, they also presented a limited investigation of the influence of pro-

cess parameters such as pressure pulse amplitude and duration, laser spot size,

and sacrificial overlay. Recently, Wu and Shin [54, 55] developed a model,

this includes analytical modeling of the pressure pulse from a laser beam, and

limited FE simulations for residual stress prediction.

The numerical work discussed so far concentrated on developing a method-

ology for FE simulation of the process for a limited number of the LP pa-

rameters and simple geometries. However, to determine the usefulness ofthe

generated residual stress field, a numerical process is needed that can assess

material properties with or without the presence of residual stresses. The de-

velopment of this simulation research can relate the process parametersto the
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fatigue life. Therefore, it is necessary to determine the improvements in the

fatigue life from a set of LP parameters.

2.3 Motivation

In the past, researchers have experimentally investigated the effects of LP pa-

rameters on fatigue [1–4,6,7] and performed a limited number of simulations

on simple geometries [8–10,54,55,59,60]. However, experimentally monitor-

ing the dynamic, intricate relationship of peened material is challenging. With

an increasing number of applications [62, 63] to complex geometries in the

nuclear industry, to aircraft turbine blades, and to medical implants, theselim-

ited experimental and simulations capabilities are not sufficient for effective

LP process design. A comprehensive procedure is required that can perform

simulations of multiple treatments of LP at the same location and sequential

LP at multiple locations, different overlapping configurations of LP locations,

and application on complex geometries. With increased computer speed as

well as increased sophistication in non-linear finite element analysis (FEA)

softwares, it is now possible to develop a model-based design optimization

approach for an effective LP application.

For a typical job, the component is peened using a few (usually 4) param-

eter settings. These parameter settings for the experiments are selectedbased

on experience. After peening, all the components are subject to service loads

to which components are subject to during their intended application. Based
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on the improvement achieved in different components, the actual process pa-

rameters are selected for the job. Depending upon the resources available, the

above process can be repeated after refining the parameters.

For the LP industry to move forward with applications, it is necessary to take

the simulation to the next level from simple simulation case studies. There are

several parameters that demand exploration of the design space to optimize

the residual stress field. For example, the spot size, spot shape, pulse dura-

tion, pulse shape, pulse intensity, number of treatments, sequence of locations,

amount of overlap, and overall LP location layout can each make a significant

difference in component life. Some of these variables are discrete and oth-

ers are continuous, creating a mixed variable problem for optimization. Along

with achieving the desired residual stress field, reduction in unfavorable tensile

region (beneath compressive region) is also a goal. Although it is not possible

to eliminate the entire tensile region, it can be constrained to be less trou-

bling. Solving a practical mixed design variable optimization problem will be

a challenge. The problem formulation is complicated by the time-dependent

nature of plastic deformation during the LP process. In addition, the compu-

tational effort needed with LP simulations is significant because of the elastic

and plastic analysis involved with small time increments. Therefore, an ef-

ficient simulation-based methodology is needed to effectively design the LP

process. Once the methodology is fully developed, it can be used to optimize

complicated applications for direct cost savings.

35



2.4 Chapter Summary

This chapter starts with reviews of the initial inventions of a high-energy laser

to generate shock waves and proceeds to the early developments of shock wave

applications in modifying material properties. This is followed by various ex-

perimental, analytical, and simulation research done so far. The chapter con-

cludes by presenting a case for effective modeling procedure and challenges

ahead in the process. Overall, this chapter provides information on the current

status of research and future research goals.
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Chapter 3

Finite Element Simulation

Utilization of the promising surface enhancement technology will be difficult

with only the knowledge gained through experiments. An increasing number

of applications as well as a quest to understand the process, demand a com-

putational exploration of the process. The physical and historical information

from Chapters 1 and 2 will help in developing a well-organized simulation

methodology.

Before beginning the simulation process, it is vital to research the different

parameters required for FE simulation. Apart from the simulation procedure,

there are four major modeling parameters. These are the laser spot size and

shape, pressure pulse shape and duration, geometric model and meshing, and

material model. These parameters are determined based on published exper-

imental and simulation results. This chapter is divided into three major sec-

tions. In the first section, a brief description of the simulation parametersand

criteria for determining them are presented. The second section provides an
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explanation of the simulation procedure used. In the third section, the sim-

ulation results of single treatment and multiple treatments of LP at the same

location are compared with published experimental results. Once the simula-

tion process is validated with published experimental results, geometric shapes

such as a rectangular box are analyzed for sequential LP at multiple locations.

Simulation results for two configurations (0% and 50% overlap) of LP at mul-

tiple locations are compared with each other.

This is followed by a development of a cylindrical model, parametric plate,

and rectangular bending coupon models. The cylindrical model is employed

to study the effect of peening sequence. This is also used to investigate effects

of a peening shot on near-by, previously peened area. The parametric plate

is employed to optimally design a residual stress field for a flat surface.The

rectangular coupon model can be used not only for peening simulations, but

also to perform fatigue life calculations.

3.1 Simulation Parameters

There are four major modeling parameters in LP FE analysis. These are the

laser spot shape and size, the pressure pulse shape and duration, geometric

modeling and meshing, and the material model. Apart from the mesh conver-

gence study, these parameters are selected-based on the literature. Details of

these parameters are discussed in the following sections.
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3.1.1 Laser Spot Shape & Size

Laser spot shape and size are vital simulation parameters. These shapes affect

the magnitude and depth of residual stress and can determine the total cost.

Two commonly used spot shapes are circular and rectangular. Other shapes,

such as elliptical (and its variations) and rectangular can be generated from

circular and square laser system by changing the striking angle of laser beam.

The accurate effects of spot shape changes are not known and further explo-

rations of the parameter are needed. As far as the size of the spot is concerned,

the shock wave attenuation rate for small diameter (0.5-1 mm) spots is higher

compared to large diameter (4-5 mm) spots. This is due to two-dimensional at-

tenuation of the shock wave in the case of small impacts that reduce the depth

of the plastically affected region and of the compressive residual stressfield.

The selection of the parameter is dependent on the laser generation mech-

anism, material behavior, component geometry, and job requirements. Al-

though it is possible to change the spot shape and size during the process, one

size and shape is used for the entire component, due to the effort and time

involved in changing these parameters. At the same time further numericalex-

ploration of various shapes is necessary to estimate their benefits before they

can be used in practical applications.
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3.1.2 Pressure Pulse Magnitude and Shape

Residual stress magnitude and depth are the most sensitive to pressure pulse

magnitude and shape parameters. The magnitude of the pressure pulse can

be controlled by the intensity of the laser beam. The relation between laser

intensity and the peak pressure magnitude in confined ablation mode, as esti-

mated by Fabbro et al. [53] and Peyre et al. [6, 58] with certain assumptions,

is given in Equation 2.1. The pressure pulse intensity, shape, and duration de-

pend upon the properties of the laser beam. In the past, experiments have been

performed to determine laser beam and pressure pulse properties. Figure 2.1

shows typical shapes of the laser beam pulse and pressure pulse. Depending

upon various parameters, the laser beam midspan varies from 5-30 nanosec-

onds (ns), and the pressure pulse midspan is approximately three times that of

the laser beam midspan.

The temporal distribution of the pressure pulse on the surface of the target

material can be experimentally measured by multiple methods. Clauer et al. [1]

obtained the pressure pulse properties by placing pressure gauges behind the

surface of a thin specimen. Peyre et al. [58, 59] and Ballard [27] obtained

the pressure pulse properties from the VISAR pressure determination system.

VISAR developed by Barker and Hollanbach [64] is an optical-based system

that utilizes Doppler interferometry technique to measure the time-historyof

the motion of a surface. The laser light is focused to a point on a target of

interest and the reflected light is collected, routed through an unequal leg in-
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terferometer, and converted to electronic information. This information is then

analyzed for the amount of Doppler shift during a given time [65]. VISAR can

be applied to a wide range of experimental conditions and provides accurate

measurement with 1 to 2 ns time resolution.

Recently, Wu and Shin [54, 55] developed an analytical relation between

the laser parameters and the LP pressure pulse. Ding and Ye [60] assume that

shape of the pressure pulse is like a Gaussian distribution and approximate it

using a triangular pressure pulse. During various experiments, it was observed

that a steep rise in pressure tends to generate a better residual stress field in

terms of magnitude and depth as compared to a Gaussian pulse. Nam [9] and

Noll [10] use a shape as shown in Figure 3.1. The figure shows the ratio of

pressure at timet to peak pressure of the pulse. This pressure pulse is used for

experimental validation purpose. The pressure pulse used in this research for

various parametric studies and optimization is little different than thisshape.

Overall pressure pulse features are kept similar. But minor modifications are

made after investigating the pressure pulse shapes available in the literature.

The difference between the selected shape and this shape is the the selected

shape is little smoother profile than this pulse.

3.1.3 Geometric Modeling and Meshing

Normally, the LP-affected zone is small in size compared to the component

size. At the same time, LP is a high speed dynamic process, so a fine mesh

41



036 15 30 45 60 90 120 150 170 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ns)

N
o

rm
a

li
z
e

d
 R

a
ti
o

Mid−span

Figure 3.1: Temporal loading profile of pressure pulse (Nam,2002)
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Figure 3.2: Schematic of 2-D axi-symmetric FE model

is required to model stress waves and the interactions between them. A small

area of the component that is affected by LP, called the control volume, is

modeled using finer elements, and the area surrounding this control volume is

modeled using infinite elements. Infinite elements are normally used to define

unbounded domain and to provide a model with a ‘quiet’ boundary. Infinite

elements are used in a model in which the region of interest is small in size

compared to its surroundings, such as in LP modeling. Figures 3.2 and 3.3

show a two- and three-dimensional representative models of a component. In

both cases, the laser spot is a circle of 5 mm in diameter. The experimental

results [9] show spatial variation of the pressure across a peening spot. To

incorporate spatial variation, as shown in Figure 3.4, the spot is divided into
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Table 3.1: Basic material data for Ti-6Al-4V ((Nam, 2002))

Material properties, units Value
Young’s modulus, E [GPa] 113.8
Poisson’s ratio,ν 0.342
Density,ρ [kg/m3] 4500
Initial yield stress,Y0 [MPa] 924
Hugoniot Elastic Limit [MPa] 2800

five sections. The first section is a small circle, (blue in Figure 3.4) from which

the remaining sections or bands (yellow, light green, red, and brown), radiate

outward in concentric circles. The center most region has minimum pressure

(0.8 time the peak pressure) and the outer most has maximum pressure (1.0

time of the peak pressure).

3.1.4 Material Modeling

LP generates strain-rates exceeding 106 s−1 within the target material. The

material model plays a crucial role in accurately simulating a process with such

a high strain-rate. In the literature, researchers [11,58,59,61] have used many

material models. In this research, two material models were explored for use

in LP simulation. The first model uses perfectly elastic-plastic material [11]

properties. In this model, Young’s modulus and dynamic yield strength are

used to define material properties. The dynamic yield strength depends upon

the Hugoniot Elastic Limit of the material, and is calculated using Equation

1.1. The material properties of Ti-6Al-4V used for all simulations are shown

in Table 3.1 [10]. In the second model, to model the stress-strain dependence at
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Table 3.2: Parameters for Johnson-Cook material model of Ti-6Al-4V (Lesuer, 2000)

A (MPa) B (MPa) n C m
Ti-6Al-4V 1098 1092 0.93 0.014 1.1

high strain rates, the Johnson-Cook model [59,66–68] is used. In the Johnson-

Cook model,σeq is expressed as

σeq= (A+Bεn
eq)

[

1+C.Ln

(

ε̇
ε̇0

)]

. [1−T∗m] (3.1)

whereσeq is the effective stress,A,B,C andm are material constants,n is the

work hardening exponent,ε̇ε̇0
is the normalized effective plastic strain rate, and

the quantityT∗ is defined as

T∗ =

(

T −T0

Tmelt−T0

)

(3.2)

whereTmelt is the melting temperature. The strength of the material is a func-

tion of strain, strain-rate, and temperature. The values ofA,B,C,n, andm are

determined from an empirical fit of experimental flow-stress data. The opaque

overlay prevents the material from generating high temperatures during the

peening process. Due to this coating, the effect of temperature during peen-

ing is limited. Therefore, the effects of temperature are not considered in the

material model.
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3.2 Simulation Procedure

Because of the complexity of elastic and plastic deformation and shock wave

propagation, it is necessary to employ an accurate procedure with manageable

computational requirements. As discussed in Chapter 1, very high magnitude

pressure pulse of the LP process lasts for very small period of time. However,

it takes a much longer time for the material reach an equilibrium. The time

scale of pressure duration is in nano second (ns). The time scale to reach equi-

librium is in milliseconds (ms). In cases of shock loading such as in LP, equi-

librium can not be achieved quickly because of the propagation and interaction

of stress waves. The residual stresses are caused by the plastic deformation,

and the plastic process last for a very short time. It is essential to obtain the

equilibrium state for accurate results.

An appropriate simulation procedure is needed. The explicit algorithm is

suitable for high speed process [69] such as initial phase of the LP process,

but if this algorithm is used for the entire process till equilibrium, it is not

computationally efficient. The reason for the inefficiency is that this algorithm

is not designed for use in slow processes such as later part of the LP process

and it also integrates over time in small time steps for algorithm stability. The

implicit algorithm [69] of FE analysis is suitable for the later part, but not

the initial part, of the process. Therefore, a simulation procedure is used that

takes advantage of both processes and obtains the equilibrium state within a
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Figure 3.5: Flow-chart of simulation process

manageable computational time.

FE simulation of the LP process is divided into two phases [8]. The flow

chart of the process is shown in Figure 3.5. The first is modeling the initial high

speed transient high pressure loading in ABAQUS/ Explicit, which is specifi-

cally designed for such processes. The second phase, which is a comparatively

slower physical process, is to determine the final equilibrium residual stress

field. This phase of the analysis is performed in ABAQUS/Standard (implicit

algorithm).
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3.2.1 Explicit and Implicit Algorithms

To analyze the dynamic response of a material, caused by high speed and

high intensity laser shock, the explicit FE method is used. The governing

equations for general explicit algorithms can be derived by requiring the work

of external forces to be absorbed by the work of internal and inertia forces for

any small, kinematically admissible motion, which satisfies both compatibility

and essential boundary conditions [70,71]:

∫

Ω

ρüiδuidΩ+
∫

Ω

υρu̇iδuidΩ =
∫

Ω

fiδuidΩ+
∫

Γ

TΓδuidΓ−
∫

Ω

σi j δDi j dΩ

(3.3)

whereρ is the mass density, ¨u and u̇ are the nodal acceleration and velocity,

respectively,υ is the damping coefficient,δu is the virtual displacement,fi is

the body force density,TΓ is the boundary force applied on the boundaryΓ,

σi j is the Cauchy stress tensors, andDi j = 1
2(δui, j +δu j,i) is the deformation-

rate tensor. In Eq. 3.3, the five terms represent inertia, damping, body forces,

boundary forces, and strain energy of the system under consideration, respec-

tively. The standard FE procedure can be used to obtain a discretized equation:

[M ]{Ü}+[C]{U̇}+[K ]{U} = {Fext} (3.4)

where[M ] is the diagonal mass matrix,{Ü} is the nodal acceleration vector,

{U̇} is the velocity vector,[C] is the diagonal damping matrix,{Fint} is the
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internal element force vector, and{Fext} is the external and body force vectors.

In the integration methods, response history is calculated using step-by-step

integration in time. The response is evaluated at time instants∆t, 2∆t, ..., n∆t

and so on. At thenth time step, the equation of motion is [71]

[M ]{Ü}n+[C]{U̇}n+[K ]{U}n = {Fext}n (3.5)

Discretization in time is achieved by finite difference approximation of time

derivatives. There are many ways to perform the discretization and solvethe

equation. In this discussion,[M ] is assumed positive definite and[K ] is positive

semidefinite. Structure is allowed to have rigid-body motion as part of its

response.

In the time integration conditions at time step(t +1) are calculated from the

equation of motion, a difference expression, and known conditions at one or

more preceding time steps. Algorithms can be classified asexplicitandimplicit

depending upon the information used in calculating conditions at(t +1). An

explicit algorithm uses an expression of the general form [71]

{U}n+1 = f ({U}n,{U̇}n,{Ü}n,{U}n−1, . . .) (3.6)

that contains only historical information on its right hand side. This equation

is combined with the governing Eq. 3.5 at stepn to solve the problem. An
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implicit algorithm uses the following general form

{U}n+1 = f ({U̇}n+1,{Ü}n+1,{U}n,{U̇}n,{Ü}n,{U}n−1, . . .) (3.7)

that is combined with the governing Eq. 3.5 at step(n+1) to solve the prob-

lem. In the explicit algorithm, only the historical information is used to cal-

culate dynamic quantities at(t +∆t). The central difference method is used in

the explicit algorithm. By manipulating the Taylor series expansion of{U̇}n+1

and{U̇}n−1 about timen∆t:

{U̇}n =
1

2∆t
({U}n+1−{U}n−1) (3.8)

It can be written as:

{U}n+1 = {U}n−1+2∆t{U̇}n (3.9)

The{U}n+1 can be used to calculate{Ü}n:

{Ün} =
1

∆t2({U}n+1−2{U}n+{U}n−1) (3.10)

The integration rule in the explicit algorithm is simple, this is a reason be-

hind the computational efficiency of the explicit dynamics procedure. The

equation derived from the central difference scheme used in the algorithm is

conditionally stable [71]. As a result stable time step is an important factor and

the explicit FEA integrates through time by using many small time increments.
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The stability limit for the time step operator depends upon the highest natural

frequency. Since it is hard to find the highest natural frequency, a conserva-

tive estimate of the stable time increment is given in Equation 3.11 [69,71] in

terms of minimum element size (Le) and the current effective dilatational wave

speed of the material (Cd). The point to note is that if the minimum element

size is reduced, then∆tstabledecreases while the time required to perform the

integration, and ultimately analysis time, increases.

∆tstable= min(Le/Cd) (3.11)

Due to this limit (3.11), a very small time step for integration is used forac-

curate results, which leads to large computational cost. However, the implicit

algorithm removes this upper bound on the time step for integration by solving

for the dynamic quantities at(t + ∆t) based not only on values att, but also

on these same quantities at(t + ∆t). Based on the special case of Newmark

method [72] the relations for implicit algorithm as give by [71] are

{U̇}n+1 = {U̇}n+∆t
(

γ{Ü}n+1+(1− γ){Ü}n
)

(3.12)

{U}n+1 = {U}n+∆t{U̇}n+
1
2

∆t2[2β{Ü}n+1+(1−2β){Ü}n
]

(3.13)

whereγ andβ control characteristics of the algorithm such as accuracy, numer-

ical stability, and the amount of algorithm damping. Respectively, the average

acceleration and linear acceleration methods [71] are given byγ=1
2, β = 1

4 and
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by γ=1
2, β = 1

6. By solving Eqs. 3.12 and 3.13 for{Ün+1}, then further substi-

tution [71] can provide the implicit solution.

It is difficult to solve implicit equation in the algorithms, but the time step

can be two orders of magnitude larger than the explicit algorithm. Thus, the

relative computational cost of the two algorithms depends on the stability limit

of the explicit scheme, the ease with which the nonlinear equations can be

solved for the implicit operator, the relative size of time increments that can

provide acceptable accuracy with the implicit scheme compared to the stability

limit of the explicit scheme, and the size of the model. The equilibrium equa-

tion for the implicit algorithm can be obtained from Refs. [69, 71]. A brief

description is provided in this section. The description is for academic pur-

pose only. These algorithms are in-built in the FEA software. The user only

need to selected the appropriate option to use implicit or explicit algorithm.

Because of the two steps involved in the simulation procedure, it is nec-

essary for accuracy and efficiency to determine the analysis duration of each

step. The simulation duration would be much longer than the pressure pulse

duration. Ding and Ye [60] suggested that the solution time should be two

orders of magnitude higher ( 3000) than the pressure pulse duration ( 30). In

this work, a large number of analyses is performed to select the duration, and

an analysis time of 2500 to 3000 ns for the first phase and 10−50 millisecond

(ms) for the second phase is used.
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3.2.2 Ohio Supercomputing Center for Simulations

Due to the computational cost involved in a LP simulation, most of the finite

element simulations are performed on the Glenn cluster at the Ohio Super-

computing Center (OSC). The OSC is located in Columbus, Ohio. The details

of the Glenn and other clusters at OSC can be found at the institute website

(www.osc.edu). In brief [73], there are more than 7000 nodes, each node with

dual or quad core, 2.6 GHz speed, and 8GB or higher (more than 6000 nodes

with 8GB, 70 nodes with 16GB, 16 nodes with 32GB, 2 nodes with 64GB,

76 nodes with 218GB, and 10 nodes with 1.8TB RAM) RAM. The total CPU

computational time at OSC involves two parts. The first part is the waiting

period and the second part is the computation part. The waiting time is a of

function many parameters such as load on server, requested CPU time, re-

quested RAM, and cluster maintenance activities. The CPU time mentioned

in the dissertation does not include the waiting time.

3.3 Two-Dimensional Simulation

The 2D simulation is an efficient way to simulate one shot with the circular

spot at the same location because of less computational requirements. Figure

3.2 shows an axisyymmetric FE model of a component. The model consists of

a 5×5 (mm2) rectangular area of finer elements surrounded by 5mmof infinite

elements on each of the two sides. The FE model represents a cylindrical part
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of 10mmdiameter with a laser spot of 5mmdiameter. Based on the mesh con-

vergence a 200×200 mesh is used for the 5mmsquare. This model contains

40000 finer elements (four-noded CAX4R elements in ABAQUS) and 400 in-

finite elements (four-noded CINAX4 elements). This model is developed for

use in solving the optimization problem of designing a required residual stress

field.

3.4 Three-Dimensional Simulation

Using 2D FE simulations is a computationally efficient way to predict the

residual stress field for one shot of LP at the same location. However, vari-

ations such as sequential shots at multiple locations or rectangular or elliptical

spot shapes are not possible to simulate in 2D. These variations require three-

dimensional FE simulation of the process. Figure 3.3 shows a quarter FEA

model of a component. The quarter model consists of a 5-mmcube of finer

elements surrounded by 5mmof infinite elements on each of the three sides.

The laser spot is a circle, 5mmin diameter.

3.4.1 Mesh Convergence

To determine a suitable mesh size for the simulation, a mesh size convergence

study is performed on a quarter model (Figure 3.3). The mesh convergence

study is divided into two parts. In the first part, four uniform meshes are inves-

tigated. In the second part, based on the results of the first part, three biased
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meshes are investigated. The first part is to determine the converged mesh, and

the second part is to bring the computational cost within acceptable limits for

the research purpose. In all the models, control volume is modeled using eight-

noded C3D8R elements and the surrounding region is modeled using CIN3D8

infinite elements. In mesh convergence, 40, 80, and 160 elements are used to

mesh a 5-mm-long side of the control volume. The element size for each mesh

is 0.125mm, 0.0625mm, and 0.03125mm, respectively.

The mesh size with 320 elements (0.015625mm) was also attempted. It

is infeasible to use this mesh due to the computational space and memory

requirements. Deu to this, mesh size with 200 element was attempted. Even

this mesh will take approximately 10 days of CPU time. This time does not

include waiting time of around 3-20 days. The waiting time is high because of

a limited number of high memory nodes at OSC.

A comparison of the residual stress profile from various mesh sizes is shown

in Figure 3.6. The results show residual stress magnitude alongY-axis and

depth alongX-axis. The figure compares the results from uniform and nonuni-

form mesh models. The residual stress profile can be divided into two regions;

0.0 to 0.2 mmand 0.2 mmto 5 mm. The residual stress profiles between the

depth of 0.2 to 5mmare matching with each other for most of the mesh sizes.

In fact, all uniform mesh model results are on top of each other. The resid-

ual stress profiles between the depth of 0.0 to 0.2 mmare different from each

other for the considered mesh sizes. The maximum difference between mesh
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Figure 3.6: Mesh convergence results
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sizes 80 (80×80×80) and 160 is 16%. This is the maximum difference and

is large but it is only in very small region. The results are matching with each

other in most of the depth. Therefore, the 160 mesh can be assumed to be a

converged mesh, CPU time required for this simulation is prohibitively expen-

sive (7.5 days). The use of this mesh will make it difficult to perform full 3D

simulations for multiple peening locations.

Based on the time taken by the finest mesh, biased mesh convergence study

is also performed. In the quarter symmetric 3D models (Figure 3.3), X- and

Z-axes are along the peened surface and Y-axis is represent depth of the com-

ponent (in the direction of the LP pressure). In the biased mesh study, the

element size along X- and Z-axes is kept constant. The element size is biased

along the Y-axis. In this direction, the finest element is at the top surface. The

biased mesh is decided using two parameters: the size of the first elementon

the surface and the total number of elements. In this study, the size of the top

element is fixed at 0.0625mm, which is equivalent to having 80 elements per

5 mmalong Y-axis. The number of elements used is 50, 60, or 70. The mesh

in the other two directions is uniform (80 elements).

The time taken by each of these analyses is shown in Table 3.3. The CPU

time shown in the table is in minutes on the Glenn cluster at OSC. This time

does not include the waiting time. Typical waiting time for 40×40×40 and

160× 160× 160 meshes is around 15 and 2000 minutes, respectively. This

time is not the exact time. The time in minutes is rounded to the nearest 10.
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Table 3.3: Mesh convergence study

Number of Elements Mesh CPU Time
X-axis Y-axis Z-axis Type in minutes

40 40 40 Uniform 60
80 50 80 Biased 720
80 60 80 Biased 1,260
80 70 80 Biased 1,680
80 80 80 Uniform 1,950
160 160 160 Uniform 10,800

Table 3.4: Mesh Convergence Study with Respect CompressiveVolume

Number of Elements Compressive
X-axis Y-axis Z-axis Volume (mm3)

40 40 40 4.17
80 50 80 4.48
80 60 80 4.51
80 70 80 4.53
80 80 80 4.63
160 160 160 4.67

The extensive mesh convergence study provides the following results, in-

dicating that it is possible to achieve convergence in 3D but it is not compu-

tationally feasible. Comparison of the results shows that the biased mesh is

able to produce similar results without having to use a finer mesh for the entire

depth. A biased mesh of 80× 60× 80 would be an acceptable mesh for re-

search purposes. The above convergence study is performed on the residual

stress profile. In the design optimization of the LP process four performance

metrics are used. These metrics are calculated form the residual stress profile.

The objective of all optimization formulations is to compressive stress volume.
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Figure 3.7: History of internal energy, artificial strain energy, kinetic energy, plastic dissipation and external
work

A convergence study is also be performed with respect to the compressive vol-

ume. The results of the study are shown in table 3.4. The table shows that

compressive volume values are comparable to each other. This study shows

that the selected biased mesh can be assumed as converged mesh for the re-

search purposes.

3.4.2 Preliminary results

The LP pressure pulse inputs energy into the material, and the energy is di-

vided into different types of energies. Part of the energy is used in plastic
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deformation, and part of it is converted into kinetic, internal, and heat ener-

gies. Figure 3.7 shows the history of the total energy, the kinetic energy, the

internal energy, and the plastic dissipation energy for a 3 GPa peak pressure

pulse. The time duration of 2500 ns for dynamic analysis is selected based on

the variation in the plastic deformation and the internal and kinetic energies.

When these three quantities become approximately stable at 2500 ns, the next

step of the analysis begins.

The explicit, implicit, and total analysis times for each model are different.

These depend upon the geometry, number of elements, analysis duration, and

type of elements. For example, a model with infinite elements requires less

time compared to a model without infinite elements. The reason behind this

is that infinite elements/region tend to absorb the peening energy and allows

the model to reach equilibrium state faster. In the absence of infinite elements

the energy reflects back from the geometric boundaries. In such cases, the

equilibrium is achieved more slowly. Figure3.7 shows that the plastic defor-

mation lasts for only a small duration when the applied pressure is above the

elastic limit. The figure shows that the external work and the plastic dissipa-

tion energy change occur for the duration of the pressure pulse, which is 170

ns. After that, the plastic dissipation energy is constant at approximately 4.5

mJ. The kinetic energy increases to 13.5 mJ pressure is applied, then drops

to 6.5 mJ at 1000 ns, and goes to almost zero after 1500 ns. There are many

activities going on during the initial 1000 ns, and all energies reach an approx-
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Figure 3.8: Resultant residual stress distribution plot for 3 GPa peak pressure pulse

imately stable level from 1000 ns to 2000 ns. It can be inferred that there is no

interaction between various stress waves inside the component after 2500 ns.

Figure 3.8 shows the residual stress distribution of a 3GPapulse of duration

170ns. The maximum compressive stresses are at the surface. On the surface,

the location of the maximum stress is not at the center of the spot. For 3GPa

location of maximum compressive stress is 0.05 away from the center. The

maximum compressive stress location is not independent of the LP parame-

ters. For example the location changes with the pressure pulse magnitude.

For higher pressure magnitudes the location moves away from the center and

below the top surface. The volume of the compressive stress is less as com-

pare to the volume of tensile stress. The maximum tensile stress are below
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the compressive stress at the center of the model. The depth of the compres-

sive stress is approximately same in the entire spot. The maximum depth of

tensile stress is at the center of the spot. This figure shows that LP is able

to generate compressive stress in the component, but there are two causes for

concern. With the current set of parameters, a part of the component has ten-

sile stresses. Tensile stresses are generated to balance the compressive stress

for equilibrium in the absence of external force. These tensile stresses cannot

be eliminated; however, these can be constrained in optimization to avoid ad-

verse consequences. Another cause for concern is a small, shallow, reduced

compressive or tensile stress region in the center of the laser spot for higher

peak pressures; however, it is not representative of most of the laser spot.

3.4.3 Experimental Validation

In this section, finite element results are compared with the experimentalre-

sults from the literature. Multiple analyses are performed for this purpose. The

computed residual stresses are compared with the residual stress field from the

available experimental results. Two types of residual stresses are reported in

the dissertation: maximum principal and uni-directional stress (σ11 or σ33).

As in the LP literature, most calculations in the dissertation are use the uni-

directional stresses.
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Residual Stress Averaging

All the experimental residual stresses reported here are taken from a PhDdis-

sertation by Nam [9] at the Ohio State University. These experimental results

are obtained using the X-ray diffraction technique. This is a destructive resid-

ual stress measurement technique in which a thin layer of material is removed

using electro-polishing. The residual stresses obtained using X-ray diffraction

are averaged over a rectangular area. This rectangular area’s size and shape

are dependent on the size and shape of the X-ray diffraction spot. For a di-

rect comparison between FE simulation results of residual stress distributions,

the same averaging should be used. For simulation results, the averaging

is done for 1mmsquare. For a node, residual stress values at all the nodes

in 0.5 mm distance in all four direction are added. This value is divided by

the total number of nodes. The resulting value is the residual stress value for

the selected node. Figure 3.9 can be used to understand the process averaging

process. The figure shows a layer of nodes in a model. The red node shown in

the figure is selected to show the averaging process. The residual stress values

of the nodes in the 1mmsquare are added. This value is divided by total num-

ber of nodes (25 in this figure). The resulting value is the residual stress value

at the selected red node. Similar can be used to calculate a averaged residual

stress profile for a entire model.

This is necessary to add that the same averaging process is used for all the

calculation in this research. This process is independent of the LP parame-
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Figure 3.9: Averaging Schematic

ters. If there are high stress concentration location (compressive or tensile),

these values will reduce or may even disappear due to averaging. For a re-

search that is interested in the local effects of LP, averaging may not be agood

option. Averaging is a necessary for comparison between experimental (with

XRD measurements) and simulation results. The same averaging process is

used in this research for consistency purposes. Depending upon the research

requirements this averaging process can be changed.

Result Comparison

In each case, residual stress, strain, and deformation properties of the control

volume are transfered to the next phase, and the infinite element section is
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remodeled. The symmetric 3D model is analyzed for 5.5 GPa and 8.3 GPa

pressure pulses. Results obtained for 5.5 GPaand 8.3 GPaare compared with

published experimental [9] results. The comparison of the simulation and ex-
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Figure 3.10: Comparison of experimental results with simulation at 1 mm from spot center line

perimental results shows agreement between the two in majority of the com-

ponent depth. The simulations are able to estimate the depth of compressive

stress and major portion of compressive stress magnitude. The simulation esti-

mate of residual stress at the surface show difference in magnitude. The differ-

ence in the results can be due to the material model, variation in pressure pulse

properties, and uncertainties in the experimental measurements. Although im-

provement is necessary and possible, it may be difficult to exactly match the

experimental results.
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3.4.4 Residual Stress Profile

Figure 3.10 compares the experimental and simulation results for the average

residual stresses of the two peak pressure pulses, 5.5 GPa and 8.3 GPa, for

one-sided single LP. These comparisons are made along a line offset 1mm

from the centerline of the laser spot. Comparisons are made at this location

because the highly localized effect of the release waves focuses at the center

of the spot, causing reduction in the compressive stress.

3.5 Two Shots Sequence Model

To investigate the effect of sequential peening and overlap, a simple extension

of quarter symmetric 3D model is developed. As shown in Figure 3.11, this

model is half symmetric. The finite element properties and the LP proper-

ties for this model are same as that of the quarter symmetric 3D model. The

simulation of sequential LP at multiple locations is performed for two config-

urations. In the first configuration, two LP locations that contact each other

without overlap are considered. In the second configuration, there is a 50%

overlap between the two LP locations. Figure 3.11 shows a schematic of se-

quential LP at multiple locations with 50% overlap between the two locations.

In the figure, the control volume has two overlaping spots and infinite elements

all around. In the case of 0% overlap, the control volume dimensions are 5mm

× 5 mm× 15 mm, and in the case of 50% overlap, the dimensions are 5mm
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Figure 3.11: Schematic of sequential LP at multiple locations on a FEA model

68



× 5 mm× 12.5 mm. Different sizes of control volumes are used to minimize

computational expenses.

The computational time for analysis is huge. Using a Pentium(R) 4 CPU,

3.40 GHz personal computer with 2.00 GB of RAM, it takes approximately

48 Hours of CPU time to finish one analysis. Typically, depending upon the

size and requirements of a component, it may need from 20 to 100 LP shots.

Therefore, the time taken for the above case is an indication that FE simulation

for a practical component will be a computational challenge.

3.6 Seven Shots Sequence at Multiple Locations Model

In this section, a cylindrical model is developed that can be employed to inves-

tigate seven shot sequence. The model is shown in Figure 3.12. The cylindrical

shape is selected to minimize the computational requirements of a seven shot

sequence. The cylindrical shape is better suited to the investigation compared

to a rectangular component. This model requires a lower number of elements

compared to a rectangular model. The control volume of the model has finer

mesh. The rest of model has coarser mesh. The model can also be employed

to investigate the effect of multiple shots in partial overlapping conditions.
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Figure 3.12: Cylindrical model for sequence investigation

3.7 Parametric Plate Model

The parameters of validated symmetric 3D simulation methodology are used

to develop the parametric plate model. Figure 3.13 shows the FE model of

the plate with a control volume size of 10× 10× 5 (mm3). The model is a

infinite slab because of the presence of infinite elements. In this dissertation, it

is called a parametric plate because it can consider most of the LP parameters.

As shown in the figure, infinite elements extend from the plate by 5mmon four

sides and on the bottom of the plate. In this model, up to five different locations

can be selected for peening. The figure shows four spot locations; a fifth one is

located at the center of the plate. These locations are variables to generatethe

desired overlapping configurations or totally separate spots. Apart from the
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Figure 3.13: FEA model of a plate with five shots

parametric locations (or overlap), the model allows the designer to specifythe

spot size and shape, pressure pulse magnitudes, shapes and duration, number

of shots at the same location, and the sequence of shots. This model provides

many advantages, but introduces the issue of computational resources. For the

above-mentioned methodology, a five shot simulation (at the same location or

different) takes 4 days on the Glenn cluster at OSC. Design optimization isan

iterative process and the use of metamodels is advised to avoid prohibitively

large computational expense.

3.8 Rectangular Coupon Model

A rectangular coupon is selected for modeling because it can be employed in

future work for experimental validation of residual stress profiles and fatigue

life estimation. The basic framework, mesh convergence, and material model
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Figure 3.14: FE model of the four point bend specimen

for the coupon are taken from the validated 3D model. The region of interest is

called the control region. The controlled region is uses a very fine mesh. The

region surrounding the control region is meshed using coarse mesh. These

region can be clearly seen in Figure 3.14. The coupon model can be used to

perform laser peening simulations to estimate induced residual stresses.The

same coupon with residual stresses can be employed to apply fatigue loading.

This setup will allow the calculation of the fatigue life of the peened coupon,

and the ability to compare it with the fatigue life of the unpeened coupon. For

the coupon model, a three shot simulation takes 8 CPU hours on a processor

at OSC.
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3.9 Chapter Summary

This chapter began with an explanation of the simulation-based methodology.

The methodology is adopted to predict residual stresses generated by the LP

pressure pulse. Based on the literature, a range of LP parameters is determined

and used for simulation. Initially, this methodology is successfully verifiedby

comparing the simulation results with the available experimental results. Then

the methodology and model are used to develop models to investigate two

overlapping shots, a seven shot sequence, and parametric design optimization

of a laser peening process. In summary, this work added to the understand-

ing of the physical process of laser peening and developed a simulation-based

methodology, which can be used for analysis of complex geometries repre-

senting practical applications. Parametric investigations, residualstress field

optimization, and residual stress estimation for fatigue life calculation can be

performed by using the simulation methodology and the finite element models

presented in this chapter.
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Chapter 4

LP Optimization: Introduction and

Parametric Investigations

Mathematical optimization is a process of identifying the best suitable design

from a collection of alternatives without having to experiment all possible al-

ternatives. There are many simple problems in which optimal parameters can

be obtained through experience and experiments. However, for a nonlinear

time-dependent mixed-variable process such as LP, it is difficult determine op-

timal parameters using this approach. It is necessary to perform a systematic

optimization of the LP process.

The LP process has many variables, such as the pressure pulse magnitude

and mid-span, spot shape and size, the location and layout of the spots, and

the number of shots at the same location. For a comprehensive optimization,

parametric investigations are needed to determine the performance function

sensitivities with respect to optimization variables. The optimizationof the

LP process is a mixed-variable optimization problem because pressure pulse
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magnitude and duration, spot shape and size, and amount of overlap are con-

tinuous, while the number of shots and spot layout are discrete. The time

dependent nature of the process increases the complexity because each shot is

a nonlinear plastic process. This process creates residual stresses and proper-

ties of these stresses affects the selection of the parameters of the subsequent

shots.

Overall, the main objectives of this chapter are (1) to present the mathemat-

ical formulation of a mixed-variable optimization problem, (2) to introduce

gradient- and non-gradient-based optimization methods and surrogate models,

and (3) to perform parametric investigations.

4.1 Mathematical Formulation of Mixed-variable Optimization

Sometimes, an optimization problem has input variables that are continuous,

integer, and discrete. Such problems are called mixed-variable optimization

(MVO) problems. A typical mathematical formulation of an MVO problem is

defined as

Maximize: f (X)

Sub ject to:

Equality constraints: hi(X) = 0, i = 1,2, ...,m,

Inequality constraints: gi(X) ≤ 0, i = m+1,m+2, ..., p,
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The input vector is

X =





















xc
1 ,xc

2 , ..., xc
nc

xi
1 ,xi

2 , ..., xi
ni

xd
1 ,xd

2 , ..., xd
nd

xb
1 ,xb

2 , ..., xb
nb





















The variable bounds on each input variable are given by

xcl
i ≤ xc

i ≤ xcu
i , i = 1,2, ...,nc,

xil
i ≤ xi

i ≤ xiu
i , i = 1,2, ...,ni,

xdl
i ≤ xd

i ≤ xdu
i , i = 1,2, ...,nd.

xdb
i ≤ xb

i ≤ xbu
i , i = 1,2, ...,nb.

where f (X) is the objective function,xc
i ∈ Rc, xi

i ∈ Ri, xd
i ∈ Rd, andxb

i ∈ Rb

denote sets of continuous, integer, discrete, and binary (zero-one) variables,

respectively, andx∗l
i andx∗u

i denote the lower and upper bounds of the re-

spective variables (replace(∗) with c, i,d, or b). The total number of vari-

ables isn = nc + ni + nd + nb, and the total number of constraints isp. Here

nc,ni,nd, andnb are the number of continuous, integer, discrete, and binary

variables.
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4.2 Optimization Methods

Optimization algorithms are broadly divided into two categories: (i) Gradient-

based algorithms, and (ii) Non-gradient-based algorithms. All the optimiza-

tion algorithms are iterative in nature. The gradient-based algorithms move

from the current point to the next point based on gradients/sensitivities. In this

process of moving points, the objective function and constraint values tend to

improve. In a population-based approach, in each iteration, based on a set of

rules, a new population is generated from the previous population. Population

based methods may not use gradient information.

There are many algorithms (both gradient and non-gradient) that treat all

kinds of variables as continuous variables and round-off the values of inte-

ger and/or discrete variables. Some methods also use the penalty function

approach to handle integer and discrete variables. Most gradient-based algo-

rithms are designed for optimization problems with only continuous variables

because of their need for gradients. An algorithms to solve such problems

is branch and bound [74]. Recently, many evolutionary techniques (genetic

algorithm and particle-swarm optimization) have been used to solve mixed-

variable optimization problems.

4.2.1 Gradient-Based Methods

Gradient-based optimization methods use the objective function, constraints

functions, and gradient information to guide the search strategy. The gradient

77



information can be obtained from the first- and/or second-order derivatives

of the objective function and constraints. The formulation of gradient-based

optimization is given by Equation 4.1:

~x(k+1) =~x(k) +α(k) ~d(k) (4.1)

where~x(k+1) is the next point,~x(k) is the current point,α(k) is the step-length

parameter or distance to travel to reach the(k+1)th point from(k)th, and~d(k)

is the unit direction vector. Most gradient based-optimization algorithms are

about finding the direction vector (~d(k)) and distance (α(k)) to travel in that

direction.

Popular methods to find the appropriate direction are Newton’s method, the

Marquardt modification of Newton’s method, the steepest descent method,

the gradient projection, the reduced gradient method, the conjugate gradient

method, the Davidon-Fletcher-Powell method, the feasible direction method,

and the penalty function methods. Many of the direction finding algorithms

mentioned above also have approaches to findα(k), and other popular methods

use simple differentiation, the equal interval search, the bisection method, and

the golden section search.

4.2.2 Non-gradient Based Optimization

Generally, non-gradient based optimization algorithms are population-based

probabilistic methods, also called Evolutionary Algorithms (EA). These al-
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gorithms may not use gradient information. Simulated Annealing (SA), Ge-

netic Algorithms (GA) [75,76], Ant Colony Optimization (ACO), and Particle

Swarm Optimization (PSO) are a few examples. Two of these methods, the

Genetic Algorithm and Particle Swarm Optimization are briefly presented in

the following sections.

Genetic Algorithm

GA belongs to the class of natural adaptive optimization algorithms that mimic

the process of natural evolution. Since the pioneering work of John Holland,

who proposed the possibility of a genetics-based search to solve optimiza-

tion problems, genetic algorithms have emerged as a robust, stochastic search

method in complex problem domains ranging from process optimization, con-

trols, scheduling, motion planning, pattern recognition, and structural opti-

mization. However, since GA is a population-based approach, it requires a

large number of function evaluations.

Particle Swarm Optimization

PSO is an algorithm proposed by Kennedy and Eberhart [77], motivated by

social behavior of organisms such as bird flocking and fish schooling. Like

evolutionary algorithms, PSO is a population based approach. This population

is modified from the current iteration to the next iteration based on a set of

rules. This set of rules tends to mimic the problem solving, social behavior of

group of birds. In this set of rules each individual (particle) has its fitness, and
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a communication structure, assigning neighbors for each individual to interact

with. These individuals iteratively calculate their fitness solutions and remem-

ber the location of their best fitness so far. The information of the best locations

of each neighboring individuals is available to all neighboring individuals and

the best of all the individuals is also available to every individual. Based on

this information, movement parameters of each individual particle are evalu-

ated. These movement parameters change over the course of iterations and the

particles tends to converge and provide an optimum solution. Although PSO

is a powerful algorithm, it tends to be converge slowly on some problems, and

as a result takes a large number of function evaluations.

4.2.3 Advantages and Disadvantages

This section discusses the advantages and disadvantages of gradient- and non-

gradient-based methods. The gradient-based methods tend to need a large

number of function evaluations for gradient evaluation. EAs tend to be robust,

but also require a large number of function evaluations. This is a major issue

for problems like LP because of the humongous computational time and space

required to perform a large number of simulations. The disadvantage of gra-

dient methods is that the final solution may depend on the starting point of the

algorithm and tends to converge on local optima. Nevertheless, these methods

clearly improve next point and termination for an optimal solution. EAs have

a disadvantage: a solution in the population is always compared to other solu-
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tions in the selection, not in absolute terms, and these methods do not have the

concept of optimal solution.

EAs can approach a near optimal solution quickly, but can take a large num-

ber of iterations to find an exact optimum. EAs are suitable for parallel pro-

cessing environment because of the population-based approach, but gradient

approaches are not because the calculation of the next point depends on the

previous point (Equation 4.1). However, parallel computing can be utilized

to calculate derivatives/gradients for gradient-based methods. Gradient-based

methods are not suitable for handling discrete variables without adjustment,

but evolutionary algorithms can easily be adjusted to handle discrete variables.

PSO is selected to solve the LP optimization problems. Along with all the

advantages of EAs, PSO is selected because of its ease of implementation,

lower number of user parameters, and the use of historical information.

4.3 Automated Data Transfer Procedure

Due to computing and licensing limitations, the computing is done in two

parts. The simulation-based design/ optimization process generates the input

FEA files on a personal computer (Windows PC). The LP finite element analy-

ses are performed at OSC (Unix). To perform analysis, data must be transfered

between these to computers. A manual data transfer method is not the most

efficient option. An automated procedure is developed that does not require

login and password for each transfer from PC to supercomputer. Although the
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Figure 4.1: Flow-chart of the simulation-based optimization process
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process does not require password, it is secure as per current security stan-

dards. A one time paraphrase is used for security. A modern programming

language, PuTTy, is used for automated data transfer. A successful transfer

depends upon the reliability of the connecting network between computers.

However, the procedure is independent of minor network issues. This inde-

pendence is achieved by iterative attempts. Many attempts are made to transfer

data. The time between two attempts increases exponentially with the number

of failed attempts. An optimization loop will not crash if a PC is not able to

connect to the server for few minutes or few attempts.

Access to OSC, knowledge of basic Unix and batch processing, and expe-

rience in a programming language are a few requirements that must be met to

successfully implement the procedure. The software packages MATLAB and

PuTTY are employed to develop the procedure (Figure 4.1). The activities on

the left hand side of the vertical line in the figure are performed on a PC. The

activities on the right hand side of the line are performed at the OSC. These

software packages provide a set-up that generates input files on a PC, trans-

fers the files to OSC, performs the analyses at OSC, and brings result files to

the PC. A brief descrption of the procedure is given in the following sections.

Further details can be seen in Ref. [78].
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4.3.1 One-time Setup

There is a one-time setup needed to use the process. The setup includes two

steps, installing PuTTy and setting up a password-less SSH connection. In the

first step, PuTTy software is installed. The software is a legally free to down-

load. This software is to implement Telent and SSH for Win32 and Unix plat-

form. In the second step, a password less paraphrase protected process is in-

stalled. The details of the process installation are available at the OSC website

(http://www.osc.edu/supercomputing/software/apps/mdcs.shtml). Only the step

2.1 is needed from the web-page. The remaining steps on the web-page are for

Parallel Computing Toolbox (PCT) of MATLAB software. For assistant and

any issue, OSC user can contact OSC help at oschelp@osc.edu. After one-

time setup is complete, the procedure is verified as given by at the end of the

same step 2.1.

4.3.2 Procedure Steps

In this research, the main organizing tool of the procedure is MATLAB. Any

programming language such as C, C++, C#, fortran, python, or VB can be

used for the same purpose. The optimization code (PSO), finite element anal-

ysis input files generation codes (for ABAQUS), the PuTTY management, and

fatigue analysis files generation code (for fe-Safe) are written in MATLAB.

As shown in Figure 4.1, the procedure involves following steps.
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(a) Generate finite element input files at the PC. The number of files depend

upon the number of particles in the optimization.

(b) Employ PuTTy to transfer all files to the OSC cluster.

(c) Perform FEA at OSC using ABAQUS. The request to start all analyses is

given at the same time.

(d) Generate the required result files.

(e) Transfer the results files from the OSC cluster to the PC using PuTTy.

(f) Perform additional analysis at PC, if required.

(g) Check for the convergence. Stop, if converged. If not converged, create

new points from the previous points and the results. Repeat the process.

4.3.3 Advantages of the Procedure

This procedure overcomes the licensing limitations and optimally utilizes the

computing facility of OSC. This procedure is ideally suited for the research

groups that do not have supercomputers available at hand and depend upon

OSC. Overall, the automation procedure has many advantages:

(i) This procedure is suitable for a population-based optimization methods

(PSO). The procedure assists in performing many analyses (equal to pop-

ulation size) at the same time at OSC.

(ii) Many design processes involve more than one software packages to com-

pute the performance function (ABAQUS and fe-Safe for fatigue life op-

timization using laser peening). The developed procedure removes the
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limitations that all the licenses must be available on a particular PC/cluster.

This is due to the automated data transfer between computers.

(iii) This procedure allows an optimal utilization of the OSC computing and

licensing resources.

4.4 Surrogate Models

A surrogate model or function approximation is a mathematical model that

represents the relations between dependent variables or responses and inde-

pendent variables. Surrogate models play an important role in the design of

experiments as models for prediction, in process optimization, and in un-

certainty quantification, especially for large-scale analysis. There aremany

techniques of approximation, such as one-point, two-point, and multi-point

models. Among one-point surrogate models, linear, reciprocal, and conser-

vative metamodels are the most commonly used in structural optimization.

Two-point Adaptive Nonlinear Approximation (TANA), Improved Two-point

Adaptive Nonlinear Approximation (TANA2), and the Response Surface Method

(RSM) are a few examples of two-point and multi-point metamodels.

The use of surrogate models in general as well as in this research is not to

replace the full scale simulation with approximations. Surrogate models are

employed during intermediate steps in an optimization process with the aim

of reducing the computational time. The full-scale simulations are performed

after each iteration. The goal is to employ an effective surrogate model,and
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a minor difference in a surrogate model prediction tends not to affect the final

solution. The effectiveness of the surrogate model does affect the number of

iterations and computational time required to reach a converged solution in an

iterative algorithm.

4.5 Parametric Investigations

The work discussed in Chapter 3 provides a validated simulation procedure

for the LP process. At the validation stage for comparison between the ex-

perimental and simulation results, the parameter selection for the simulations

was constrained by the available experimental results. In parametric inves-

tigations, different practically possible parameter variations are explored to

determine their effect on the residual stress field. The parametric studiesem-

ploy models presented in Chapter 3. These models include symmetric 3D

(Figure 3.3), a modified version of symmetric 3D, sequential LP simulation

model (Figure 3.11), and Cylindrical model (Figure 3.12). There are multiple

objectives and multiple constraints [79] in the LP process. Out of those, four

performance metrics- depth of compressive stress (CD), maximum compres-

sive (MC) stress, maximum tensile stress (MT), and total compressivevolume

(CV)-are selected for comparison.

These performance metrics are calculated after the averaged residual stress

profile is calculated for the entire model. The CD is calculated at a selected lo-

cation. The number of nodes (along the depth) in compression at the selected
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location are determined. The number of elements are one less than the number

of nodes. The number of elements multiplied by element thickness provides

the compressive stress depth at the selected location. The maximum com-

pression and tensile stresses are determined using maximum and minimum

finding algorithm. These algorithms find the values from the entire profile.

The compressive volume is calculated by determining the number of nodes in

compression. The nodes near the surface are checked for compressive stresses.

The compressive stress region that is generated at the bottom of the component

(below tensile region) is not considered in the volume. The number of nodes in

compression are divided by the total number of nodes. The resulting quantity

is then multiplied by the total volume in compression.

4.5.1 Temporal Variation of Pressure

This parameter is defined by the variation of pressure with time, also known as

pressure pulse shape. The pressure pulse shape is dependent upon the tempo-

ral variations of the laser beam. For LP applications, two types of laser shapes

are typically used. The first type of shape is similar to a Gaussian distribution

curve. It has a gradual rise and similar decay. This shape takes 74.5 ns to reach

its peak value, stays at maximum for the next 3 ns, and then drops to zero in

the next 74.5 ns. In the second shape, the pressure increases to the peak within

3 ns, stays at maximum for the next 3 ns, and then reduces slowly to zero in

152 ns. The areas under both curves are the same, and the duration is 152 ns.
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Figure 4.2: Temporal loading profile of pressure pulse

Both shapes are shown by dashed lines in Figure 4.2. It should be mentioned

here that the total pulse duration is 152 ns for this part of the research; oth-

erwise, pulse duration is 200 ns (used in experimental validation) for the rest

of the dissertation. The peak magnitude in this study is 5.5 GPa. The total

duration can be decreased or increased depending upon the laser generation

mechanism. The sharp and slow shapes generate compressive depth(mm) of

1.46 and 1.21, maximum compression(MPa) of −478.6 and−489.5, maxi-

mum tension(MPa) of 139.0 and 127.8, and compressive volume (mm3) of

7.14 and 6.84, respectively. These results show that both generate approxi-
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mately similar results.

The magnitude of the peak pressure depends upon the laser beam intensity.

In addition, the use of a confining mechanism increases the peak pressure by

4 to 10 times. Increasing the pressure by increasing the laser beam intensity

is ultimately limited by the onset of dielectric breakdown in the confinement

water layer at higher laser beam intensities. When this breakdown occurs, the

laser energy no longer couples into the expanding plasma underlying the wa-

ter, and the pressure increase ceases. Although simulations show that both

temporal profiles generate similar results, to avoid the effects of the break-

down phenomenon a sharp-rise pulse is preferred over a Gaussian pulse. In

the case of a sharp rise, peak pressure is built in the very beginning, before the

breakdown happens.

4.5.2 Pressure Pulse Magnitude

The magnitude of the pressure pulse, which is dependent on laser beam inten-

sity, is the most important parameter in the LP process. Three peak pressure

pulses of 4.0 GPa, 6.0 GPa, and 8.3 GPa, are used to compare the effects.

The pressure pulse shape and duration are shown using a solid line in Figure

4.2. The results are shown in Table 4.1. The results show that higher pressure

produces higher depth, magnitude, and volume of compressive stress, and an

increase in the tensile magnitude.
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Table 4.1: Results of pressure magnitude and spot radius comparison

Pressure Magnitude(GPa) Spot Radius(mm)

4.0 6.0 8.3 1.00 1.75 2.50
CD (mm) 0.61 0.98 1.6 0.86 0.97 0.96
CV (mm) 3.38 5.87 8.12 1.42 3.34 5.17
MC (MPa) -282.2 -487.3 -831.3 -212.4 -362.2 -374.6
MT (MPa) 39.8 79.94 199.1 36.04 46.2 60.4

4.5.3 Spot Size

As mentioned in Section 3.1.1, a bigger spot size tends to produce a higher

magnitude and volume of compressive residual stress for the same peak pres-

sure. This fact is verified in this parametric research, in which threespot radii-

1.0, 1.75, and 2.5 mm-are used for comparison without changing any other

parameters. The pressure pulse magnitude is 5.0 GPa. The four performance

metrics are shown in Table 4.1. The simulation results show that the big-

ger spot size produces higher magnitude, depth, and volume of compressive

stress. In these comparisons, location is not considered. The value of maxi-

mum compression can be different in the three cases. The increase in volume

can be attributed to the increase in the size of the spot shape.

4.5.4 Spot Shape

As noted in Section 3.1.1, rectangular and circular shapes are used most often.

This section investigates only small variations of circular shapes. Thesevari-

ations are generated by changing the ratio of the small diameter to the large
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Figure 4.3: Three spot shapes investigated

diameter of an ellipse. The three spot shapes used in this study are shown

in Figure 4.3. This figure shows a quarter of each spot shape. The three spot

shapes are generated by considering three diameter ratios (1.0, 0.75, and 0.50).

The pressure pulse magnitude is 5.0 GPa. The radius of the circle (diameter

ratio 1.0) is 2.50 mm. The highest diameter of remaining elliptical shapes

(diameter ratio 0.75 and 0.50) is 2.50 mm. The smallest diameters are 1.875

mm (for diameter ratio 0.75, 0.75∗ 2.50 = 1.875) and 1.25 mm (for diame-

ter ratio 0.50, 0.50∗2.50= 1.25). As shown by the solid lines in the figure

for the diameter ratio 1.0, the spot takes a circular shape. The residual stress

fields at the center, shown in Figure 4.4, are compared to the three cases. The

figure shows a reduction in the compressive stresses at the surface, with in-
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Figure 4.4: Residual stress field for three spot shapes

93



Table 4.2: Results of spot shape comparison

Diameter ratio
1.00 0.75 0.50

Depth(mm) 0.96 1.1 1.0
Volume(mm) 5.17 3.97 2.56
Maximum Compression(MPa) -374.6 -387.4 -405.71
Maximum Tension(MPa) 60.4 48.7 35.31

crease in the diameter ratio. For the ratios 1.0, 0.75, and 0.50, the maximum

compressive stresses are−374.6, −387.4, and−405.71, respectively. These

represent 3.6% and 8.5% increase from the baseline values. The maximum

tensile stresses are 60.4, 48.7,and 35.31, respectively. These represent 19.4%

and 41.5% decrease from the baseline values. These results indicate that spot

shaoe change can significantly reduce the maximum tensile stresses with min-

imal change in the maximum compressive stresses. The four performance

metrics (depth of compressive stress, maximum compressive stress, maximum

tensile stress, and total compressive volume) for each case are shown in Table

4.2. The table shows that variation in compressive and tensile magnitude are

not similar. The reduction in tensile stress is higher as compare to compressive

stress. This parameter should be employed to comtrol the tensile stress.

4.5.5 Thickness of Component

The components to be peened come in various shapes and sizes, and these

boundary conditions can significantly affect the peening process. Therefore,
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component thickness is a parameter that requires close examination. Since the

thickness of a component is the distance traveled by the shock waves in one

direction, it can have considerable effect on shock wave propagations and the

resulting residual stress profile. In this section, the effect of the component

thickness is investigated for cases when the peening surface and the surface

on the opposite side are parallel to each other. The FE model for thickness

investigations is shown in Figure 4.5. The model is a modified version of the

quarter symmetric 3D model shown in Figure 3.3. The model is modified by

removing the infinite elements in the bottom of the model and replacing them

95



with finite elements. The total thickness of the component varies from 3mm

to 10 mm in increments of 1mm. Normally components less than 3mm in

thickness tend not to have parallel surfaces. The element size changes in the

direction marked by thickness in Figure 4.5. Using the thickness and mesh

convergence study, an appropriate unbiased mesh is selected. A finer mesh is

used for smaller thicknesses (< 5 mm) and a comparatively coarser mesh is

used for larger thicknesses. In both cases the mesh is equal to or finer than the

converged mesh. The residual stressσ11 along the thickness at 1mmfrom the

center is plotted for all the cases.

A comparison of residual stress profiles for various thicknesses is shown in

Figure 4.6. These results show that the component thickness affects the resid-

ual stress at the surface when the thickness is less than 4mm. The residual

stress profile in the area of interest is not affected significantly by the thick-

ness when the thickness is more than 4mm. The figure shows that residual

stress variations are much higher for components of 3mmcompared to higher

thickness components. The plots in Figure 4.6 show the presence of residual

compressive stress at the surface opposite to the peened surface. The magni-

tude of these stresses is significant (> 50 MPa) when the thickness is in the

range of 3 to 7mm. A comparison of four performance measures is shown

in Table 4.3. The results indicate that initially (3 to 5mm) the depth of com-

pressive stress increases with the thickness and then saturates upon further

increases in thickness. A potential explanation for these results is that from
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Figure 4.6: Residual stress field comparison for depth from 3mm to 10 mm

Table 4.3: Comparison of LP performance for various component thicknesses

Thickness Volume Depth Maximum Maximum
(mm) (mm3) (mm) Compression(MPa) Tension(MPa)

3 8.8 0.72 -555.9 97.1
4 7.3 0.85 -576.6 154.7
5 8.1 0.85 -596.1 120.4
6 7.2 0.86 -604.0 104.9
7 8.8 0.86 -587.2 98.0
8 9.1 0.86 -620.9 98.1
9 9.8 0.86 -623.6 96.6
10 10.1 0.86 -623.6 95.9
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3 to 5 mm, the plastically affected depth is constrained by component thick-

ness. From 5 to 10mm, the plastically affected depth is limited by pressure

pulse magnitude and material properties. Table 4.3 shows that the magnitude

of maximum compressive stress increases with the component thickness.

The maximum tensile stress tends to increase up to 4mmand then starts

to decrease with increase in the thickness. Initially, tensile stresses increase

with compressive stresses; this is not true after 5mmin thickness. One reason

could be that the initial increase maintains equilibrium between the tensile

and compressive regions. Later, the volume of the tensile region increases to

maintain equilibrium instead of the magnitude.

Further investigations into the results indicate that the location of maximum

compressive and tensile stress do not change significantly with thickness. The

location of maximum compressive stress is always on the surface of the com-

ponent. The location of maximum tensile stress is also similar in all casesand

is always below the compressive region. The trends of compressive volume do

not seem to follow any particular direction. The compressive volume increases

when thickness varies from 5mmto 10mm; however, it does not follow any

specific trend in the remaining range of thickness. Although the results ob-

tained from the simulation indicate some trends and point toward potential

explanations, further investigation will be required.

98



0 1 2 3 4 5
−600

−500

−400

−300

−200

−100

0

100

Depth (1 mm from center),[mm]

A
ve

ra
g

e
 R

e
si

d
u

a
l S

tr
e

ss
e

s 
[M

P
a

]

 

 

Simulation: 3 shots 6.1GPa
Experimental: 3 shots 6.1GPa,[7]

Figure 4.7: Average residual stress field for multiple treatments of LP at the same location

4.5.6 Multiple LP Treatments at the Same Location

A single LP treatment may not be able to achieve the depth, magnitude, or

volume of compressive residual stress required for an application. The depth of

compressive residual stress can be increased by increasing the intensityof the

laser beam, but for certain applications, increasing the intensity may not bethe

best choice because of two reasons. After a certain limit, saturation may occur,

and the depth may no longer be increased by increasing the intensity. Also

depending upon the material properties and the process parameters, higher

intensity can cause a reduction in compressive stress at the center of the spot,

99



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

73

65

5 4

6
4

3

7

2

2

2

5 4

43

6

7

237

6

5

Figure 4.8: Investigated sequences

because of the release wave. In such cases, using multiple treatments of LPat

the same location is an excellent option.

All simulation parameters in this study are taken from convergence study.It

is believed that one LP shot has the potential to change the material properties

at and around the first laser spot. This effect can be considered similar to a

welding process behavior. In welding, the material properties change after one

weld-pass. The physics of the phenomenon is approximated in the multi-pass

welding simulations. However, in this research, for the simulation of multiple

treatments of LP, it is assumed that the changes in material properties arenot

adversely affecting the residual stress field and therefore not considered.

In simulations, the time difference between two shots is equal to the total
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simulation time. Here, the total simulation time is approximately 1 to 2mil-

liseconds. In real life the time difference is much higher and depends upon the

frequency of the shots. The change in residual stresses is not significant after 1

millisecond. The provided time difference between two shots is assumed to be

sufficient. The simulation for the second shot begins from the residual stress

distribution of the first shot. The required properties of the model are trans-

fered to the next simulation from the previous simulation. Figure 4.7 shows

the distribution of residual stress at 1 mm from the center line of the spot after

three 6.1 GPa applications of LP. These results are compared with published

experimental [9] results. In the case of the three 6.1 GPa peak pressure pulses,

the following results are obtained. The application of the second LP treatment

at the same location increases the depth and the peak magnitude of the com-

pressive residual stress by 19.18% (from 0.73 mm to 0.87 mm) and 42.56%

(from 238.5 MPa to 340 MPa), respectively. The depth of the compressive

residual stress increases by 17.24% (from 0.87 mm to 1.02 mm) and 20.9%

(from 340 MPa to 409 MPa) after the third LP treatment. In summary, im-

provements obtained by using multiple treatments of LP at the same location

are significant, but at the same time, the magnitude of the residual tensile stress

also increases. Comparison of results for single and multiple treatments ofLP

at the same location also shows that the adopted methodology is reasonably

good at predicting residual stress distribution.
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4.5.7 Two Shots Sequence at Multiple Locations

This section performs simulation of sequential LP at multiple locations for two

configurations. The first configuration considers two LP locations that contact

each other without overlap. In the second configuration, there is a 50% over-

lap between the two LP locations. The model developed in Chapter 3 and

shown in Figure 3.11 is employed for these investigations. The figure shows

a schematic of sequential LP at multiple locations with 50% overlap between

the two locations. In the figure, the control volume has two overlapping spots

and infinite elements all around. In the case of 0% overlap, the control volume

dimensions are 5mm, 5 mm, and 15mm, and in the case of 50% overlap, the

dimensions are 5mm, 5 mm, and 12.5 mm. Different sizes of control volumes

are used to minimize computational expenses. Both configurations use the bi-

ased mesh properties from the mesh convergence study.

Using a Pentium(R) 4 CPU, 3.40 GHz personal computer with 2.00 GB

of RAM, it takes approximately 48 Hours of CPU time to finish the two shots

analysis. Typically, depending upon the size and requirements of a compo-

nent, it may need anywhere from 20 to 100 LP treatments. Therefore, the

time taken for two shots is an indication that the FE simulation for a practi-

cal component will be a computational challenge and a suitable application of

surrogate models [80] is required.

For sequential LP at multiple locations, the peak pressure of the pulse is 5.5

GPa. Figure 4.13 shows the residual stress distribution at the top surface and
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Figure 4.9: Sequence A along the line
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Figure 4.10: Sequence B along the line
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Figure 4.11: Sequence C along the line
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Figure 4.12: Sequence D along the line
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Figure 4.13: Residual stress profile on surface with 0% Overlap

at a depth of 0.5 mmfrom the surface of the component for zero overlap. The

results shown in these figures are averaged. The averaging procedure is ex-

plained in Chapter 3. The figure shows that compressive stresses are reduced

at 0.5 mm, compared to the top surface. The As the depth increases, the magni-

tude and area of the compressive stress magnitude decreases. This shows that

the residual stress distribution tends to be uniform across the laser spot area.

it is important to note is that although there is no overlap between the two LP

locations, there seems to be some interaction between the two fields. The plot

shows the merging of the stress fields generated by different shots.
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Figure 4.14: Residual stress profile on surface with 50% Overlap

Figure 4.14 shows the residual stress distribution at the surface and at 0.5

mm from the surface for 50% overlap. The simulation results show that the

magnitude of the residual stress is greater in the area of overlap as compared

to the non-overlapping area. Compared to 0% overlap, the magnitude of resid-

ual stress is higher. The results indicate significant interaction between the

residual stress fields induced by both LP locations. It is interesting that the

major effects of LP are limited to a small region and the minor effects are

spread over the entire region. Investigation into the results reveal that overlap

between two LP locations improves the magnitude and the depth of the resid-
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Figure 4.15: Change in residual stress profile at a line on surface by seven shots

ual stress. Along with this improvement, overlapping can eliminate the small,

shallow region of reduced compressive stress at the center of the circular spot.

4.5.8 Seven Shot Sequence at Multiple Locations

In this section seven shots are performed in four different sequences to deter-

mine the effect of shot sequence. A cylindrical model developed in Chapter

3 and shown in Figure 3.12 is employed in these investigations. The figure

shows the locations of seven shots. The four sequences investigated for com-

parison are shown in different colors in Figure 4.8. A line is selected that
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starts on the surface and continuing into the depth, to compare the residual

stress profile generated by each sequence. Figures 4.9 through 4.12 show the

residual stress profile after each shot of sequences 1 (pink), 2 (light blue), 3

(blue), and 4(yellow). These plots show that the effect of a shot on the residual

stress profile depends upon the distance between the point and the shot.

The shots can be divided into three categories. In the first category, the

residual stress profile changes significantly when the point is in the peened

area. These type of shots tend to increase the magnitude of compressive stress

as well as tensile stress. In the second category, changes in the profile are

minor but positive. Increases occur in the magnitude of both compressive and

tensile stresses. In the third category, a shot tends to reduce the magnitude of

compressive and tensile stresses. These reductions are very minor compared

to the increases in the first and the second categories. Further investigation is

required to determine the exact distances of each category.

The effect of multiple shots at the same location are investigated in Section

4.2. The configuration investigates only 100% overlap; however, partial over-

lap (20%, 43%, 75%, etc.) is common in many applications. The exploration

performed in this section provides an oppurtunity to investigate the effects of

number of shots and partial overlapping. Figure 4.15 plots the residual stress

profile along a line on the peened surface after each shot. The selected line is

shown by a dotted line in Figure 4.8. Figure 4.15 shows that the first shot at

any location induces the maximum magnitude of compressive stress. In this
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study, for the combination of pressure pulse magnitude (4.5 GPa) and material

(Ti-6Al-4V) properties, the compressive stress is approximately−450 MPa.

The second shot at this location increases the magnitude to−610MPa. The

third shot at the same location with partial overlap increases it to−700MPa.

This results indicates that full or partial overlap at a location increases the

compressive stress magnitude on the surface. The increase after the second

shot is higher than the increase after third shot. Overall investigation in this

section shows that the number of shots and the layout of the shots makes a

significant difference in the residual stress profile. However, sequence of shots

does not make a considerable difference for the selected geometry and the

selected LP parameters.

4.6 Chapter Summary

The chapter begins with a standard formulation of a mixed variable optimiza-

tion problem. This is followed by parametric investigations. The parameters

investigated are temporal variation of pressure, pressure pulse magnitude, spot

size and shape, component thickness, number of shots at the same location,

overlap, and shot sequence. The parameters were investigated with respect to

a set of selected performance functions. The functions are volume of compres-

sive stresses, maximum magnitude of tensile and compressive stresses, and

depth of compressive stresses. These parametric investigations indicate that

our chosen performance functions have significant sensitivities with respect to
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the LP parameters. These results motivate us to develop a simulation-based

optimization strategy for obtaining maximum benefits of laser peening.

109



Chapter 5

LP Optimization: One Location

Optimization problems that result in shock, impact, and explosion type disci-

plines typically have mixed design variables and multiple optimal solutions. In

the optimization literature, many researchers have solved problems involving

mixed variables or multiple optima, but it is difficult to find multiple optimal

solutions of a mixed-variable problem. Therefore, an optimization method is

required that can find multiple solutions for a mixed-variable problem.

A mixed-variable niche particle swarm optimization (MNPSO) is devel-

oped to solve such problems. The four modifications made to the PSO are:

Latin Hypercube sampling-based particle generation, a mixed-variable han-

dling technique, a niching technique, and a surrogate model-based design

space localization. The proposed method is developed for a single location

laser peening optimization problem.

In many applications of LP, geometric configurations and dimensional in-

tegrity requirements of the component can constrain implementation of an op-
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timal solution. In such cases, it is necessary to provide multiple alternatives to

a designer so that a suitable one can be selected according to the requirements.

The finite element analysis time of 24 to 72 CPU hours for each LP analysis

makes it a computationally expensive optimization problem to solve.

5.1 Mixed-variable Niche Particle Swarm Optimization

Many engineering optimization problems, such as gearboxes, synchronous

motors, and power system operations, involve finding more than one optimal

solution. These optima can be local or global. The multi-modality of the de-

sign space can cause difficulties for any optimization algorithm being used to

find optimal solutions. This is due to convergence toward local optima. In

many applications [81, 82], it is beneficial to find multiple optimal solutions.

The problem becomes difficult if the design variables are a combination of

continuous and discrete variables, and the function evaluation is time consum-

ing. The optimization method demanded by this research should be able solve

a multimodal mixed-variable optimization (MMVO) problem without requir-

ing a large number of function evaluations.

Based on advantages and disadvantages (Section 4.2 Chapter 4) [83] of

population-based methods as compared to gradient-based methods, population-

based methods are more suitable for the problem at hand. Among population-

based approaches, particle swarm optimization (PSO) [77] is selected over the

genetic algorithm (GA) approach [75, 84] because of its ease of implementa-
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tion, lower number of user parameters, and use of historical information.

The first challenge is to incorporate niching ability into PSO, and the second

is to introduce a modification to manage mixed variables [85]. Introduction of

niching allows PSO to formulate and maintain subpopulations converging to-

ward respective optimum. Thus, niching refers to different optima within the

design space that a local subpopulation explores and converges upon. There-

fore, an optimization method with niching capabilities is able to find and main-

tain multiple, diverse, and final solutions.

In the literature, many researchers have developed PSO-based methods [83,

86–90] to solve multimodal or mixed-variable optimization (MVO) problems;

however, it is difficult to find multiple solutions of a mixed-variable problem.

The GA-based modified clearing method [91] demonstrated niching using 25

variables and 50 peaks problems. However, this method can not be used in this

research because it requires a large number of function evaluations. Parsopolos

et al. [92] combined PSO, neural network approximation, and threshold value

to incorporate niching abilities, but the success of this method depends on the

threshold refinement and prior problem information. Brits at al. [93] modified

this method, and used particle tracking and subswarm concept to find multiple

optima. The performance of this approach also depends upon a threshold pa-

rameter and a subswarm radius.

Seo et al. [87, 90] developed the multigrouped particle swarm optimization

(MGPSO) method. A traditional PSO has three terms to calculate particleve-
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locity, but MGPSO uses a fourth term to introduce niching properties. Since

MGPSO is using an extra term to introduce niching abilities, its interference in

convergence is not as much as in other methods. Apart from the interference

with PSO convergence, these methods cannot be directly applied to mixed-

variable optimization problems.

To manage mixed variables, [83] used the two-level approach. In the two-

level approach, the mixed variable optimization (MVO) problem is divided

into two problems: system level (mixed-variables) and sub-structural level

(continuous-variables) problems. The continuous variable problem is a sub-

set of the optimization problem. Similarly, [89] developed a hybrid PSO. The

hybrid PSO combines Newton-Raphson and PSO; and solves an MVO prob-

lem by dividing it into a two-level problem. Although two-level approach

shows that PSO can manage discrete variables, this approach cannot be im-

plemented if the MVO problem cannot be easily divided into two problems.

Many researchers [88,94] utilized a penalty function approach to handle mixed

variables. This approach artificially modifies the design space, therefore,may

require a large number of function evaluations for convergence. Many pop-

ulation based approaches simply round the continuous values to their closest

discrete values to manage discrete variable. This approach can be effective for

simple problems with wide range of discrete possibilities. A problem depen-

dent systematic approach, employed in this research, can be more effective.
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The literature survey shows that it is possible to incorporate niching or

multimodal abilities into PSO. In this paper, PSO is modified to incorporate

both abilities. An additional term [87, 90] is used in MGPSO to incorporate

niching abilities. This concept is employed here because it brings niching

ability without extensively interfering in PSO convergence. The interference

is lower because the fourth term is not always active. PSO convergence is

similar to typical PSO when additional term is not active. In the MGPSO ad-

dition term is not active when a particle is not intruding in a territory of other

group’sgbest. In the proposed method, the implementation of this term is dif-

ferent. The particles are not divided into groups, and additional term is active

when a particle is in the region of influence of a global or local best (mbesti)

found so far. The mixed variables are managed by manipulating the random

numbers in the velocity calculation for the integer variable. Apart from these

two modifications, a third change is introduced: Latin Hypercube- and surro-

gate model-based initial population generation. This guarantees that the initial

population has particles from all regions of the design space and preserves the

random properties.

Population-based methods require many function evaluations. Multidisci-

plinary structural simulation can be computationally expensive [95,96]. In the

literature [97,98] surrogate models are employed to mitigate these characteris-

tics. In the proposed approach, a surrogate model is employed for an exhaus-
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tive search of the design space. This exhaustive search indicates the location of

the potential optima. This approach provides an effective starting population

without many simulations to locate multiple optimal solutions. To construct

the surrogate model and to perform multiple simulations for optimization, a

parallel [99, 100] processing capability is developed. This capability employs

MATLAB, PuTTy, and the Ohio Supercomputing facilities to generate the sur-

rogate model and to run the optimization algorithm. The proposed method is

first validated on multiple test functions from the literature. Once validated,

the method is implemented to solve the laser peening (LP) [53,101,102] opti-

mization problem.

The remainder of this chapter is organized as follows: Section 5.2 presents

the MMVO problem formulation. The proposed MNPSO is discussed in Sec-

tion 5.3. In Section 5.4, the modified PSO is demonstrated in test problems and

results are compared with the MGPSO-based method. Section 5.5 presents a

design of experiments based surrogate model and the solution of the LP opti-

mization problem.

5.2 LP Multimodal Problem

Surface improvement by laser peening is a trade-off between two opposing ef-

fects: the creation of compressive residual stress on the surface, whichtends to

increase life, countered in part by the tensile stresses, which tend to decrease

life. Despite these two considerations, in many applications, such as turbine
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blades and gears, preserving dimensional integrity is essential. This issue be-

comes critical for thin (thickness< 10mm) components.

The literature so far does not apply to thin components or to components

with sharp edges or smooth curved boundaries. A high LP pressure applied

to a thin target can result in significant permanent deformation on the surface

or spall failure on the back surface. A second concern is that the dimensional

integrity of the component may be at risk due to high pressure magnitude. The

use of two-sided peening to inhibit such losses is not an option because of the

interaction of the two tensile waves at the center of the component. This in-

teraction can initiate cracking and hinder the beneficial effects. In suchcases

multiple lower pressure shots are a potential solution. These conditions make

it necessary to find multiple solutions so that multiple options can be provided

to a designer. The designer can then select a cost-effective option from the

solutions.

5.2.1 LP Design Space for Multimodal Optimization

Residual stress field properties (volume, depth, and magnitude) can be en-

gineered by controlling LP parameters such as pressure pulse magnitude and

shape, spot size and shape (continuous), and the number of shots (integer). The

five parameters that are considered in optimization are pressure pulse magni-

tude(p) and midspan(t), shot radius(r) and shape(s), and number of shots

(n). Figure 3.1 shows the pressure pulse magnitude and midspan. The pressure
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pulse magnitude can vary between 2.8 to 8.8 GPa. The figure shows magni-

tude on a 0 to 1 scale. The pressure pulse shape is changed using the pressure

pulse midspan. The midspan is defined by the full width at half the maximum

of the pressure pulse. The lower and upper bounds of this variable(t) are 30

and 70 nanoseconds (ns), respectively. For pressure pulse shape, a sharp rise

to peak in 3ns is preselected, peak pressure is maintained for the next 3ns,

and the rate of drop is determined by the variable(t). The range of the variable

is such that this can generate any type of pulse between sudden (lower limits)

and slow (upper limits) pressure drops.

The size(r) and shape(s) of the spot are other parameters that can be con-

trolled. The shape parameter defined by the diameter ratio can vary between

0.5 and 1.0. The range of radius is 2.0 to 3.0 mm. The combination of these

two variables can generate many possible shapes and sizes. Figure 5.1 shows

six possibilities of the quarter spot shape. The largest possible spot is shown

using a black line and a yellow triangular marker. The radius(r) of this shape

is 3 mm and shape parameter(s) is 1.0. The smallest possible spot is shown

using black lines and red circles. In this case, radius is 2.0 mmand shape pa-

rameter is 0.5. The number of shots are indicated byn and can vary between

1 and 3. There are a total of five design variables(p, r, t,s,n). To evaluate

possible designs for optimization, finite element analysis of LP (Figure 3.3) is

employed. Due to the small time increments required to simulate the elastic

and plastic deformation, the computational cost of LP simulation is high.
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Figure 5.1: Spot shape variables

5.2.2 Multimodal Problem Formulation

The goal of LP is to generate as much compressive stress as possible in the

component to improve its surface properties; therefore, the objective of opti-

mization is to maximize the volume of compressive stress. It is possible that

higher compressive magnitude may not be beneficial in all cases, but it is al-

most always certain that the maximum magnitude should be on the surface.

To enforce this requirement, the compressive stresses on the surface are con-

strained to be at or within a certain range of the maximum.

This constraint also accounts for the nonlinear behavior of LP for a certain

range of parameters, which can generate a reduced compressive region at the

center of the spot. This reduction may hinder the objective of surface enhance-
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ment techniques. In mathematical terms, compressive stresses at depth(d) are

constrained to be higher or within a certain range at the depth (d+∆d), where

(∆d) is always positive. This is a constraint on the profile of the compressive

residual stresses.

The depth of compressive stress is also a performance metric that should

be as high as possible. The constraint that compressive stress depth should

be more than 1mmat a critical location ensures this requirement. It is not

possible to eliminate tensile stress, but it can be kept within a certain limit. The

maximum magnitude of tensile stress induced by peening process is controlled

by the third constraint. This constraint keeps the maximum magnitude of the

tensile stresses below 75MPa.

The optimization problem statement is given by:

Maximize: Compressive Volume

Sub jected to: Compressive Stress(d) ≥Compressive Stress(d+∆d)

Compressive Stress Depth≥ 1.0 mm

Maximum Tensile Stress≤ 75 MPa,

Variable Bounds: 2.8≤ p≤ 8.0 GPa,

30.0≤ t ≤ 70.0 ns,

0.5≤ s≤ 1.0,

2.0≤ r ≤ 3.0 mm,

1≤ n≤ 3,
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This problem is solved by using the following optimization algorithm.

5.3 Proposed Method: Mixed-variable Niching PSO

It is difficult to find multiple optima by using typical PSO, because PSO has

an intrinsic limitation that all particles converge to only one point at final step.

Even if PSO is able to find a local optimum in the process of reaching a better

one, the algorithm is likely to lose the local one. Therefore, PSO needs to be

modified such that it can not only find multiple optima but also retain the ones

it finds.

5.3.1 Initial Particle Generation

In the first modification, the initial population is generated using Latin Hyper-

cube Sampling (LHS) [103] instead of random generation. LHS is a popular

method for generating samples. This technique maintains the randomness in

the population and guarantees the coverage and exploration of the entire de-

sign space. The covariance matrix required for LHS is obtained by assuming

that all parameters are independent and normally distributed. The following is

a brief LHS procedure to generate a sample of sizep from q variables:

(i) Divide the design space intop non-overlapping intervals based on an

equal probability of selection from each interval.

(ii) Randomly select one value from each interval.

(iii) Repeat Steps (i) and (ii) for each variable ofq random variablesx1,x2, ...,xq.
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(iv) Pair thep values for eachxi with the p values obtained for the otherxi 6= j

at random.

5.3.2 Niche Updating

The proposed method takes advantage of the PSO structure to incorporate

niching properties, which provide multiple converged local optima. Two changes

are introduced to develop the niching capabilities. The first change is a de-

sign of experiments-based study to determine PSO parameters and the second

change is an additional term [90] to traditional particle velocity calculation

equation.

Modified Fourth Term

The traditional PSO equation is:

vk+1
i = wiv

k
i +ci1r i1(pbesti −sk

i )+ci2r i2(gbest−sk
i ) (5.1)

wherevk
i is the ith particle velocity at iterationk, wi is the ith particle weight

function, ci j is the ith particle weight coefficient of each term (jth), r i j is a

random number between 0 and 1,sk
i is the ith particle position at iterationk,

pbesti is the best value of theith particle,gbestis the value of the group.

This Equation 5.1 is modified to Equation 5.2.

vk+1
i = wiv

k
i +ci1r i1(pbesti −sk

i )+ci2r i2(gbest−sk
i )+ci3r i3(s

k
i −mbesti)

(5.2)
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wherembesti is the best within the specified region of influence. The new

constantci3 is calculated using Equation 5.3.

ci3 =











1 i f di,mbesti ≤ d∗;

0 otherwise.
(5.3)

wheredi,mbesti is the distance between theith particle andmbesti, d∗ is the user

defined distance parameter that controls the region of influence.

To determinembesti, all the particles are sorted in descending order of their

objective function values. In the sorted particles the first particle is thembest1.

Any particles that is withind∗ distance ofmbest1 can not bembesti. In the

sorted particles, the next highest particles that is not in the region of influence

of mbest1 is thembest2. Similarly, othermbesti and their region of influence

are determined.

The fourth term concept is taken from MGPSO paper but the implementa-

tion of the term is different. In MGPSO the term is active when a particles

intrudes the territory of the other group’sgbest. In the proposed method the

term is active only when more thanq particles are within the distance(d∗) of

the mbesti. The distance(d∗) and the number of particlesq are parameters

the user must provide at the beginning of the algorithm. These parameters can

be easily calculated using the problem information. For example, for a two-

dimensional, 50-peak function, the number of particles is 200,d∗ is 0.05, and

p is 4.

122



If the particle is in a region of influence, its velocity calculation includesthe

fourth term; otherwise it does not. A particles is considered to be in the region

of influence ofmbesti, if the distance between the particle andmbesti is less

thand∗. The particles that are moved based on this criterion are expected to

improve exploration of the unexplored regions of the search space. Based on

the generated random numberr i3, the particle is relocated outside the region.

This strategy allows PSO particle to converge on the nearest optimum and pre-

serve multiple optimal solutions. This relocation may try to send the particles

out of the design space. To prevent this situation, particles are relocated inside

the design space.

Cognitive and Social Coefficients

The two constantsci1 andci2 play a significant role in preserving the optima

already found. A design of experiments-based parametric study is performed

to determine the combination of these two parameters that is best suited to pre-

serve these optima. In the study, the constantsci1 andci2 is changed from 0.0

to 2.5 in the step of 0.1. This is a full factorial design. There are two factors

and 26 levels. The constant values are further refined. This study provides

an effective parameter setting for a problem. This study provides a range for

both constants instead of a value. Any value of the constants within this range

can preserve the multiple optimal solutions. For a two-dimensional 10-peak

function, approximately 1.2 (ci1) and 0.01 (ci2) are the best combination for
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preserving the multiple optimal solutions.

For 1D and 2D problems the constantsci1 and ci2 have the same value

through all iterations. For higher dimensional, the constant values are changed

with the iteration number [104, ]. The constants are changed linearly. The

cognitive factor (ci1) starts with a low valuecs
i1 and linearly increases tocf

i1.

The social factor (ci2) starts at a high valuecs
i2 and linearly decreases to a low

valuecf
i2. The parameters are updated according to

ci j (k) = cf
i j +

kmax−k
kmax

(cs
i j −cf

i j ) (5.4)

Here,kmax is the maximum number of iterations andk is the current iteration.

The upper and lower bound of the two constants are adjusted for each function

independently. For a 3D, 50 peaks problem, the constantscs
i1, cf

i1, cs
i2, andcf

i2

are 1.5, 2.0, 0.1, and 0.01.

The parameter setting provided by the study gives no or minimal importance

to the social behavior of the particles (0.01 for 1D and between 0.1 and 0.01

for 3D). Typically, the strength of the population-based approach comes from

its social behavior. The purpose of the social behavior is to explore the design

space. In case of multimodal optimization problems, it is necessary to explore

the design space but it is also important to converge to local optima. The low

value of the social constant reduces the exploration. This reduction does not

affect the performance of the algorithm significantly because of the additional

term in the PSO equation and the parametersq. The additional term and the
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Figure 5.2: Number of Peaks Found w.r.t. Iteration Number

parametersq forces particles to unexplored design space. This argument can

be verified by monitoring the number of peaks found at a iteration.

A 3D problem with 50 peaks is solved. The problem details and the PSO

parameters are shown in Section 4.2. Figure 5.2 shows the number of peak

found at each iteration. The figure shows that number of peaks found are

increasing with the number of iterations. One of the reason for finding more

peaks as iteration increases is that modified PSO is forcing particles toexplore

unexplored design space. This result shows that the modifications are bringing

niche ability with minor effects on the exploration capabilities of the PSO.

Advantages and Disadvantages

This method has multiple advantages and disadvantages over the multigrouped

particle swarm optimization (MGPSO) method. The first advantage over MG-

125



PSO [87] is that in the proposed method particles are not divided into groups.

Therefore the group parameters and calculations required for to form are not

needed. The second advantage is that there is a limit to the maximum number

of particles (q) that can converge to an optimal solution. This forces more par-

ticles to explore the design space. In MGPSO, there is no limit on maximum

number of particles in a group. A disadvantage is that the proposed method

needs an additional parameter (maximum number of particles around a peak,

q). The calculation of this parameter is very simple. This is approximated

by dividing the total number of particles by expected number of optima. The

third advantage is that the proposed method uses dynamic coefficients instead

of constant. This approach modifies the particle behavior depending upon the

iteration number. This modification of constants assist the particles to con-

verge to multiple optima.

5.3.3 Integer Variable Technique

A minor alteration in the random numbersr i j of the velocity calculation (Equa-

tion 5.2) can help manage the integer variables. Due to the spacing and range

of the integer variable, there are only a limited number of possibilities. Based

on the random numbers, one possibility is selected. For example, if there are

two possibilities for a random number, below or equal 0.5 indicates to the first,

and above 0.5 indicates to the second possibility. If there are three possibilities

the threshold will be 0.33, if four possibilities then 0.25, instead of 0.5. This
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modification allows both continuous and integer variables to be used in the

procedure with no inconsistency.

vk+1
i = wiv

k
i +ci1r i1(pbesti −sk

i )+ci2r i2(gbest−sk
i )+ci3r i3(s

k
i −mbesti)

= 0.5× (1)+1× r i1(2−1)+1× r i2(3−1)+1× r i3(1−2)

= 0.5+1×{0.0,0.5,1.0}× (2−1)+1× r i2(3−1)+1× r i3(1−2)

= 0.5+1×0.5× (1)+1× r i2(2)+1× r i3(−1)

= 0.5+0.5+1×{0.0,0.25,0.50,0.75,1.0}× (2)+1× r i3(−1)

= 0.5+0.5+1×0.25× (2)+1× r i3(−1)

= 0.5+0.5+0.5+0.5× (−1)

= 0.5+0.5+0.5−0.5

vk+1
i = 1

The integer handling technique is explained using a example. It is assumed

that at iterationk, wi = 0.5, vk
i = 1, sk

i = 1, pbesti = 2, gbest= 3, mbesti = 2,

ci1 = 1, ci2 = 1 andci3 = 1. These values are substituted in equation 5.2 and

the velocity at iterationk+ 1 is calculated. As shown in the example, three

random numbers (r i1, r i2, andr i3) are needed to calculate the velocityvk+1
i .

The random numbers are decided in the sequence ofr i1, r i2, and thenr i3. There

are three options 0.0, 0.5, and 1.0 for r i1. These options will make the second

term 0.0, 0.5, and 1.0, respectively. Let us assume that a random number
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Figure 5.3: Multimodal Test Function 1
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Figure 5.4: Multimodal Test Function 2

generation selected 0.5 out of three possibilities. Therefore, the second term

is 0.5. Similarly, there are five options forr i2. For r i2, out of five possibilities

random number generation selected 0.25. This makes the third term 0.5. In

the fourth term, the random numberr i3 has only one option. The option is 0.5.

The velocityvk+1
i is 1. Similar procedure is used to handle integer variables.

5.3.4 Parallel Processing

PSO and surrogate model development requires multiple finite element sim-

ulations of the system under consideration. For example, one simulation can

take anywhere from 24 to 72 hours of CPU time using the Glenn cluster at

OSC. To manage this cost, an algorithm is developed (using MATLAB and

PuTTy) that can submit multiple simulations in parallel to OSC and the extract

results. This insures that computational and licensing resources are optimally

utilized. A detailed description of the process is given in Chapter 4 of the

dissertation.
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5.4 Multimodal Test Problems

Before solving the problems, it is important to keep in mind that all the pro-

posed modifications are not required for each function considered in this re-

search. Depending upon the function, one, two, or all three modifications can

be incorporated.

5.4.1 A Periodic Function with Peaks of Equal Size and Interval

The first multimodal test function is a 1D problem with five peaks of equal

height at equal interval. The mathematical formula for the function is shown

in Equation 5.5 and the function is plotted in Figure 5.3. The variable range is

0 to 1 and peaks are at 0.1, 0.3, 0.5, 0.7, and 0.9.

P1(x) = sin6(5πx) (5.5)

The modification to manage integer variable is not used here because the vari-

able is a continuous one. The constantsd∗, g, number of particles, and num-

bers of iterations used in solving this problem are 0.08, 3, 20, and 100, re-

spectively. All the parameters are selected after investigating effects of each

parameter. For example, the number of iterations is selected to be 100 because

this makes sure that the algorithm is able to maintain the discovered optimafor

a large number of iterations. The number of particles is 20 which is sufficient

to solve the problem. The circles in Figure 5.3 show the final population of the
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modified PSO. The figure shows that the method is not only able to find, but

also to maintain the optimal solutions.

5.4.2 A Periodic Function With Peaks of Unequal Size and Interval
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Figure 5.5: Multimodal Bump Function
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Figure 5.6: Particles for 50 Peak Function

This multimodal test function has five peaks of unequal height at unequal in-

tervals. The function is shown in Figure 5.4. The mathematical formula of the

function is given in Equation 5.6. The locations of the five peaks are 0.0796,

0.246, 0.4491, 0.6786, and 0.929 and the corresponding function values are

0.9895, 0.886, 0.6576, 0.3782, and 0.1585, respectively.

P2(x) = e−2(ln2)(x−0.01
0.8 )2

sin6(5π[x0.75−0.05]) (5.6)

The constantsd∗, g, number of particles, and number of iterations used in solv-

ing this problem are 0.08, 3, 20, and 100, respectively. The circles in Figure 5.4

show the particles after 100 iterations of modified PSO on the function. The

proposed method can find and maintain all the optima for a specified number
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of iterations. This problem is solved again after changing the number of itera-

tions to 1000 and keeping all the other parameters same. The final distribution

of the particles after 1000 iterations is similar to the distribution after 100 it-

erations. Similar tests have been performed on all numerical problems. These

tests prove that the number of iterations does not matter for the algorithm in

maintaining all the optimum solutions.

5.4.3 Multimodal Bump Function

The previous two test functions are one-dimensional functions with only five

peaks. Bump function is a parametric multimodal function, in which the

dimension, number of peaks, radius of peaks, curvature of peaks, height of

peaks, and location of peaks are parametric. This variability allows us to gen-

erate many multimodal functions. The mathematical formula for the bump

function is given as

f (xi) =











hk

[

1−
(

dik
rk

)αk
]

i f dik ≤ rk;

0 otherwise.
(5.7)

wheredik is the Euclidean distance of theith particle from the midpoint ofkth

peak,rk, hk, andαk are the radius, height and shape parameter, respectively of

thekth peak, andK is the number of peaks. With the bump function, multiple

problems with different levels of difficulty can be generated. The difficulty of

the multimodal problem can be changed using parametersK, hk, rk, andαk.
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Table 5.1: Radius Range for Bump Functions

Radius ranges of peaks
Dim. 10 20 30 40 50
2D 0.08 to 0.10 0.07 to 0.09 0.06 to 0.08 0.055 to 0.075 0.05 to 0.07
3D 0.27 to 0.30 0.19 to 0.21 0.16 to 0.18 0.14 to 0.15 0.13 to 0.15
5D 0.48 to 0.53 0.40 to 0.44 0.32 to 0.35 0.30 to 0.33 0.28 to 0.31

The top view of a two-dimensional bump function is shown in Figure 5.5. The

number of peaksK is 20. The range of each variable is[0,1]. The center of

each peak is randomly initialized, with only one constraint, the distance be-

tween the midpoints of any twol th andmth peaks is greater than or equal to

(r l + rm). The figure shows a function with random locationxk, heighthk, and

shape parameterαk.

The results of the presented method and the MGPSO method are com-

pared [87]. For comparison, 2, 3, and 5 dimensional bump functions with

10, 20, 30, 40, and 50 peaks are generated. The height of the peak is a random

number between 0.8 to 1.0 for all the functions. The peak curvatures range be-

tween 1.5 to 2.0 for all the functions. The radius is different for each function.

Depending upon the number of peaks and dimension of the function, a radius

range is selected. The selected ranges are shown in Table 5.1. The radius of a

peak is a random number in the range.

These generated functions are solved using the proposed method and

MGPSO-based algorithm. The multimodal functions and the PSO parame-

ters are the same for both methods except the parameters that are not common
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Table 5.2: Number of Particles to Solve the Function

Number of Particles
Dim. 10 20 30 40 50

2D 50 75 100 120 150
3D 60 80 250 500 600
5D 600 1000 1200 1500 2000

in both methods. In the case of the proposed method, the third term is applied

to a selected group of particles, whereas in the case of the competing method it

is applied to all the particles. The selection criteria are defined withthe method

description.

Parametric studies have been performed for each function to find the re-

gions of influence(d∗) andp, and the number of particles. Table 5.2 shows the

number of particles used in each of the functions. The number of particles for

each function is selected using a manual parametric investigation. Figure 5.6

shows the final population of the modified PSO on the 2D test function with

50 peaks. The figure demonstrates that modified PSO particles are converging

to all the optima, are able to find optima, and are able to maintain it for 100

iterations. To demonstrate the robustness of the algorithm, each problem is

solved 10 times with a different initial population of PSO.

The results the of competing and proposed methods are shown in Tables

5.3 and 5.4, respectively. The shown results are the average success rate ofthe

10 runs. The average success rate and the standard deviation of the success

rate is reported. In the tables, Dim., SR, and SD indicate the function dimen-
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Table 5.3: Bump Function: Method with MGPSO third term

Number of Peaks Found
10 20 30 40 50

Dim. SR SD SR SD SR SD SR SD SR SD
2D 8.8 0.75 18.8 0.75 28.0 1.41 33.2 1.17 41.2 1.78
3D 7.6 1.11 13.0 1.18 25.9 1.45 34.5 1.96 40.4 1.63
5D 7.0 1.10 12.2 1.89 14.2 2.44 20.2 3.25 24.8 3.28

sion, success rate, and standard deviation in the success rate, respectively. The

success rate is defined by the number of optima found by the optimizer. The

SD is shown to demonstrate that the optimizer is consistent in its performance.

An optimum is considered to be found if at least one particle is within a certain

distance of the peak. This distance is selected to be 15% of the peak radius.

These results demonstrate that the method is able to find multiple optima con-

sistently.

A comparison of the results shows that both methods are able to solve the

multimodal optimization problems. The performance of both methods is sim-

ilar on two-dimensional problems. However, for three-dimensional problems,

the proposed method performs slightly better than the MGPSO-based method.

The results of the five-dimensional problem shows that the proposed method

finds a higher number of optima compared to the other method. The compar-

ison of standard deviation in the success rate shows that the proposed method

is more consistent in finding multiple solutions.
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Table 5.4: Bump Function: Modified PSO with boolean third term

Number of Peaks Found
10 20 30 40 50

Dim. SR SD SR SD SR SD SR SD SR SD
2D 9.6 0.66 19.6 0.66 29.9 0.30 39.6 0.66 49.9 0.30
3D 9.5 0.67 19.2 0.60 28.6 0.92 36.5 1.20 43.6 1.43
5D 9.1 0.70 18.5 0.92 25.3 0.78 33.2 1.25 39.4 1.11

5.5 Multimodal LP Optimization and Results

The LP parameters, mesh properties, material model, and geometric boundary

conditions of the 3D model can be found in Chapter 3. In brief, the LP simu-

lation employed in multimodal optimization is a symmetric 3D model shown

in Figure 3.3. This simulation considers pressure pulse magnitude, duration,

and shape, spot shape and size, and number shots at the same location as op-

timization variables. To manage the simulation time, a design of experiments

(DOE)-based surrogate model is employed.

5.5.1 Design of Experiments-based Surrogate Model

In many traditional methods, approximation is constructed around a current

design point to obtain the next point. However, in the case of LP, only a limited

number of simulations can be performed; therefore, a surrogate model that

covers the all of the move limits is required for each step. Traditionally, a

model is required to predict objective functions and constraints. However, in

the case of LP, the residual stress values at all the nodes need to compute the
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volume and profile of the compressive stress, magnitude of the tensile stress,

and depth of the compressive stress. Therefore, a surrogate model is needed

for each node response. In the 3D model, there are 68,921 (41 nodes per 5

mm) or 531,441 (81 nodes per 5mm) nodes, and constructing the response

surface for residual stress at each node is necessary to calculate performance

metrics (objective and constraints). This surrogate model combines DOE and

a multi-point response surface.

To develop a surrogate model, a 3-level full factorial design is considered.

Simulations are performed to calculate residual stress values at all the nodes

in all designs of DOE. Since there are five variables, a total of(35 =) 243

simulations are performed. This set up provides the matrix[X] (Eq. 5.9) and

the response vector[Y] for each node to construct a response surface. For each

node a surrogate model is assumed as shown in the following equation:

Ŷ = β̂0+ β̂1 f1(x)+ ...+ β̂k fk(x)+ ε (5.8)

whereβi, i = 0,1,2, ...,k, are the unknown coefficients,ε is residue in the re-

gression model, andfi(x j) are the functions of individual or combinedxi. The

least squares method is used to find unknown coefficients, and it yields

β̂ = (XTX)−1XTY (5.9)

Ŷ = Xβ̂, e= Y−Ŷ (5.10)

The above computation (Eqs. 5.9 and 5.10) is performed for each node
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response. These calculations provide unknown coefficientsβ̂ and Ŷ for all

nodes.The first advantage of this surrogate model is that this provides the resid-

ual stress field of the entire model instead of an objective or constraint value.

This field can be used to calculate any quantity needed and can also be used for

the purpose of fatigue life calculation. The second advantage is that once the

model is developed, it does not need updates at every point unless algorithm

reaches a converged point and wish to change or reduce move limits. This is

because the surrogate model covers the entire range of design variables.

5.5.2 Results and Discussion

All three modifications of PSO are employed to solve the LP optimization

problem. The value ofd∗ is 1.0, and the value ofp is 2. The value ofp is 2

because the number of PSO particles is 20. The number of particles is limited

to 20 based on available resources. The variable ranges of pressure magnitude

and the number of shots drive the selection ofd∗. To incorporate compres-

sive stress depth and profile and tensile stress constraints, a penalty function

approach is employed. The penalty is proportionate to the magnitude of the

constraint violation. The penalty is such that a feasible solution has a better ob-

jective function compared to an infeasible solution. This is a modified version

of exterior penalty function used in population-based optimization methods.

Two iterations of the modified PSO are used. The first iteration uses the sur-

rogate model. This iteration is a type of exhaustive search of the design space,
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Table 5.5: LP Optimization Results

Sol. # p n r t s Obj. Tmax Cmax Depth S
1 3.62 3 2.95 38.1 0.63 4.78 74.7 -612.0 1.50 100.9
2 5.35 2 2.22 46.8 0.69 4.93 74.5 -652.7 1.35 132.5
3 5.59 2 2.78 51.8 0.52 4.97 74.0 -703.7 1.25 148.3
4 6.00 1 2.76 65.5 0.93 5.56 74.9 -603.7 1.25 119.5

because a function evaluation does not require significant computational time.

This iteration identifies the potential solutions/regions in the design space,

which become part of the initial population for the second iteration. For the

second iteration, these potential solutions (particles) are combined with the

particles generated using an LHS technique. The second step begins with a

population that has representatives of potential optimum solutions. Full-scale

simulations are used in the second iteration. Table 5.5 shows the optimization

results provided by the modified PSO algorithm.

In the table, Obj. indicates compressive volume,Tmax indicates maximum

uni-directional tensile stress,Cmax indicates maximum uni-direction compres-

sive stress, andS indicates the maximum principal stress. The algorithm is

able to find multiple solutions. The first, second, third, and fourth solutions

require 3, 2, 2, and 1 peening shots, respectively. The first solution uses 3.62

GPa, the second uses 5.35 GPa, the third uses 5.58 GPa, and the fourth uses

6.0 GPapressure pulse magnitudes.

The pressure pulse magnitude and the number of shots are the major pa-

rameters that vary in the solutions. There is a direct relationship betweenthe
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pressure magnitude and the number of shots: higher pressure magnitudes re-

quire lower number of shots to produce similar effects. All the solutions satisfy

the profile, tensile stress, and compressive stress depth constraints. The active

constraints are the maximum tensile stress and the profile of the compressive

stress. The maximum tensile stress constraint is active for all the solutions.

The profile constraint is active for the second, third, and fourth solutions. A

closer examination of the results provides the following information:

(i) There are multiple solutions for the formulated LP problem.

(ii) Multiple shots at lower pressure at the same location create a higher depth

of compressive stresses compared to single shot of higher pressure.

(iii) One shot at higher pressure creates higher magnitude compressive stress

compared to multiple shots at lower pressure.

(iv) An elliptical spot shape, when compared to a circular spot shape, induces

a lower magnitude of tensile stress for the same compressive stress mag-

nitude.

A non-niching optimization method will find only the last solution because it

has the highest objective function value. The other solutions obtained using

modified PSO can potentially be more useful for certain applications. The ob-

jective function value of these solutions is not the same. This shows that first

three solutions are local optima. However with these solutions, a designer has

multiple options to choose from. Depending upon the effects of the LP param-
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eters on a component, an appropriate solution can be selected. For example,

when peening leading edge of a turbine blade, where minor dimensional vari-

ations can affect its performance significantly, the first solution may havean

advantage over the last solution. For an application where the LP parameters’

effects are within the allowable tolerances, the last solution can be selected. If

a high magnitude of compressive stress is required, then the third solution is

better than other solutions. If both depth and magnitude of compressive stress

are equally important, then the second solution is better than the other solu-

tions.

Another advantage of multiple solutions is that different equipment can be

used to accomplish a set goal. For example if a company has multiple ma-

chines with different capacities (laser intensity/pressure magnitude). One of

the machine can be busy due its capabilities and not possible to use for all

jobs. In such cases, a solution can be picked based on the available machine

capabilities. This allows the company to optimally utilize the availablere-

sources due to the multiple solutions. Therefore, each of these solutions have

advantages and disadvantages over the other solutions, and depending upon

the requirements the designer can select the one that is appropriate.

5.6 Chapter Summary Remarks

A MNPSO is proposed to solve the multimodal mixed-variable optimization

problem. The MNPSO employs LHS-based population generation, a niching
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strategy, and a mixed-variable handling technique. LHS-based generation is

used to obtain a diverse population, the niching strategy is used to find and

preserve multiple optima, the mixed-variable technique and surrogate model

design space localization is used to manage continuous and integer variables.

An exhaustive search is performed using the surrogate model to localize poten-

tial multiple solutions. The method is demonstrated on multiple test problems

and on laser peening optimization. The solution of the laser peening problem

provides a designer with multiple options. The designer can select a suitable

option depending upon dimensional integrity requirements. The successful

demonstration on multiple problems shows that the proposed method can be

employed to solve multimodal mixed-variable problems.
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Chapter 6

LP Optimization: Multiple Locations

In this research, a progressive simulation-based design optimization strategy

is developed that can be applied to highly nonlinear impulse-type processes

such as shot peening, laser peening, and bullet impacts on aircraft structural

components. The design problems entail the use of multiple fidelities in sim-

ulation, time-consuming elastic-plastic analysis, and mixed types of optimiza-

tion variables. An optimization strategy based on progressively increasing the

complexity and fidelity is developed, along with suitable surrogate models.

Multi-level fidelity models include axi-symmetric, symmetric 3D, and full-

scale simulations to enable design optimization. The first two models are used

to perform parametric studies and to localize the potential design space. This

creates a reduced design space and an effective starting point for the subse-

quent optimization iterations. All steps employ the modified particle swarm

optimization for mixed variables.

The design methodology is demonstrated on LP of a structural component.
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The LP parameters, pressure pulse and spot dimensions, impulse locations (all

continuous), number of shots (integer), and the location of shots (discrete)-are

the optimization variables with stress constraints.

6.1 Progressive Multifidelity Optimization Strategy (PMOS)

Multidisciplinary optimization of structures subjected to high-speed impact

processes is complex due to the nonlinear and transient nature of the finite el-

ement analysis. The simulations consist of elastic-plastic analysis with small

time steps and large-scale finite element models for practical aircraft struc-

tures. The experiments-based design approaches traditionally used are cost

prohibitive for parameter optimization. Therefore, a simulation-based design

methodology is required. In this research, a design methodology is developed

for structures subjected to the shock-type loadings that occur in shot peen-

ing, laser peening, explosions, and bullet impacts. The optimization problem

is also challenging due to the presence of the continuous and discrete design

variables [85], a mixed-variable optimization (MVO) problem.

In the literature, depending upon the geometry, loads, and boundary con-

ditions, multi-fidelity simulation and surrogate models are used to solve air-

craft structural analysis problems. Livne et al. [105] used polynomial-based

equivalent plate modeling techniques for wing structures analysis. This work

demonstrates that 2D models can be used to approximate the nonlinear aeroe-

lastic response of a wing-box subjected to in-plane compressive forces. Robin-
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son et al. [106] used physics-based and finite element models with parameter

mapping on a wing design problem. This research proved that low-fidelity

and high-fidelity models connected with parameter mapping can assist an op-

timization approach and save computational time. Chen et al. [107] employed

multiple objective-oriented surrogate models, each constructed for a localre-

gion and combined using a boolean operations. This approach updates the

surrogate models based on the preexisting surrogate model and confidence in-

terval on approximation.

Glaz et al. [108] compared a weighted average of multiple surrogate mod-

els (design of experiments, polynomial response, kriging, radial basis neural

network) to each individual surrogate model and demonstrated the advantage

of the weighted-average surrogate [109, 110]. Although these techniques are

effective, they may not be the best options for impulse-type mixed-variable

problems. In this research, a progressive multifidelity optimization strategy

(PMOS) is developed. This strategy combines, low- and high-fidelity simula-

tions [105,106] and respective surrogate models [107,108], as well as mixed-

variable strategy [85] to solve impulse-type problems.

The basis of PMOS is that, depending upon the problem information and

assumptions, multiple simulation models can be developed to approximate the

impulse response. Multiple impulses may be required in a process, but the

effects of a single impulse at a location can be determined using a single axi-

symmetric model to address a large-scale problem. However, assumptions in
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the model limit the number of variables that can be considered in the model.

Similarly, in a symmetric 3D model, the number of assumptions can be re-

duced, so this model can incorporate additional variables. Simulation of an ar-

bitrary structural component with many impulses at multiple locations requires

an analysis model without symmetric assumptions. Typically, such models are

computationally expensive but can consider most of the variables in the prob-

lem. These qualities of the models are utilized in developing the optimization

strategy. The uniqueness of the proposed method is that it localizes the design

space using axi-symmetric 2D and symmetric 3D simulation and surrogate

models, and determines the optimum solution.

As shown in Figure 6.1, the PMOS involves a three-step hierarchical pro-

cedure. The design space is localized by parametric studies and by solving

optimization problems with low fidelity models, which also assist in elimi-

nating insensitive optimization parameters. These steps provide an effective

starting point and significantly reduce the search space for the third step of

the optimization procedure. The reduced design space requires fewer func-

tion evaluations in the subsequent optimization step. When employed together

these three steps reduce the number of the full 3D model simulations.

The developed method is for impulse-type problems. There will always be

an integer variable in such problems, for representing the number of impulses.

As shown in Chapter 5, the PSO [77, 83] is modified to generate diverse ini-

tial population and handle mixed variables. The modifications introduced are
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Figure 6.1: Multifidelity optimization strategy
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Latin Hypercube Sampling-based initial particle generation and a discrete vari-

able handling technique.

In the first modification, the initial population is generated Latin Hypercube

Sampling (LHS) instead of random generation. This modification is explained

in Section 5.3.1 of Chapter 5. The second modification is to handle integer

variable. This modification is described in section 5.3.3 of Chapter 5. Since

there is not an inbuilt termination criterion for PSO, depending upon the objec-

tive requirements and available resources, the maximum number of function

evaluations terminates the optimization.

6.1.1 Sub-parametric Surrogate Model

An important property of impulse-type problems is the repetition of impulses.

A surrogate model is developed for the 3D model that utilizes this repetitive-

ness. This surrogate model is based on the characteristic of an impulse-type

problem that each impulse has certain set of parameters that define it. If two

impulse locations on a structure are significantly apart from each other and the

parameters defining these impulses are the same, then both impulses generate

similar local effects. The proposed model exploits this quality of the impulse

response. The major advantage of this idea is that it does not require simula-

tion of all impulses at different locations to approximate the cumulative effect

of all impulses.

For a traditional design of experiments-based surrogate model, a certain
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Figure 6.2: Two possible layouts

number of simulations are performed. The results of these simulations are

used to construct an approximation. This is not the best approach for nonlin-

ear impulse-type problems due to the computational cost of each simulation.

In this surrogate model, instead of performing a complete simulation for each

impulse, simulations for two or three impulses are performed to extract the ef-

fects of individual parameters. A three-impulse simulation requires less time

than a five-impulse simulation while still providing the information required

to build a database for the surrogate model. Once all the individual parameters

and interaction effects are extracted, they can be combined to approximate the

performance for most configurations.

The above concept is explained using two examples. The first configura-

tion in Figure 6.2 shows a three-impulse layout. The effects for this layout

can be approximated using simulation of only two impulses, because the third
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impulse does not directly overlap the first impulse. Similarly, the second con-

figuration in Figure 6.2 has a five-impulse layout. Since the maximum number

of directly interacting impulses is three, multiple three-impulse simulations

can be used to approximate the resulting performance. The surrogate models

requires shots 1, 2, and 4 to be simulation using FEA. The residual stress pro-

file for shot 3 can be approximated from FE simulation of shot 2. Similarly,

the residual stress profile for shot 5 can be approximated from FE simulation

of shot 4. After the database is generated, it can be used to approximate solu-

tion for the required layout.

Although this surrogate model reduces the computational cost, it has two

disadvantages. The first disadvantage is that it partially ignores the effectsof

impulse sequence. The second disadvantage is that, irrespective of the distance

between the two impulses unless they overlap, the interaction effect is ne-

glected. These drawbacks are not significant when compared with the advan-

tages of the surrogate model. Moreover, since full simulations are performed

after each optimization iteration convergence, the surrogate model serves as an

intermediary interactive tool and the final results are always reached without

making any of the above approximations.

6.1.2 PMOS: Advantages and Disadvantages

The proposed strategies have certain advantages and disadvantages. The first

advantage is that the proposed strategy utilizes axi-symmetric 2D and sym-
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metric 3D models. The second advantage is that the computational cost is

lower than the full 3D models. The third advantage is that the stepwise pro-

cess identifies infeasible regions without performing full 3D simulation. A

disadvantage is that it is possible to lose some interaction effects among some

parameters. This disadvantage can be avoided by performing parametric in-

vestigations before attempting the design optimization. Based on these in-

vestigations, the optimization strategy can be modified to accommodate the

interaction effects.

The fourth advantage is that mixed variables are managed effectively with-

out inconsistency. The fifth advantage is that the proposed surrogate model

does not require simulation of all the impulses. Overall, the strategy solves

an MVO problem at a lower computational than a traditional approach, with-

out sacrificing effectiveness. The strategy is demonstrated in the laserpeening

(LP) process.

6.2 Multiple Locations Peening Optimization

The pressure pulse magnitude and shape, spot size and shape, spot location,

and number of shots are the optimization variables. There are multiple chal-

lenges in implementing the three-step strategy to optimize laser peening with

these variable. The first challenge is to develop a simulation model that takes

the required LP parameters into consideration. A parametric model is required

that can not only consider the above variables but also the location of the
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shots, the amount of overlap, and the sequence of the shots (mixed variables).

The following sections present models available in the literature and develop

a model to implement the optimization strategy.

6.2.1 Multiple Simulation Models

Finite element simulations of a structure experiencing impulses can be per-

formed using multiple models with respective assumptions. Depending upon

the geometry and boundary conditions, response to an impulse can be mod-

eled using axi-symmetric, symmetric 3D, or full-scale 3D models. Typically,

axi-symmetric and symmetric 3D models require lower computational times

than full 3D models. The full-scale 3D model requires a higher computational

time but can consider more optimization variables than the other two models.

A detailed description of axi-symmetric 2D and symmetric 3D models can be

found in Chapter 3.

3D Model

The 2D and symmetric 3D simulations have applications in one or multiple

shots at the same location. Because a typical application may require 10 to

100 locations or shots on a large surface (50 to 500mm), an FE model of such

a system can be computationally prohibitive [102]. To investigate the effects

of shots at more than one location, the different overlapping configurations,

and different sequences of shots, further improvements are needed in the FE
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model. A plate model is developed to investigate required parameters. The

model is shown in Figure 3.13. The details of the model are in Section 3.7 of

Chapter 3.

6.3 Problem Formulation, PMOS Implementation, Validation, and Re-

sults

6.3.1 Optimization Formulation: MVO

For impulse-type loading, the objective of an optimization problem can be to

minimize cost of the process, minimize or maximize damage, or maximize

a performance function. The objective for LP [6, 36, 101, 111, 112]. is to

maximize the compressive stress volume in the peened component. The first

constraint forces the compressive stresses on the surface to be at or within

a certain range of the maximum. This constraint is included to mitigate the

effects of the nonlinear behavior of the process, which within certain range

of parameters can generate a reduced compressive region at the center of the

spot. This reduction may hinder the objective of the surface enhancement

techniques.

In mathematical terms, compressive stresses at depth (d) are constrained to

be higher or within a certain range at the depth (d+∆d), where (∆d) is always

positive. The second constraint requires that the depth of compressive stress

is more than 1mmat a selected location. The maximum magnitude of tensile

stress induced by the peening process is controlled by the third constraint.
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This constraint keeps the maximum magnitude of the tensile stresses below

150 MPa. The design variables are pressure pulse magnitude (pi) and shape

(t1i andt1i), spot shape (si) and size (r i), location of shot (xi andyi), and number

of shots at the same location(ni). Herei indicates theith shot. The lower and

upper bounds for each variable are shown in the formulation:

Maximize: Compressive Stress Volume

Sub jected to: Compressive Stress(d) ≥Compressive Stress(d+∆d)

Compressive Stress Depth≥ 1.0 mm

Maximum Tensile Stress≤ 150 MPa,

Variable Bounds: 2.8≤ pi ≤ 8.0 GPa,

15.0≤ t1i ≤ 50.0 ns,

50.0≤ t2i ≤ 150.0 ns,

0.5≤ si ≤ 1.0,

2.0≤ r i ≤ 3.0 mm,

2.5≤ xi ≤ 7.5 mm,

2.5≤ yi ≤ 7.5 mm,

1≤ ni ≤ 3

A traditional optimization can solve the problem formulated above. This

will use full scale five shot plate simulations. A plate simulation requires4

CPU days on the Glenn cluster at OSC. A simulation for three shots at each of

the five locations requires 12 days of CPU time. Due to the computational time

issues, finding an optimal solution using the proposed optimization strategy is

more effective than traditional optimization.
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6.3.2 Optimization Strategies Implementation

The three models of LP required for the PMOS, axi-symmetric, symmetric

3D, and the parametric plate-require approximately 20, 170, and 5760 CPU

minutes, respectively. As a starting point for the three-step optimization strat-

egy, parametric investigations [113] are performed to determine the effects of

individual parameters. These investigations find a significant variation in para-

metric sensitivities with respect to performance metrics. In the first step of the

strategy, four LP parameters are optimized using 2D simulation. The second

step considers four LP parameters (pressure pulse magnitude and duration,

spot shape, and number of shots) and uses symmetric 3D simulation. In the

third step, four parameters (pressure pulse magnitude, spot location and size,

number of shots at the same location) are considered.

6.3.3 Step 1: Optimization using a 2D Model

In this section, the first optimization step is implemented employing 2D simu-

lation. There are three LP parameters in the optimization: pressure magnitude

(p), shot radius(r), and pressure pulse shape(t). As shown in Figure 6.3, the

pressure pulse shape is defined using two design variables(t1, t2); as a result,

there are a total of four design variables(p, r, t1, t2). Based on the capabilities

of the equipment, the peak pressure(p) range is 3.5 to 8.8 GPa, and the spot

radius range is 2.0 to 3.0 mm. For pressure pulse shape, a sharp rise (peak in

3 ns) is preselected, and the rate of drop is determined by the variables(t1, t2).
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The ranges of the variables are such that these can generate any type of pulse

between a sudden (lower limits) and slow (upper limits) pressure drop. The

ranges of the two shape variables are 15 to 50 ns(t1) and 90 to 150 ns(t2).

The optimization problem statement is given by:

Maximize: Compressive Stress Volume

Sub jected to: Compressive Stress(d) ≥Compressive Stress(d+∆d)

Compressive Stress Depth≥ 1.0 mm

Maximum Tensile Stress≤ 150MPa,

Variable Bounds: 3.5≤ p≤ 8.8 GPa,

2.0≤ r ≤ 3.0 mm,

15.0≤ t1 ≤ 50.0 ns,

90.0≤ t2 ≤ 150.0 ns,

The number of particles and generations in PSO are set at 20. The values

ci1 andci2 are taken as 1.7. The optimization results show that a peak pressure

of 5.42 GPa, a spot radius of 2.1 mm, and pressure shape parameters of 17.0

nsand 150.0 nsare needed to achieve the desired residual stress profile. The

formulation can achieve the required depth and limit the maximum tensile

stresses within the specified limit. The maximum tensile stress constraint is

the active constraint at the optimum. It can be seen from the results that the

low spot radius can keep the reduced compressive region at the center of the

spot to within the limit. The first shape parameter (t1) is near the lower bound

of the variable range, and the second shape parameter (t2) is at the upper bound
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Figure 6.3: Optimization Formulation

of the variable range. This indicates a sharp drop, but a long pressure pulse is

favored for the formulation.

6.3.4 Step 2: Optimization using a symmetric 3D model

In this section the second step of the strategy is implemented. Pressure pulse

magnitude (pi), number of shots (n), and laser shot shape (si) are the variables.

The pressure pulse shape is taken from the previous step, and the pressure

magnitude range is reduced for better exploration of the design space. This

model obtains a effective starting point from the previous step but experiences

computational challenges. A surrogate model is used to reduce the computa-

tional expense. A detailed description of the model can be found in section

5.5.2 in Chapter 5.
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Optimization Formulation and Results

In pressure pulse magnitude (pi) and spot shape (si) the subscripti denotes

the ith shot of the process. In the following formulation, the volume of the

compressive region is the objective function. All the constraints and variable

bounds for fatigue strength are shown in the equation:

Maximize: Compressive Stress Volume

Sub jected to: Compressive Stress(d) ≥Compressive Stress(d+∆d)

Compressive Stress Depth≥ 1.0 mm

Maximum Tensile Stress≤ 150 MPa,

Variable Bounds: 4.0≤ pi ≤ 6.5 GPa,
0.5≤ si ≤ 1.0,

2.0≤ r ≤ 2.5 mm,

1≤ ni ≤ 3,

The results of the problem show that two shots with pressure pulse magni-

tudes of 3.6 and 4.7 GPa, radius of 2.28mm, and shape parameters of 1.0 and

0.80 are the optima. The pressure magnitude, radius, and shape variables are

guided by the profile constraint. In this optimization the profile constraint is

an active constraint.

6.3.5 Methodology Validation

An assumption of the proposed optimization strategy is that a comparatively

lower fidelity model (2D) can provide a solution similar to that of higher fi-

delity models (3D and plate). To validate this assumption, the problem for-
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Table 6.1: Results for methodology validation

Problem Model p r t1 t2
Number used (GPa) (mm) (ns) (ns)

Problem 1 2D 5.72 2.49 33.5 150.0
Problem 1 3D 5.58 2.44 38.1 110.1
Problem 2 2D 8.00 2.29 33.1 150.0
Problem 2 3D 8.00 2.39 26.6 149.1

mulated for the 2D model is solved using both 2D and 3D models. The same

PSO parameters are used for both models. The termination criterion in both

approaches is the maximum number of iterations. This is because a popula-

tion based technique can easily determine the potential region but can require

a large number of iterations to find the converged optima.

The results from both models are shown in Table 6.1. The solutions in the

table show that results from both models are similar. The table shows that

the parameters pressure magnitude (p= 5.72 and 5.58 GPa), and radius (r =

2.49 and 2.44 mm) are similar for both models. The pressure pulse shape

parameters (t1 and t2) are different in both solutions. In the 2D solution t1

is greater, and in the 3D solutiont2 is greater. These differences cancel each

other out to some extent, creating similar results.

A second problem is also solved using both models. The second problem is

the same as that of the first problem, except that the constraint on the residual

stress profile is removed (the first constraint from the formulation in Section
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3.4). Table 6.1 shows that the results from both models are similar. The re-

sults of the second problem indicate that the pressure magnitude has a direct

relationship with the compressive stress profile. The pressure magnitude value

is at the maximum possible. The radius and shape are not at maximum to

control the reduced compression at the center of the spot. This study shows

that 2D simulation can be employed to save computational time and that the

assumption made in the optimization strategy is reasonable.

6.3.6 Step 3: Optimization using a Parametric Plate Model

At this point, the first two steps of the optimization strategy have been imple-

mented. The third step of the strategy is important because the model in this

step considers the greatest number of variables of any model. For example in

LP, it is necessary to include the impulse location variables that can generate

various overlapping configurations or layouts. To do that, it is necessary to use

the parametric plate model. However, the required 4-day CPU time forces us

to use the proposed surrogate model.

Surrogate Model

The parameters that define an LP shot are pressure pulse magnitude, shape, and

duration, spot shape and size, and amount of overlap. Two LP shots with the

same parameters at two locations generate similar local residual stress fields.

Therefore, the proposed surrogate model can be applied to the LP problem.
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Figure 6.4: Schematic of combining database information toobtain desired stress field

For the parametric plate, three shot simulations are performed to extract the

effects of individual parameters. Information collection take less timeusing

three shot simulations than five-shot simulations. Once the individual parame-

ters and interaction effects are extracted, they can be combined to approximate

the residual stress profile for most configurations.

An example of the surrogate model is shown in Figure 6.4. This example

is a schematic for only one variable (pressure magnitude). Suppose a design

needs a residual stress field for 6.0 GPapressure magnitude. The database is

available for 4.5, 5.5, 6.5, 7.5, and 8.5 GPa pressure magnitudes. The database

for each magnitude contains residual stress values at the plate nodes. To ap-

proximate the residual stress field for 6.0 GPa , the residual stress fields from

5.5 and 6.5 are used. Equation 6.1 shows the formulation to approximate the
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residual stress field. HereR(p) indicate the residual stress field at pressurep.

R6.0 =
6.0−5.5
6.5−5.5

R5.5+
6.5−6.0
6.5−5.5

R6.5 (6.1)

Similarly an example for two variables, the five simulations at 4.5, 5.5, 6.5,

7.5, and 8.5 GPaare performed, and the local residual stress field at the laser

spot is analyzed and saved. For the amount of overlap, simulations are per-

formed for 0, 25, 50, 75 and 100% overlapping configurations. The effects

of the second and the third shots at the same location are different from each

other; therefore, the 100% overlapping configration for the third shot is per-

formed seprately. To generate the residual stress field for five shots on different

locations with 20% overlap for 2nd to 5th shots and 6.1 GPa pressure for all

shots, the following process is used. The effects of the first shot are directly in-

terpolated from the local residual stress fields of 5.5 and 6.5 GPamagnitudes.

The second shot is interpolated from the local residual stress fields of 5.5 and

6.5 GPapressure pulses and the local residual stress fields of the 0 and 25%

overlap configurations.

Similarly, the approximate residual stress field can be generated for any

number of shots on the plate. In this research, linear interpolation is used;

however, depending upon the parametric investigations, this can be changed to

higher-order interpolations. This approach does not need updates within the

move limits. Just as with the surrogate model for the full 3D model, this also

provides the residual stress field for all the nodes instead of a selected node. A
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limited number of five-shot simulations are needed to construct the database

because the fifth shot is often located at the center of the plate overlapping the

previous four shots.

Surrogate Model Validation

The following investigations were performed to compare the estimates of the

surrogate model with FE simulations. Four random peening configurations

are selected. FE analysis is performed to determine the compressive stress

volume, depth, and maximum magnitude. The surrogate model is also used to

determine these quantities. Here,pi indicates the pressure magnitude of the

ith shot,xi indicates thex co-ordinate of theith shot location, andyi indicates

they co-ordinate of theith shot location. The peening parameters in the first

configuration arep1 = 4.1, p2 = 5.3, p3 = 4.6, p4 = 5.1, p5 = 3.9, x1 = 3.6,

x2 = 5.8, x3 = 2.9, x4 = 5.6, x5 = 4.1, y1 = 3.8, y2 = 3.2, y3 = 6.4, y4 = 5.8,

andy5 = 6.0. The peening parameters in the second configuration are 4.7, 5.6,

4.3, 5.6, 4.7, 3.3, 6.4, 4.0, 5.6, 5.2, 3.1, 3.4, 5.7, 6.5, and 5.3. The peening

parameters in the third configuration are 5.6, 4.2, 4.8, 4.6, 6.0, 2.6, 6.5, 4.3,

5.7, 5.0, 3.4, 2.9, 5.8, 5.9, and 4.6. The peening parameters in the fourth con-

figuration are 5.5, 4.1, 5.7, 5.1, 5.1, 2.7, 6.4, 2.5, 6.4, 4.1, 4.4, 3.1, 5.9, 6.2,

and 4.0.

Table 6.2 shows the results from both approaches. The comparison shows

that the approximation and the FE models do not match exactly. However,
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Table 6.2: Comparison of results from Surrogate and FEA models

1 2 3 4
FEA App. FEA App. FEA App. FEA App.

CV 34.7 26.7 43.1 32.8 44.9 32.4 42.5 33.5
MC -419.7 -479.8 -563.1 -612.1 -529.6 -623.6 -479.2 -398.3
CD 0.63 0.54 0.63 0.63 1.00 1.13 0.75 0.75
MT 77.1 93.8 97.6 98.5 84.8 85.3 110.0 97.0

the surrogate model is able to capture the trends. The minimum errors in the

compressive stress volume, depth, and maximum magnitude and tensile stress

maximum magnitude are 21.2%, 0.0%, 8.7%, and 0.06%. The maximum er-

rors are 27.8%, 14.3%, 17.7%, and 21.1%, respectively. Overall, the proposed

surrogate model has the potential to be used in the optimization. An important

aspect to note is that the finite element estimation took 4 CPU days, while the

surrogate model estimation took just 10 CPU minutes.

Optimization Formulation and Results

The optimization formulation and results of the third step are provided below.

Similar to the results of the previous two steps, the results show that a lower

pressure magnitude is favored because of the residual stress profile constraint.

The spot layout is shown in Figure 6.5. In this problem, the constraint on the

residual stress profile and the maximum tensile stresses restricts the maximum
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Figure 6.5: Optimal layout of the peening process

compressive stress magnitude and the compressive stress volume:

Maximize: Compressive Stress Volume

Sub jected to: Compressive Stress(d) ≥Compressive Stress(d+∆d)

Compressive Stress Depth≥ 1.0 mm

Maximum Tensile Stress≤ 150 MPa,

Variable Bounds: 2.5≤ xi ≤ 7.5 mm,

2.5≤ yi ≤ 7.5 mm,

3.5≤ pi ≤ 6.5 GPa,

1≤ ni ≤ 3,

The optimization results are given in Table 6.3. In addition to achieving

the set objective and complying with the constraints, the optimization is able
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Table 6.3: Results of optimization strategy

Shot No. Pressure Location Location Radius No. of
magnitude(GPa) x (mm) y (mm) (mm) shots

1 4.42 2.5 2.87 2.28 1
2 4.67 6.5 2.5 2.28 1
3 4.53 2.72 6.38 2.28 1
4 6.20 6.28 6.5 2.28 1
5 4.37 5.76 5.08 2.28 1

to find a layout that covers the region of interest. The region of interest is

in between 2.0 and 7.5 on both (x andy) axes and is shown by a red dotted

line in Figure 6.5. The results indicate that for the formulated problem, a

pressure magnitude of approximately 4.5 GPacan achieve the objective. The

magnitude of the 4th shot is different from the other shots at 6.2 GPa. A

possible reason for this is that the 5th shot overlaps the 4th shot. Because of

this overlap, the reduction of compressive stress at the center of the spot is

negated by the subsequent shot. Another interesting result is that at all the

locations the objective is achieved using only one shot.

6.4 Discussion

The optimization of structural components subjected to high-energy impulses

can involve nonlinear elastic-plastic behavior, time-consuming finite element

simulations, and mixed optimization variables. To solve such problems, this

research develops the progressive multifidelity optimization strategy. Thestrat-
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egy begins with parametric investigations using lower fidelity models to deter-

mine sensitive parameters and to localize the design space. In each step of the

strategy, the design space is reduced and parameters are eliminated, with the

goal of reaching an optimal solution.

The demonstration shows that pressure pulse magnitude, spot shape and

size, and layout are critical parameters. The first step determines the shape

and duration of the pressure pulse that is suitable for the formulated problems.

In the second step, a bigger spot size is determined better for the given formu-

lation. Based on the results from the first two steps, the problem is formulated

for the third step. Finally, the third step determines a five-shot LP layout that

can meet the requirements set forth in the optimization formulation. Com-

pared to a traditional approach, the combination of three steps and the use of

surrogate models substantially reduces the computational cost.

Overall, a progressive multifidelity optimization strategy is developedin

this chapter. A surrogate model is proposed that can be used for impulse-type

simulations. The proposed surrogate model accommodates the presence of

repeated impulse loads. To effectively solve the optimization problem, mod-

ifications are introduced into PSO: LHS-based particle generation and a dis-

crete variable handling technique. Computational time is further reduced by

utilizing the parallel processing advantage of a population-based optimization

technique. The strategy is validated and successfully employed to determine

the optimal LP parameters. This design strategy and the proposed surrogate
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model can be applied to other impulse-type problems with mixed variables of

optimization.
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Chapter 7

Summary and Future Directions

This chapter presents the contributions and summary of the research work per-

formed in this dissertation. The tasks performed in this dissertation involve

the development of simulation capabilities, surrogate models for a flat surface,

optimization of a laser peening process at one-location, and optimization of a

laser peening process at multiple-locations.

7.1 Contributions

7.1.1 FE Simulation

Modeling and Parameter Design of a Laser Peening Process. [68,113]

A framework was developed for parametric simulations that can consider many

of the LP variables. The framework incorporates a 3D model drawn from the

literature. The 3D model was used to investigate the LP variables such as tem-

poral variation of pressure, pressure pulse magnitude, and spot shape and size.

Minor modifications to the symmetric 3D model allowed us to investigate com-
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ponent thickness, a two-shot sequence at multiple locations, and a seven-shot

sequence at multiple locations. These investigations led to following findings:

(i) Spot shape can be employed to the decrease maximum tensile stress with-

out significantly compromising the maximum compressive stress.

(ii) An increase in pressure magnitude increases compressive depth, volume,

and maximum stress; however, compared to the compressive stress, the

increase in maximum tensile stress is greater.

(iii) The depth of compressive stress tends to increase with thickness and sat-

urates after 5mm. The maximum tensile stress first increases and then

decreases with thickness.

(iv) Interaction of the induced residual stress profile of two sequential shots

is dependent upon the distance between the two shots. The interaction

exists even when there is no overlap.

(v) In the considered parameters and the geometric model (symmetric flat

cylinder), there is no significant change in residual stress profile due to the

sequence of shots; however, layout and number of shots show significant

sensitivities.

7.1.2 Optimization

LP Optimization: One location

Modified PSO for Multimodal Mixed-variable Optimization. [114]

A modified PSO method is proposed to solve a multimodal mixed-variable op-
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timization problem. The modified PSO employs a surrogate model, a niching

strategy, and a mixed-variable handling technique: the surrogate model is em-

ployed to manage computational cost, the niching strategy is used to find and

preserve multiple optima, and the mixed-variable technique is used to manage

continuous and integer variables. The method is demonstrated on multiple test

problems and on a one-location laser peening optimization. The solution of

the laser peening problem provides the designer with multiple options. The

designer can select the most suitable option, depending upon the component

requirements.

(i) Multiple solutions exist to achieve the target residual stress profile.

(ii) Modified PSO handles mixed variables effectively and finds multiple op-

timal solutions.

(iii) Multiple shots at lower pressure at the same location create a higherdepth

of compressive stresses compared to a single shot of higher pressure.

(iv) One shot at higher pressure creates a higher magnitude the maximum

compressive stress compared to multiple shots at lower pressure.

(v) An elliptical spot shape, compared to a circular spot shape, induces a

lower magnitude of tensile stress for similar compressive stress magni-

tude.

Successful demonstration on multiple problems show that the proposed method

can be employed to solve multimodal mixed-variable problems.
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LP Optimization: Multiple Location

Mixed-variable Optimization Strategy Employing Multi-fidelity Simulation and

Surrogate Models. [115,116]

A progressive, simulation-based, mixed-variable optimization strategy is de-

veloped. This strategy involves three steps and progressively employs axi-

symmetric, symmetric 3D, and parametric models. A surrogate model is pro-

posed that can be used for impulse-type simulations. The proposed surro-

gate models accommodate the presence of repeated impulse loads. To effec-

tively solve the optimization problem, two modifications are introduced into

PSO: LHS-based particle generation and a discrete variable handling tech-

nique. Computational time is further reduced by utilizing the parallel process-

ing advantage of a population-based optimization technique. The strategy is

validated and successfully employed to determine the optimal LP parameters.

This design strategy and the proposed surrogate model can be applied to other

impulse-type problems with mixed optimization variables.

(i) A progressive three-step optimization strategy was developed that can be

applied to nonlinear impulse type processes such as laser peening, shot

peening, and bullet impacts on structures.

(ii) A surrogate model is proposed to alleviate the prohibitive computational

cost of an iterative optimization process.

(iii) A parallel processing technique (MATLAB+PuTTy) is developed for ef-
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fective population-based optimization.

7.2 Research Summary

Overall, a simulation capability is developed that includes a symmetric 3D

model, a parametric plate, and rectangular bar coupon models. These models

were employed to investigate the individual LP parameters, optimize single

and multiple locations peening. The investigations and optimization assist

an engineer to achieve desired residual stress profile. A multimodal mixed-

variable optimization method was developed to solve the one-location laser

peening optimization problem. The method modifies particle swarm opti-

mization to incorporate multimodality and mixed-variable handling proper-

ties. A progressive multifidelity optimization strategy was developed tosolve

the multiple-location laser peening optimization problem. The PMOS com-

bines modified PSO, LHS, mixed-variable strategy, and multifidelity surrogate

models to solve a laser peening optimization problem.

7.3 Future Direction

The presented research work can be continued in many directions. The four

major objectives can be reduction in the simulation time, parametric interac-

tions effects, process optimization for a practical geometry, and uncertainty

quantification of the LP process. The parametric investigations, optimization,
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and uncertainty quantification can be simplified if the simulation time can be

reduced by further research. Empirical formulations, surrogate models, and

spectral finite element method [117] can be investigated for this purpose. The

parametric investigations performed in this research are limitedto one variable

at a time, ignoring the interaction effects. It will be interesting to determine

various interaction effects of the parameters.

Determining optimized process parameters for a practical 3D problem can

be very useful for the industrial application. This is possible by aggressively

employing surrogate model. Surrogate models developed in this research can

be advanced to use in a practical problem such as aircraft lug. As discussed in

the dissertation, LP is a mixed-variable process. The development of a mixed-

variable uncertainty quantification method can assist in uncertainty quantifica-

tion of the LP process. Additional potential areas include experimental valida-

tion of multiple-location peening, optimization, and fatigue life optimization

strategies [118]. This experimental work will not only provide additional val-

idation of the simulation work but also facilitate the development of an opti-

mization strategy for practical surface enhancement and fatigue problems.
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