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Abstract
The multidisciplinary design optimization (MDO) of re-entry vehicles presents many challenges associated with the plurality 
of the domains that characterize the design problem and the multi-physics interactions. Aerodynamic and thermodynamic 
phenomena are strongly coupled and relate to the heat loads that affect the vehicle along the re-entry trajectory, which drive 
the design of the thermal protection system (TPS). The preliminary design and optimization of re-entry vehicles would benefit 
from accurate high-fidelity aerothermodynamic analysis, which are usually expensive computational fluid dynamic simula-
tions. We propose an original formulation for multifidelity active learning that considers both the information extracted from 
data and domain-specific knowledge. Our scheme is developed for the design of re-entry vehicles and is demonstrated for 
the case of an Orion-like capsule entering the Earth atmosphere. The design process aims to minimize the mass of propel-
lant burned during the entry maneuver, the mass of the TPS, and the temperature experienced by the TPS along the re-entry. 
The results demonstrate that our multifidelity strategy allows to achieve a sensitive improvement of the design solution with 
respect to the baseline. In particular, the outcomes of our method are superior to the design obtained through a single-fidelity 
framework, as a result of the principled selection of a limited number of high-fidelity evaluations.

Keywords  Multifidelity methods · Active learning · Multidisciplinary design optimization · Space vehicles

1  Introduction

Modern space missions are increasingly supported by vehi-
cles able to perform complex assignments and return safely 
to the Earth’s surface. Examples are manned capsules used 
for the transfer of astronauts to the international space sta-
tion and for future Lunar and Martian explorations (Smith 
et al. 2020; Williamson 2017). Planetary entry vehicles are 
high-drag devices conceived to drastically reduce the re-
entry speed during the descend trajectory, to allow a safe 
landing. Given the high orbital velocity, the re-entry flight 
regime is hypersonic for most of the descend and a bow 
shock arises around the vehicle leading edges. The high-
temperature effects behind the shock wave cause a signifi-
cant surface heating that can compromise the survivabil-
ity of the structural frame. Hence, the thermal protection 

system (TPS), the entry maneuver, and the trajectory are 
engineered to reduce the structural temperature as well as 
the mass of the propellant and the mass of the TPS, since 
both are closely correlated with the launch costs.

The design and optimization of re-entry vehicles requires 
to consider the multi-physics nature of the problem, which 
motivates the interest for multidisciplinary design optimi-
zation (MDO) methodologies (Sobieszczanski-Sobieski 
and Haftka 1997; Martins and Lambe 2013; De Weck et al. 
2007). In addition, the interaction of aerodynamic and ther-
modynamic phenomena (Hollis and Borrelli 2012; Longo 
2004; Mathews and Shafeeque 2015) is of particular interest 
because of their role in determining the heat loads that act on 
the TPS. Recent studies proposed MDO methodologies for 
the design of re-entry vehicles. Lobbia (2017) considered the 
optimization of a re-entry capsule to maximize the down-
range, improve the mass allocation, and increase the lift-to-
drag ratio. Adami et al. (2015) propose an MDO framework 
for the optimal design of the re-entry maneuver, to minimize 
the mass of the TPS and the mass of the propellant. Addi-
tional effort has been dedicated to the optimization of the 
trajectory and of the geometry of re-entry vehicles (Tava 
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and Suzuki 2002; Lakshmi and Priyadarshi 2020; Zhang and 
Chen 2011; Eyi et al. 2019).

The multidisciplinary design of space vehicles is a sim-
ulation-based optimization problem that might require the 
assessment of a huge amount of design alternatives, while 
searching for the optimal solution. This motivates the lim-
ited adoption of high-fidelity physics-based models that 
can usually be in the form of high dimensional discrete 
representations for the numerical solution of the governing 
equations. Therefore, the MDO frameworks developed for 
re-entry vehicles commonly rely on low-fidelity disciplinary 
models—including the ones for the aerothermodynamics—
because the use of high-fidelity representations for all the 
evaluations would be computationally unfeasible.

Low-fidelity representations of aerothermodynamic phe-
nomena introduce approximations to reduce the complex-
ity of the model and, in turn, to contain the computational 
cost associated with their evaluation (Fay and Riddell 1958; 
Sutton and Graves Jr 1971; Tauber and Sutton 1991; Suther-
land 1893; Oswatitsch 1951). The computational savings 
allow to rapidly assess the design configurations and gather 
more exploration data about the design space. However, 
these models may not be adequate to grasp the full order 
complexity of the physical phenomena, which may lead to 
the exclusion of promising design configurations that could 
only be captured with more complex and expensive physics-
based representations. This motivates the interest for com-
putational strategies that permit to incorporate high-fidelity 
representations of the aerothermodynamic phenomena and 
exploit their ability to closely capture the cross-domain 
couplings.

This work presents a computational framework for the 
multidisciplinary design optimization (MDO) of re-entry 
vehicles that aims to use at best a limited amount of inter-
rogations of the high-fidelity aerothermodynamic model to 
sensitively improve the design solution. In particular, we 
propose an original multifidelity formulation for domain-
aware active learning to accelerate the search and assess-
ment of the design alternatives. Multifidelity methods are 
computational approaches to modeling and optimization 
that allow to include high-fidelity responses and contain 
the computational expense by combining information from 
multiple models that represent a physical system (or pro-
cess) with different levels of accuracy and cost (Fernández-
Godino et al. 2016; Peherstorfer et al. 2018; Beran et al. 
2020). Frequently, multifidelity strategies synthesize many 
responses of cheap-to-evaluate models with few interroga-
tions of expensive representations into a unique surrogate 
model (Kennedy and O’Hagan 2000; Forrester et al. 2007; 
Park et al. 2017).

Multifidelity approaches have been applied to MDO prob-
lems of different nature ranging from marine applications 
and the design of ships (Pellegrini et al. 2018; Alam et al. 

2015) to the design of turbomachineries (Toal et al. 2014; 
Shen et al. 2019), from the design of electric and hybrid 
ground vehicles (Wang et al. 2018; Anselma et al. 2020) to 
the design of aerospace systems and vehicles (Berci et al. 
2011; Garriga et al. 2019; Mainini and Maggiore 2012; 
Dubreuil et al. 2018). Examples of multifidelity approaches 
for the multidisciplinary design of re-entry vehicles are 
less common in the literature. Minisci and Vasile (2013) 
addressed the design optimization of a manned vehicle re-
entering the Earth atmosphere, Vasile et al. (2014) proposed 
an MDO framework for the design of a Mars entry micro 
probe. Both these works leverage a similar surrogate-based 
optimization framework, where a neural network is used to 
approximate the aerodynamic loads. The network is trained 
offline with pre-computed aerodynamic responses and 
updated online with both low- and high-fidelity data. The 
low-fidelity analytical model is used to sample the design 
space in the early phases of the optimization, while the high-
fidelity CFD model is leveraged to refine the surrogate in 
the later stages.

It is possible to identify two families of methods to 
compute the multifidelity surrogate model: offline/online 
approaches build the surrogate on pre-computed sets of 
multifidelity samples (Forrester et al. 2007; Han et al. 2010; 
Ruan et al. 2019), while infilling adaptive strategies allow 
to progressively sample the design space and update (learn) 
the surrogate at each step. Multifidelity infilling methods are 
goal-driven approaches where an adaptive sampling scheme 
selects the design candidate to evaluate at each step, target-
ing either the improvement of the fitting quality across the 
entire design space (Viana et al. 2014; Park et al. 2017; Cai 
et al. 2017) or the acceleration of the search and identifica-
tion of the optimal design (Lam et al. 2015; Amine Bouhlel 
et al. 2018; Serani et al. 2019). The choice of the most appro-
priate strategy depends on the specific characteristics of the 
problem at hand. While offline/online methods are better 
suited for applications whose multifidelity evaluations have 
been collected in advance and models cannot be interrogated 
anymore, adaptive sampling approaches allow to actively 
learn the surrogates through a tailored selection of the new 
evaluations to add during the optimization procedure.

In this work, we introduce an original multifidelity 
strategy based on an active learning scheme to compute an 
aerothermodynamic surrogate model in the context of the 
multidisciplinary optimization of an atmospheric re-entry 
vehicle. A particular feature of our multifidelity method is 
the domain awareness property, which allows to include 
expert knowledge about the thermal loads acting on the 
TPS during the descend. Our multifidelity strategy relies 
on a Bayesian framework and uses a Gaussian process 
as the surrogate model, which is progressively updated 
through an acquisition function based on the multifidel-
ity expected improvement. We propose a formulation of 
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the acquisition function whose elements not only cap-
ture the statistical properties of the surrogate model, but 
also domain-specific information about the thermo-fluid 
component. By considering the range of altitudes where 
the heat loads are likely to be larger, our computational 
strategy selects the aerothermodynamic model to evaluate 
when the accurate estimate of the heat fluxes is required to 
grant the survivability of the vehicle. This element realizes 
a form of domain awareness in our multifidelity framework 
that allows to include expert knowledge in the active learn-
ing strategy.

In addition to the low- and high-fidelity aerothermo-
dynamic models, our framework of disciplinary models 
includes the model of the propulsion system to compute 
the fuel consumption associated with the entry maneuver, 
the model of the trajectory to compute the descend orbit, 
and the thermo-structural model of the TPS to compute the 
temperature profile over the structure and the mass of the 
frame. The disciplinary models are considered as black-
boxes and a multidisciplinary feasible (MDF) architecture 
is adopted to formulate the MDO problem and capture the 
cross-disciplinary interactions. The design goal is to iden-
tify the configuration and the capabilities of the vehicle 
that minimize the mass of the propellant burned during 
the entry maneuver, the mass of the TPS structure, and the 
temperature reached by the TPS frame. Our computational 
strategy is applied to the design of an Orion-like capsule 
re-entering the Earth atmosphere: the results obtained 
with our domain-aware multifidelity learning are com-
pared with the results corresponding to a single-fidelity 
implementation.

The paper is organized as follows. Section 2 presents 
the multidisciplinary features of the design of a re-entry 

vehicle and describes the physics-based models included 
in our computational framework. Section 3 discusses the 
architecture and formulation of the multidisciplinary opti-
mization problem. Section 4 introduces and discusses our 
original multifidelity domain-aware methodology and its 
implementation for the MDO problem of an Orion-like re-
entry vehicle. Section 5 discusses the results and Sect. 6 
presents concluding remarks.

2 � Designing a re‑entry vehicle: 
a multidisciplinary problem

This work addresses the design and optimization of re-
entry vehicles accounting for the interacting multi-physics 
of aerothermodynamics, the atmospheric flight trajectory, 
the capabilities of the propulsion system and the thermo-
structural phenomena. Re-entry vehicles are spacecraft 
designed to enter the planetary atmosphere and safely land 
on the planet surface. Given the high orbital velocity, these 
vehicles approach the atmosphere with a large amount of 
kinetic energy. Therefore, the re-entry mission is conceived 
to balance the deceleration and the thermal loads on the 
structural frame.

Figure 1 depicts the main phases of the re-entry in the 
Earth atmosphere, including the entry maneuver, the peak 
heating and the parachute deploy. The entry phase is char-
acterized by a maneuver sequence to shape the descend 
trajectory, introducing a thrust component opposite to the 
direction of motion to reduce the approaching velocity, and 
a small normal component to calibrate the trajectory. During 
the re-entry flight, the flow regime is largely hypersonic and 
a bow shock forms in front of the vehicle. As the spacecraft 

Fig. 1   Re-entry through the Earth atmosphere: conceptual phases
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deep dives the atmosphere, the air becomes more dense 
and the deceleration builds rapidly; the kinetic energy of 
the vehicle decreases and the air molecules acquire energy 
between the shock wave and the vehicle surface, determining 
strong heat loads. Surface heating is a key design aspect and 
drives the design of the TPS as well as the descend trajectory 
and the entry maneuver. The energy may be transferred to 
the TPS structure through convective heating from particles 
interacting with the heat shield, and radiation from excited 
particles in the flow. The TPS is designed to withstand the 
severe re-entry heat fluxes, keeping acceptable the internal 
temperatures of the vehicle. At the end of descend phase, 
the parachutes are deployed and the vehicle lands on the 
planetary surface.

Our framework aims at capturing the multi-physics nature 
of the mission and of the design of a re-entry vehicle, account-
ing for the contributions introduced by the propulsion system, 
the re-entry trajectory at a given entry point, the aerother-
modynamic effect characterizing the re-entry path and the 
thermo-structural aspects associated with the sizing of the 
thermal protection system. In particular, we consider the case 
of an Orion-like capsule re-entering the Earth atmosphere. Fig-
ure 2 illustrates the geometry of the capsule (Hollis and Bor-
relli 2012) and Table 1 indicates the values of the geometric 
parameters which are considered given and not varying for our 
problem. The capsule is equipped with two sets of thrusters to 
guide the entry maneuver: the first set consists of two primary 
thrusters and the second set includes six secondary thrusters. 
Both the primary and secondary thrusters are chemical rocket 
engines that use an hypergolic combination of monomethyl 
hydrazine (MMH) as propellant and dinitrogen tetra oxide 

(NTO) as oxidant. Table 2 reports the number of thrusters, the 
maximum thrust in vacuum, the effective exhaust velocity, and 
the burning time for both the primary and secondary engines, 
summarizing the details of the overall propulsion system. The 
propulsion system is modeled according to the chemical rocket 
theory, that accounts for an impulsive orbital maneuver con-
sidering the short burning period (Sect. 2.1). The model of the 
trajectory considers a bi-dimensional orbit of re-entry that is 
propagated starting from a fixed entry point in the atmosphere 
(Sect. 2.2). Table 3 summarizes the trajectory parameters of 
the entry point, the mass and reference area of the capsule, 
the model of the Earth atmosphere (Atmosphere 1976), and 
the model of the Earth gravitational field. Two representations 
are included for the aerothermodynamic phenomena: the first 
models the full order physics (Sect. 2.3) and the second one 

Fig. 2   Geometry of the Orion-like re-entry capsule considered in this 
work

Table 1   Design parameters of the Orion-like geometry

Geometry parameters Description Unit

Frontal section diameter R = 5.0 m
Nose radius RN = 2.4R m
Upperside ablator inclination �A = 32.5 deg
TPS aperture �D = 23.04 deg

Table 2   Design parameters of the primary and the secondary thrust-
ers

Thrusters parameters Description Unit

Number of primary thruster 2 –
Number of secondary thruster 6 –
Maximum thrust primary thruster (Vacuum) Fmax1 = 73 kN
Maximum thrust secondary thruster (Vacuum) Fmax2 = 4.87 kN
Effective exhaust velocity primary thruster c1 = 2305 m/s
Effective exhaust velocity secondary thruster c2 = 2943 m/s
Burning time Δt = 5 s

Table 3   Design parameters of the re-entry trajectory

Trajectory parameters Description Unit

Initial entry altitude h0 = 125000 m
Initial entry velocity V0 = 7900 m/s
Initial entry longitude �0 = 0 deg
Initial entry time t0 = 0 s
Capsule mass M = 7500 kg
Capsule reference area Aref = 78.54 m2

Atmosphere model: free stream density �∞ = �∞(h) kg/m3

Atmosphere model: free stream temperature T∞ = T∞(h) K
Atmosphere model: free stream pressure p∞ = p∞(h) Pa
Gravitational model g = g(h) m/s2

Altitude for parachute deployment h = 5000 m
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provides a simplified physics-based representation (Sect. 2.4). 
The TPS is modeled approximating the vehicle to a sphere 
with a radius equal to the radius of the nose of the capsule; the 
sphere is then discretized into finite elements for the numeri-
cal solution of the thermo-elastic equations (Sect. 2.5). The 
material chosen for the TPS structural frame is the composite 
zirconium diboride ultra-high-temperature monolithic (UHTC 
ZrB2), whose properties are detailed in Table 4. This mate-
rial has been demonstrated to be very popular for this kind 
of application, given the capability to withstand high tem-
peratures (Viviani and Pezzella (2009); Squire and Marschall 
(2010)).

2.1 � Propulsion system model

The model of the propulsion system evaluates the mass of 
the propellant required to complete the entry maneuver, given 
the propulsive thrust and the engines specifications (Table 2). 
The thrust vector F =

[
FV ,FN

]
 is given by a component FV 

tangential to the trajectory and a component FN normal to the 
trajectory; the magnitude of the thrust F = |F| is defined as 
per the chemical rocket propulsion theory (Sutton and Biblarz 
(2016)):

where ṁP is the propellant mass flow rate and c is the effec-
tive exhaust velocity. Accordingly, we compute the mass of 
the propellant mP as the propellant mass flow integrated over 
the entire burning time Δ = toff − ton from the beginning ton 
to the end toff of the maneuver :

2.2 � Trajectory model

The model of the trajectory allows to evaluate the param-
eters describing the re-entry profile given the thrust vector 
F , and the aerodynamic force coefficients provided by either 

(1)F = ṁPc

(2)mP =

toff

∫
ton

F

c
dt =

F

c
Δt

the low or high-fidelity aerothermodynamic representation 
(Sects. 2.3–2.4). In addition, the model considers the design 
parameters of the trajectory (Table 3) including the point 
of the atmosphere where the entry maneuver begins, the 
mass M and reference area of the vehicle Aref  , the spherical 
gravitational model g(h) , and the model of the atmosphere 
(Atmosphere 1976).

We approximate the descend path as a planar trajectory 
assuming the planet as non-rotating and a constant flight 
path azimuth angle. Accordingly, we compute the descend 
velocity V  , the flight path angle � , the altitude during the 
re-entry h and the longitude angle � from: 

where t is the re-entry time, M is the mass of the vehicle, D 
is the aerodynamic drag, g is the acceleration of gravity, L 
is the aerodynamic lift and RE = 6.378 × 106 m is the Earth 
radius. In our formulation we consider a spherical gravita-
tional model to compute the gravitational acceleration as a 
function of altitude:

where g0 = 9.81m∕s2 is gravitational acceleration at sea 
level. The aerodynamic forces of lift L and drag D are 
defined as follows :

where the free stream density �∞(h) is computed as a func-
tion of the altitude through the atmosphere model, Aref is the 
area of the mid-ship section of the vehicle; CL and CD are 
the lift and the drag coefficients, respectively, given by the 
aerothermodynamic models.

The trajectory parameters V  , � , h and � are computed by 
solving the system of non-linear ODEs  (3) using Runge-
Kutta method. The equations are integrated over the re-
entry time from the moment when the vehicle enter the 

(3a)dV

dt
= −

(D + FV )

M
− g sin �

(3b)V
d�

dt
=

(L + FN)

M
L − g cos � +

V2

(h + RE)
cos �

(3c)
dh

dt
= V sin �

(3d)
d�

dt
=

V cos �

(h + RE)

(4)g(h) = g0

(
RE

RE + h

)2

(5)L =
1

2
�∞V

2ArefCL

(6)D =
1

2
�∞V

2ArefCD

Table 4   Design parameters of the thermal protection system

TPS parameter Description Unit

TPS mass density �TPS = 6000 kg/m3

TPS specific heat (constant pressure) cP = 628 J/kg K
TPS emissivity �TPS = 0.9 −
TPS thermal conductivity ( T = 300K) �TPS = 58 W/mK
TPS thermal conductivity ( T = 1300K) �TPS = 64 W/mK
TPS thermal conductivity ( T = 2300K) �TPS = 134 W/mK
TPS maximum temperature Tmax = 2273.15 K
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atmosphere t1 until the parachute is deployed tf  , when Eq. (3) 
is no longer valid since the additional resistance due to the 
parachute is not considered. The entry maneuver is modeled 
as impulsive, since the propulsion system consists of chemi-
cal engines characterized by a short burning time (Sect. 2.1). 
Accordingly, the thrust components FV and FN are consid-
ered active exclusively for the first integration step, while 
they are set to zero for the following time steps.

For algorithmic reasons (Sect.  4.3), our implemen-
tation collects the parameters of the re-entry trajec-
tory at each time step tz in the matrix � , whose rows are 
�z,∶ =

[
V(tz,F), �(tz,F), h(tz,F), �(tz,F)

]
 . The model is 

developed in Matlab and the Eq. (3) are integrated through 
ODE45 solver. The integration time step is optimized 
according to a tolerance of the error err45 between the results 
of the 4th and 5th order Runge–Kutta method. Figure 3 illus-
trates the re-entry velocity profile for the different altitudes 
crossed along the descend path, for the case of the unpow-
ered re-entry of the Orion-like capsule.

2.3 � High‑fidelity aerothermodynamic model

The high-fidelity aerothermodynamic model computes the 
stagnation point heat flux q̇ and the aerodynamic coefficients 
of lift CL and drag CD , given the geometry parameters of 
the vehicle (Table 1), the velocity V  and the altitude pro-
file h computed with the trajectory model (Sect. 2.2), the 
atmosphere model (Table 3), and the temperature of the TPS 
structure given by the thermo-structural model of the TPS 
(Sect. 2.5).

The fluid flow during the atmospheric re-entry is gov-
erned by the full set of Navier–Stokes equations for viscous 

fluid. We use the finite volume method to discretize the 
equations in space, with a standard edge-based data structure 
where the convective and viscous fluxes are evaluated at the 
midpoint of the edges. The boundary conditions of the com-
putational domain include the body of the re-entry capsule 
and the inlet flow; the outline of the capsule is defined as a 
marker wall on which the temperature of the TPS structure 
TTPS is imposed, while the inlet marker is defined in terms 
of the re-entry velocity V  , the free stream density �∞(h) , the 
free stream temperature T∞(h) , and the free stream pressure 
p∞(h) . We define the computational domain as a semicircle 
of radius equal to 6.3RN , where the capsule is placed on the 
axis of symmetry with the nose at 2.5RN from the center. The 
computational domain is sized to avoid the shock reflection 
back into the domain itself, and is discretized by a mesh with 
near 9.2 × 104 quads elements. The mesh is refined in the 
proximity of the nose to better capture the discontinuities of 
the flow field and the temperature gradients that are critical 
for the structure of the TPS. Figure 4a provides details about 
the discretization of the computational domain considered 
in the model.

We use gmsh (Geuzaine and Remacle 2009) to generate 
the discretization grid and SU2 (Palacios et al. 2013) version 
7.0.3 in RANS steady mode to solve the Reynolds-averaged 
Navier–Stokes equations to predict the effects of the tur-
bulence; for the purpose of demonstrating our multifidelity 
approach, consider the unsteady option would add a level 
of complexity that goes beyond the purpose of this paper. 
However, the method can be in principle extended also to 
the use of URANS instead of RANS implementation. The 
temperature and the flow field obtained with this model are 
the high-fidelity evaluations of the stagnation point heat 
load q̇ acting on the vehicle and of the aerodynamic coeffi-
cients CL and CD . The equations are integrated through Euler 
implicit and the convergence criteria are set minor than 10−6 . 
Figure 4b illustrates the temperature distribution around the 
Orion-like capsule, at an altitude of h = 60 km and for a 
Mach number of 20.

2.4 � Low‑fidelity aerothermodynamic model

The low-fidelity aerothermodynamic model estimates the aero-
dynamic coefficients of lift CL and drag CD , and the stagnation 
point heat flux acting on the TPS structure q̇ , given the re-entry 
flight parameters from the trajectory model (Sect. 2.2), the 
model of the atmosphere (Table 3) and the geometry of the 
capsule (Table 1). The low-fidelity representation is a physi-
cal surrogate model based on the Oswatitsch Mach number 
Independence principle to approximate the aerodynamic 
coefficients, and on Sutton–Grave and Tauber–Sutton formu-
lations to evaluate the convective heat flux and the radiative 
heat flux, respectively. The Oswatitsch Mach number inde-
pendence principle (Oswatitsch 1951) relies on a simplified 

Fig. 3   Profile of the re-entry velocity evaluated with the re-entry tra-
jectory model, for the case of an unpowered re-entry of the Orion-like 
capsule
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inviscid representation of the re-entry flow, that models the 
aerodynamic phenomena as governed by the Euler equations. 
Accordingly, at large values of Mach number the inviscid flow 
field behind the bow shock tends to a limit condition, where 
the lift coefficient CL = 0 and drag coefficient CD = 6.14 are 
constant with altitude.

The total heat flux at the stagnation point transfers to the 
structure of the TPS through convective and radiative energy 
exchanges. The convective heat load is estimated accord-
ing to the Sutton–Grave formulation (Sutton and Graves Jr. 
1971):

where ks = 5.1564 × 10−5 is a constant for the Earth atmos-
phere, RN is the radius of the nose of the capsule and V is the 
re-entry flight velocity.

The radiative heat load is computed using the Tauber-
Sutton formulation (Tauber and Sutton 1991):

where C = 4.736 × 104 and b = 1.22 are constants adopted 
for the Earth atmosphere, a = 1.072 × 106V−1.88�−0.325

∞
 is 

given in function of the descend velocity V  and the density 
of the atmosphere �∞(h) , and f(V) is a tabulated function of 
velocity.

The Sutton–Grave and Tauber–Sutton formulations give 
the total heat load at the stagnation point q̇:

(7)q̇conv = ks

√
𝜌∞

RN

(
V

1000

)3.15

(8)q̇rad = CRa
N
𝜌b
∞
f (V)

This model constitutes the low-fidelity aerothermodynamic 
representation within our framework of disciplinary models.

Figure 5 illustrates the values of the stagnation point heat 
flux computed along the altitude profile of the re-entry with 
this low-fidelity aerothermodynamic model, for the case of 
an unpowered re-entry of the Orion-like re-entry capsule.

2.5 � Thermo‑structural model of the thermal 
protection system

The Thermo-structural model evaluates the temperature of 
the TPS structure TTPS and the mass of the TPS frame mTPS , 
given the total heat load q̇ provided by either the low or the 
high-fidelity aerothermodynamic model (Sects. 2.4–2.3), the 
thickness of the TPS structure sTPS , the material property of 
the TPS (Table 4) and the geometry of the capsule (Table 1).

The structure of the TPS is modeled as an arc of circum-
ference and is discretized into ne = 1000 linear elements, 
approximating the re-entry capsule with a sphere of radius 
equal to the radius of the nose RN . Figure 6a shows an example 
of the discretization of the TPS with ne = 4 finite elements 
for illustration purposes. Figure 6b illustrates the generic e-th 
finite element of the discretization where � is the local refer-
ences axis, n̂e is the versor normal to the element, 1e and 2e 
are the nodes of the element, le is the length of the element, 
and ŵ is the versor representing the direction of the heat flux 
vector �̇ = q̇ŵ . Accordingly, the heat equation is specialized 

(9)q̇ = q̇conv + q̇rad

Fig. 4   a Discretization of the 
computational domain with 
approximately 9.2 × 104 quad 
elements, and b temperature 
contours around the Orion-like 
capsule for an altitude of 60 km 
and for a Mach number of 20
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for the generic e-th finite element and linearized considering 
uniform the thermal conductivity �TPS and the thickness of the 
TPS structure sTPS:

where �TPS , cP and �TPS are, respectively, the density, the spe-
cific heat at constant pressure and the emissivity coefficient 
of the TPS material, � is the Stephan-Boltzmann constant, 
q̇s is the heat source term and T∞(h) is the temperature of the 
atmosphere. The numerical solution of Eq. (10) is computed 
through the Galerkin method over the discretized domain 
that models the structure of the TPS. Thus, the weak formu-
lation is defined as:

The temperature along each element is defined using the 
technique of the separation of variables:

where �(�) are the linear shape functions and 
ΩΩΩe =

[
Ω1e ,Ω2e

]
 are the nodal temperatures of the e-th ele-

ment. The problem is formulated with the Galerkin method 
as follows:

(10)

𝜌TPScPsTPS
dT

dt
− 𝜅TPSsTPS

𝜕2T

𝜕𝜂2
+ 4𝜎𝜀TPST

3
∞
T − 4𝜎𝜀TPST

4
∞
− q̇s = 0

(11)f (T(�, t)) = 0

(12)T(�, t) = N(�)�e

(13)∫
le

0

�T (�)f (T(�, t)) d� = 0

where q̇s = �̇ ⋅ n̂e is the initial condition. Problem (13) 
is a system of ODEs where the nodal temperatures 
ΩΩΩ =

[
ΩΩΩ1,ΩΩΩ2,… ,ΩΩΩne

]
 are the unknowns computed via 

Crank-Nicolson method.
Among them, the nodal temperature at the stagnation point 

Ωstag = max (�) is the most stressfull for the frame and we 
consider it as the temperature of the TPS structure TTPS . Fig-
ure 7 illustrates the profile of the TPS temperature TTPS as a 
function of the re-entry altitudes for the case of unpowered 
re-entry of the Orion-like capsule.

The model of the thermal protection system computes the 
mass of the structural frame of the TPS mTPS:

where STPS is the frontal surface of the spherical shell that 
approximates the structure of the TPS, given by the area of 
the circle with radius equal to the radius of the nose of the 
capsule RN.

(14)mTPS = �TPSSTPSsTPS

Fig. 5   Heat flux evaluated with the low-fidelity aerothermodynamic 
model, for the case of an unpowered re-entry of the Orion-like cap-
sule

Fig. 6   a Example of the discretization of the TPS with 4 elements, 
and b details of the e-th finite element
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3 � Multidisciplinary optimization problem 
formulation

This paper discusses a multidisciplinary framework for the 
design and optimization of re-entry vehicles that integrates 
all the physics-based models discussed in Sects. 2.1–2.5. 
In particular our formulation relies on a multidisciplinary 
feasible architecture (MDF) (Cramer et al. 1994; Balling 
and Sobieszczanski-Sobieski 1996; DeMiguel and Murray 
2006; Martins and Lambe 2013) that is a monolithic MDO 
formulation where all the design variables are handled and 
optimized at the top level. Figure 8 illustrates the Design 
Structure Matrix (Steward 1981; Lambe and Martins 2012) 
for our design problem: as per DSM convention, the disci-
plinary blocks are sorted along the diagonal, the feed for-
ward flows are presented on the upper side, the feedback 
flows are depicted on the lower side.

The design optimization task is carried out at a single 
level and aims at computing the combination of thrust 
capabilities ( F =

[
FV ,FN

]
 ) and TPS sizing (homogeneous 

thickness of the TPS, sTPS ) that jointly minimize the tem-
perature TTPS of the TPS structure, the overall mass mTPS of 
the TPS, and the overall mass of the propellant mP burned 
during the entire entering maneuver. At each iteration of 
the search, all the modeling blocks are evaluated. Given the 
thrust capabilities, the mass of the propellant mP is evaluated 
through the model of the propulsion system (Sect. 2.1). The 
trajectory model (Sect. 2.2) computes the re-entry velocity 
V(tz,F) and the altitude h(tz,F) , at each time stage tz of the 
re-entry trajectory, where t1 is the time the vehicle enters the 
atmosphere at the fixed entry point (Table 3). For each point 
of the trajectory profile, aerothermodynamics phenomena 
are analyzed through either the low-fidelity representation 
(Sect. 2.4) or the high-fidelity model (Sect. 2.3), depending 

on what indicated by our original multifidelity optimiza-
tion algorithm discussed in Sect. 4.3. The aerothermody-
namic models compute the heat flux at the stagnation point 
q̇ , which is used to compute the temperature TTPS and the 
mass mTPS of the TPS structure through the model of the 
thermal protection system (Sect. 2.5). The computational 
flow includes two feedback loops: one couples the model of 
the trajectory with the aerothermodynamic block through 
the aerodynamic forces coefficients CL and CD , the other 
couples the aerothermodynamics and the model of the TPS 
through the temperature TTPS . Once the entire evaluation 
flow is completed, the three quantities mP , mTPS and TTPS 
inform the higher level optimizer.

The design optimization problem is formulated as 
follows: 

The goal is to minimize the multi-objective function 
J(x) that combines the minimization of the mass of the 
TPS structure mTPS(x) , of the temperature of the TPS frame 
TTPS(x) and of the mass of propellant mP(x) in the form of a 
weighted sum. The three objective terms are evaluated with 
respect to a baseline configuration that is characterized by 
the mass of the TPS mTPS0 = 700 kg, the temperature of the 
TPS structure TTPS0 = 1500 K, and the overall propellant 
mass burned during the entering maneuver mP0 = 150kg . 
Those reference values are derived from the features of 
similar re-entry capsules documented in literature (Stewart 
et al. 2018). At the three weight terms are given the fixed 
values of �1 = 0.4 , �2 = 0.4 , and �3 = 0.2 to prioritize the 

(15a)

min
x∈�

J(x)

where J(x) = �1
mTPS(x)

mTPS0

+ �2
TTPS(x)

TTPS0

+ �3
m

P
(x)

m
P0

x =
[
F
V
,F

N
, sTPS

]

s.t F(x) =
.

m
P
c

(15b)q̇(x) = q̇conv(x) + q̇rad(x)

(15c)mTPS(x) = �TPSSTPSsTPS

(15d)err45(x) ≤ 10−6 + 10−3|�z,∶| ∀tz

(15e)RCFD(x) ≤ 10−6

(15f)RG(x) = 0

(15g)100km ≤ h∗(x) ≤ 125km

(15h)
X =[29.2kN, 146kN]

× [0.48kN, 2.4kN] × [0.03m, 0.1m]

Fig. 7   Temperature profile of the TPS structure evaluated with the 
thermo-structural model, for the case of an unpowered re-entry of the 
Orion-like capsule
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minimization of the mass and temperature of the TPS over 
the minimization of the mass of the propellant. This design 
choice is dictated by either the need to reduce the thermal 
stress over the structure to guarantee the vehicle survivabil-
ity during the re-entry, and the decrease of the overall mass 
of the vehicle for larger savings in launch costs. The formu-
lation of the objective function intrinsically defines J = 1 as 
the baseline design solution. As a consequence, lower values 
of the objective function J < 1 identify design solutions that 
perform better than the baseline. The search of the design 
alternatives aims at identifying the combination of design 
variables x =

[
FV ,FN , sTPS

]
 in the design space X  , that mini-

mizes J(x) considering the design parameters including: (1) 
the geometry of the capsule (Table 1); (2) the specifications 
of the thrusters (Table 2); (3) the atmospheric entry point 
and the specification of the atmospheric and gravitational 
models (Table 3); and (4) the properties of the material of 
the TPS (Table 4).

The multidisciplinary feasible formulation requires the 
disciplinary feasibility to be satisfied at each step of the 
optimization: that is, for each design candidate x evaluated 
at each iteration, all the disciplinary models should give a 
feasible outcome. With Constraint (15a) we demand for the 
solution of the thrust equation, Constraint (15b) sets the 
evaluation of the heat fluxes acting on the TPS, and Con-
straint (15c) refers to the evaluation of the structural mass 
of the TPS. In addition, the feasibility of our design optimi-
zation problem also requires the numerical solution of the 
re-entry trajectory model covered by Constraint (15d), of 
the Navier–Stokes equations assured by the Constraint (15e) 

on the computational residuals, and of the numerical solu-
tion of the heat equation imposed by Constraint (15f) on 
the nodal residuals. Finally, we include a limited range of 
allowable altitudes for the entry maneuver (Eq. (15g)) and 
the move limits (Eq. (15h)) of the design space X  ; thrust 
limits are defined according to the chemical engines speci-
fications, while the TPS thickness limits are imposed from 
expert knowledge.

4 � Domain‑aware multifidelity learning

Our method is based on a Bayesian framework for the mul-
tifidelity optimization of black-box functions (Kandasamy 
et al. 2017; Song et al. 2019; Grassi et al. 2021). Bayesian 
optimization combines Gaussian processes to approximate 
the objective function, and an acquisition function to select 
the samples to update the model and enrich the knowledge 
about the design.

A body of literature proposes computational methods for 
multifidelity Bayesian optimization applied to aerospace 
design problems. Among that, Meliani et al. (2019) devel-
oped a multifidelity Bayesian framework to increase the 
efficiency of optimization problems subjected to the curse 
of dimensionality, and demonstrate it for the optimization 
of a subsonic airfoil. Mondal et al. (2019) implemented a 
multifidelity Bayesian strategy for the optimization of a tran-
sonic compressor rotor, where a reduced number of costly 
high-fidelity CFD evaluations are used to enrich a low-
fidelity aerodynamic surrogate. Kontogiannis et al. (2020) 

Fig. 8   Design structure matrix of the multidisciplinary design optimization problem of a re-entry vehicle
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demonstrated that the multifidelity Bayesian optimization 
strategy provides better results than local multifidelity meth-
ods for the case of an high lift airfoil, where is required a 
wide-ranging exploration of the aerodynamic domain. Priem 
et al. (2020) developed a multifidelity Bayesian optimizer 
applied to the multidisciplinary optimization framework of 
an aircraft design, providing better design solutions than 
other popular optimization strategies.

Most works demonstrate the formulations for single dis-
cipline optimization problems. Multidisciplinary optimiza-
tion brings additional challenges associated with the need 
for the multifidelity active learning scheme to account for 
the formulation of the multidisciplinary problem and the 
cross-disciplinary couplings. This motivates the interest for 
original schemes and implementations for specific families 
of multidisciplinary problems.

This work proposes a domain-aware multifidelity frame-
work to include costly high-fidelity aerothermodynamic 
evaluations in the multidisciplinary optimization framework 
developed for re-entry vehicles. Our strategy aims to effec-
tively combine low-fidelity aerothermodynamic data with 
high-fidelity evaluations, to obtain an efficient and accu-
rate estimate of the heat loads acting on the TPS during the 
descend trajectory. Our framework adopts a Gaussian pro-
cess (Sect. 4.1) as the multifidelity surrogate model, that is 
updated iteratively during the optimization process through 
the evaluation of the acquisition function (Sect. 4.2). Specifi-
cally, we rely on a domain-aware active learning scheme to 
adaptively sample the design space, including expert knowl-
edge of the aerothermodynamic domain. The active learn-
ing iteratively selects a new set of design variables to target 
the exploration of design solutions and exploitation of the 
optimal design, while the domain awareness relates to the 
knowledge about the likelihood of heat peaks to rise along 
the descend trajectory and their impact onto vehicle surviv-
ability to inform the selection of the aerothermodynamic 
model to query.

4.1 � Gaussian process regression

The predictive strategy of our multifidelity framework is 
based on a Gaussian process regression, where we predict 
the objective function J based on its observations at pre-
viously evaluated points. The Gaussian process regression 
is a non-parametric kernel-based probabilistic model that 
estimates the uncertainty of the prediction and leverages this 
information to improve the robustness of the predictions on 
future candidates (Rasmussen 2003).

We consider the observations of the objective function 
at the i-th iteration y(xi) = J(xi) + �i as stochastic quanti-
ties, where xi is the combination of the design variables and 
� ∼ N(0, ��) is the measurement noise that we impose nor-
mally distributed with standard deviation �� . As we collect 

observations D0∶i = {D0,… ,Di} where Di = {
(
xi, y(xi)

)
} , 

the prior distribution of the objective P(J) is combined 
with the likelihood function P(D0∶i|J) to produce the pos-
terior distribution P(J|D0∶i) ∝ P(D0∶i|J)P(J) , representing 
the updated beliefs about the objective function. We define 
the prior of the objective function as a Gaussian process: 
J ∼ GP

(
0, �(x, x�)

)
 with mean function �(x) = 0 and covar-

iance function � . Accordingly, the predictive distribution 
of the objective is defined as a Gaussian process with mean 
� and variance �2 functions defined as follows:

where �i is defined as �i(x) ≐ (
�(x, x0),⋯ , �(x, xi)

)
 , the term 

K is the kernel matrix such that K(i, j) = �(xi, xj) , the vector 
y ≐ (

y(x0),… , y(xi)
)T collects the noisy observations and I 

is the i-dimensional identity matrix.

4.2 � Multifidelity acquisition function

Given the availability of high- and low-fidelity aerother-
modynamic models, the acquisition function determines 
the next candidate to sample and identifies the aerothermo-
dynamic model to query at each iteration of the optimiza-
tion process. Our original formulation of the acquisition 
function expands the multifidelity expected improvement 
presented by Huang et al. (2006), and is conceived and 
implemented for the multidisciplinary design of a re-entry 
vehicle. The formulation is valid in principle for M levels 
of fidelity, and in the following we consider m = 1 indicat-
ing the low-fidelity aerothermodynamic model (Sect. 2.4) 
and m = 2 = M for the high-fidelity aerothermodynamic 
model (Sect. 2.3):

where the first term of the Eq. (18) is the definition of the 
expected improvement (Eq. (19)) (Jones et al. (1998)):

where J(x+) is the value of the objective function evalu-
ated at the best set of design variables x+ so far, Φ is the 
cumulative distribution function, � is the probability density 
function of the standard normal distribution, and Z is the 
standardized improvement formulated as:

(16)�(x) = �i(x)
T
(
K + ��I

)−1
y

(17)�2(x) = �(x, x) − �i(x)
T
(
K + ��I

)−1
�i(x)

(18)AF(x,m) = EI(x)�1(x,m)�2(x)�3(x,m)�4(x,m)

(19)

EI(x)

=

{(
𝜇(x) − J(x+)

)
Φ(Z) + 𝜎(x)𝜙(Z) if 𝜎(x) > 0

0 if 𝜎(x) = 0



	 F. Di Fiore et al.

1 3

where the parameter � allows to balance the global explora-
tion of the design space and local exploitation toward the 
optimal design. The acquisition function (Eq. (18)) includes 
data-driven utility functions �1 , �2 , and �3 , and the domain-
aware utility function �4 formulated as follows:

The term �1 (Eq. (21)) is the correlation between the heat 
flux predicted by the m-fidelity model q̇m and the heat flux 
computed with the high-fidelity model q̇M . This allows to 
account for the reduction of the acquisition function when 
the low-fidelity model is evaluated, considering the frac-
tion of uncertainty on the aerothermodynamic output at the 
sample x , that can be discarded once the high-fidelity data 
are available. Considering the physics-based nature of the 
aerothermodynamic representations, the correlation cannot 
be determined as a statistical relationship of dependence 
between a pair of outputs from the models. Therefore, we 
estimate �1 as the complement to 1 of the normalized differ-
ence between q̇m and q̇M . However, the high-fidelity heat flux 
is not available in all the points of the trajectory, since the 
acquisition function selects the aerothermodynamic model 
to query at each step (Sect. 4.3). Thus, when the high-fidelity 
model is interrogated, the low-fidelity model is computed at 
the same time (since its computational cost is negligible) so 
that both low and high-fidelity heat fluxes are available. In 
contrast, when the low-fidelity model is selected, the evalu-
ation of �1 relies on information from an offline test case, 
where low and high-fidelity heat fluxes are evaluated at each 
point of an unpowered descend trajectory of the re-entry 
capsule (Sect. 2).

The function �2 (Eq. (22)) is designed to consider the 
stochastic nature of the objective function observations, 
accounting for the relative reduction of the posterior 

(20)Z =

{
𝜇(x)−J(x+)−𝜉

𝜎(x)
if 𝜎(x) > 0

0 if 𝜎(x) = 0

(21)𝛼1(x,m) = corr
[
q̇m, q̇M

]
= 1 −

q̇m − q̇M

q̇m

(22)
�2(x) = 1 −

��√
�2(x) + �2

�

(23)�3(m) =
�M

�m

(24)

�4(x,m) =

⎧
⎪
⎨
⎪
⎩

1 if m = 1

200
h

h0
if m = 2 ∧ h ∈ H

1 if m = 2 ∧ h ∉ H

standard deviation of the Gaussian process after a new 
observation is added. The function depends on the stand-
ard deviation of the measurement noise �� and on the 
standard deviation of the Gaussian process � derived from 
Eq. (17).

The term �3 (Eq. (23)) accounts for the computational 
cost corresponding to the fidelity of the aerothermodynamic 
representation and is defined as the ratio between the cost 
per evaluation of the high-fidelity model �M and the cost 
associated with the m-fidelity model �m . Thus, �3 is equal 
to 1 for the high-fidelity model and greater than 1 for the 
low-fidelity model. We evaluate the computational cost of 
each aerothermodynamic model as the CPU time required to 
complete a single evaluation. For the specific high and low-
fidelity aerothermodynamic models considered in this paper, 
we set as suitable values for the cost coefficients �1 = 10 s 
and �2=M = 10000 s.

The function �4 (Eq. (24)) is the physics-informed utility 
function, where H = [35 km, 65 km] and h0 = 50 km . �4 
brings the awareness about the re-entry aerothermodynamic 
phenomena: during the re-entry trajectory, the thermal loads 
acting on the heat shield achieve their maximum values for 
altitudes between 35 km and 65 km, as per real-world data 
measured during the atmospheric re-entry of capsules and 
probes (Wright et al. 2006; Trumble et al. 2010; Grinstead 
et al. 2011). We formulate this utility function to make sure 
that the prediction of the heat load in this range of altitudes 
is given by the high-fidelity model, because the temperatures 
are more likely to be critical for the survivability of the TPS 
material. This motivates the choice to set �4 to achieve val-
ues much more larger than 1 for m = M , when the capsule 
navigates the risky range of altitudes, encouraging the selec-
tion of the high-fidelity model to compute the heat fluxes 
affecting the capsule.

To summarize, our formulation of the acquisition function 
(Eq. (18)) allows to select the aerothermodynamic model to 
evaluate considering the accuracy of the heat flux prediction 
(Eq. (21)), the reduction of the uncertainty of the Gauss-
ian process after a new replicate is evaluated (Eq. (22)), 
the increase of the computational cost with the accuracy of 
the model (Eq. (23)), and that in certain domain-dependent 
conditions a model is to be strongly privileged over another 
(Eq. (24)). Each utility function provides important benefits 
to our active learning framework. If �1 is excluded from the 
formulation, the algorithm selects always the lowest-fidelity 
model as it is cheaper to evaluate. If �2 is discarded, the 
algorithm evaluates unnecessary replicates in regions of the 
domain where random errors exist. If �3 is not considered, 
the computational cost does not influence the choice of the 
aerothermodynamic model, so the highest fidelity model is 
always selected. If �4 is not included, the expert knowledge 
about the re-entry domain is out of the picture, so the algo-
rithm is not informed about the critical range of altitudes 
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where the highest fidelity prediction of the thermal loads 
is required.

4.3 � Multifidelity optimization algorithm

Algorithm 1 illustrates the main steps of our multifidelity 
optimization strategy. The starting point is a feasible set of 
design points X ∈ ℝ

3 that satisfy the optimization problem 
constraints in Eq. (15), together with the objective function 
J(x) and the Gaussian process prior GP(0, �(x, x�)) . At the 
first iteration i = 0 , a Latin hypercube draws the initial set 
S0 ⊂ X  of n0 points to compute observations of the objective 
function. Contextually, at each sampled design point x the 
level of fidelity of the aerothermodynamic model is selected 
to evaluate the objective function and obtain the initial data-
set D0 , balancing the elicitation of accurate information from 
the high-fidelity model and the computational cost associ-
ated with its evaluation. For the optimization of the Orion-
like re-entry capsule considered in this paper, S0 comprises 
n0 = 200 design points among which 199 observations of 
the objective function are evaluated with the low-fidelity 
aerothermodynamic model in all trajectory points, and one 
is computed running the high-fidelity model in 3 points of 
the trajectory within the altitudes range of 35 km–65 km 
(highlighted in Sect. 4.2), and the low-fidelity model else-
where along the trajectory. Then, the first Gaussian process 
surrogate model is learned on the dataset D0 and constitutes 
the first prior about the objective function used in the itera-
tion i = 1 of our optimization framework.

Our framework is characterized by a distinguishing fea-
ture about the selection of the aerothermodynamic model 
to query at each step of the optimization procedure. As 
detailed in Algorithm 1, the maximum of the acquisition 
function (Eq. (18)) is sought at each point of the re-entry 
trajectory. By doing so, the computational strategy deter-
mines not only which aerothermodynamic model to evaluate 
at each iteration of the design optimization, but also which 
specific points of the re-entry trajectory require higher 
fidelity estimates of the heat loads at a given iteration. The 
strategy aims to capture whether more accurate estimates of 
the aerothermodynamic phenomena are needed to inform 
the design search on the bases of expert knowledge about 
the thermo-fluid domain, realizing a form of domain-aware 
active learning.

As discussed, our multifidelity active learning strategy 
relies on a Bayesian framework to assist the multidiscipli-
nary optimization of re-entry vehicles. The objective func-
tion is approximated through a Gaussian process regres-
sion (Sect. 4.1), while the multifidelity acquisition function 
(Sect. 4.2) selects the sample to evaluate and the aerother-
modynamic model to query. In particular, at each iteration 
i of the optimization framework discussed in Sect. 3, we 
compute the maximum of the acquisition function AFz in 

all the points z of the re-entry trajectory to select the best 
aerothermodynamic model to query. Then, we pick the new 
sample as the one that maximizes all the evaluations of the 
acquisition function over the re-entry trajectory. 

For each iteration i of our multifidelity strategy, the 
design point xi is selected at the previous step i − 1 , and the 
mass of propellant m(i)

P
 required for the entire entry maneu-

ver and the parameters describing the re-entry trajectory 
�(i) are evaluated solving the propulsion system model and 
the trajectory model (as illustrated in the information flow 
of the DSM in Fig. 8). At this point of the optimization 
flow, the heat load acting on the TPS structure is computed 
through the aerothermodynamic analysis of each point of 
the re-entry trajectory. Considering a time step tz of the 
descend trajectory, the heat flux q̇mz

 is computed with the 
mz-fidelity aerothermodynamic model selected according 
to the maximization of the acquisition function AFz−1 in 
the previous tz−1 time step. Then, the acquisition function 
AFz is evaluated and maximized to select the mz+1-fidel-
ity model to query in the next tz+1 step. This procedure is 
repeated for each time step tz and the heat loads acting on 
the capsule are used as input to compute the TPS model, 
determining the temperature of the TPS structure T (i)

TPS
 and 
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the mass of the TPS frame m(i)

TPS
 . Consequently, the objec-

tive function is evaluated and the new dataset Di is used 
to update the Gaussian process surrogate model. Finally, 
the algorithm computes the maximum of the evaluations of 
the acquisition function at each time step of the trajectory 
and selects the next sample xi+1 . The optimization process 
is terminated when the maximum number of iterations imax 
is achieved.

5 � Results and discussion

This section discusses the results we obtained with the 
multifidelity domain-aware learning for the multidiscipli-
nary design optimization of the Orion-like capsule as a 
vehicle to re-enter the Earth atmosphere. Our multifidelity 
domain-aware active learning method is compared to a 
single-fidelity Bayesian framework based on the efficient 
global optimization formulation (Jones et al. 1998) elic-
iting evaluations of the low-fidelity aerothermodynamic 
model only.

Figure 9 shows the values of J∗ = min(J(x)) obtained 
for 100 iterations of both the single-fidelity (SF) and the 
multifidelity (MF) optimization strategies. The SF results 
are randomized over 50 experiments starting with differ-
ent initial samples of n = 200 points; the MF results are 
obtained for 16 searches, each starting with a different ini-
tial sample of n = 200 points, including both low-fidelity 
and high-fidelity evaluations. The results of the statistics 
are reported in terms of the median values (solid line) of 
J∗ together with the observations falling in the interval 
between the 25th and 75th percentiles (shaded area). In 
particular, Table 5 indicates the median that characterizes 

the distribution of the multifidelity and single-fidelity 
experiments at i=1, 5, 25, 50, and 100.

All the starting samples consist of design points that 
score worse than the baseline (J∗(x) > 1) , and both the SF 
and MF experiments progressively learn from the physics-
based models to search for improved design solutions. How-
ever, our MF domain-aware active learning strategy allows 
to obtain larger improvements with less iterations. For the 
multidisciplinary design of the re-entry capsule discussed 
in this work, we can observe that the MF permits to identify 
design solutions superior to the baseline already at i = 5 for 
a fraction of experiments, and at i = 25 for all the experi-
ments. In contrast, only a fraction of the SF experiments 
achieves improved designs even at i = 100 . On average, after 
100 iterations, our MF strategy permits a design improve-
ment of about 15% with respect to the baseline, whereas 
the SF optimization achieves design upgrades of about 3% . 
The best solution obtained with the SF algorithm scores 
J∗ = 0.9169 , which corresponds to a design improvement of 
8% . The best result obtained with the multifidelity algorithm 
is J∗ = 0.7905 , corresponding to a design improvement of 
21% with respect to the baseline. Table 6 compares the two 
best design solutions identified with the SF and MF optimi-
zation strategies.

Figure 10 depicts the space of the objectives and its pro-
jections to illustrate the search sequence corresponding to 
the multifidelity optimization experiment that gives the best 
design solution that is a capsule with a TPS thickness of 
0.03057 m whose propulsion system can generate 41.79 
kN of tangential thrust and 1.621 kN of normal thrust. This 
configuration of the capsule is characterized by an overall 
TPS mass of 367.4 kg that permits to keep the temperature 
of the TPS structure below 1476 K and requires 93.41 kg of 
propellant mass to complete the re-entry. The initial explora-
tions correspond to high values of TPS temperature because 
the information content is dominated by the low-fidelity 
aerotheromodynamics evaluations. However, the search 
progressively capitalizes the knowledge gained through a 
limited number of high-fidelity aerothermodynamics data 
toward improved (lower) values of all the components of 
the objective functions, with particular benefits in terms 
of reduction of the temperature of the TPS structure. It is 

Fig. 9   Multifidelity and single-fidelity statistics

Table 5   Comparison between multifidelity and single-fidelity median 
values of the minimum of the objective function

i Multifidelity Median Single-fidelity median

i = 1 1.2730 1.396
i = 5 0.9894 1.178
i = 25 0.8732 1.037
i = 50 0.8687 0.9859
i = 100 0.8499 0.9705
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interesting to note that the search structures can be observed 
in the TTPS − mP plane: at first, the higher mP values are 
explored in favor of lower TTPS ; then, three main paths are 
explored which jointly reduce mP and TTPS.

Figure 11 depicts the design space and its projections to 
illustrate the sampling sequence of the corresponding multi-
fidelity optimization experiment in Fig. 10. The initial set of 
design alternatives consists of 200 points obtained through a 
Latin Hypercube sampling of the design space. Each design 
point requires the evaluation of all the time steps of the re-
entry trajectory. For 199 initial design points, the entire re-
entry trajectory is computed with the exclusive evaluation of 
the low-fidelity aerothermodynamic model; only one point 
of the initial sample evaluates the high-fidelity aerothermo-
dynamic model, which is invoked only at three stages of the 
re-entry trajectory. The subsequent sampling process aims 

at augmenting the information about both the design space 
and the identification of better (eventually optimal) design 
solutions through a continuous trade-off between exploration 
and exploitation thrusts. The sampling task is guided by the 
acquisition function (Eq. (18)) that combines data-driven 
and physics-informed utility functions.

Figure 12 shows the heat flux computed at the stagna-
tion point as a function of the altitude levels crossed during 
the re-entry trajectory, for the case of the multifidelity test 
that gives the best design solution. The overall trajectory is 
discretized into 22 stages, but the diagram shows the results 
obtained for altitudes below 85km where the hypothesis of 
continuous flow holds. The maximum heat load of q̇ = 55610 
W/m2 is achieved at h = 57.87 km and is computed with the 
high-fidelity aerothermodynamic model. The multifidelity 
algorithm recommends the evaluation of the high-fidelity 

Table 6   Comparison between 
the best design solutions 
evaluated with the multifidelity 
and the single-fidelity 
algorithms

Method x = {F
V
,F

N
, s

TPS
} m

P
T
TPS

m
TPS

Single-Fidelity x = {70.52kN, 2.098kN, 0.0320m} 156.6 kg 1850 K 384.3 kg
Multifidelity x = {41.79kN, 1.621kN, 0.03057m} 93.41 kg 1476 K 367.4 kg

Fig. 10   Space of the objectives related to the best multifidelity test
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aerothermodynamics for three stages of the trajectory which 
correspond to altitudes where the re-entry conditions are 
critical for the survivability of the capsule. This illustrates 
the role of the domain informed term �4 that characterize the 
particular formulation of our multifidelity acquisition func-
tion: it allows to enrich the low-fidelity aerothermodynamics 
information with expensive simulations capturing the need 
for higher fidelity information when the heat load becomes 
critical for the survivability of the vehicle.

The results discussed in this paper are obtained run-
ning groups of 4 experiments in parallel. We run each test 
on a single core of a desktop PC with Intel Core i7-8700 
(3.2 GHz) and 32 GB of RAM. A single iteration of the 
MF optimization takes approximately 3.6 × 102 min, while 
each iteration of the SF algorithm based on the low-fidelity 
aerothermodynamics takes about 2 min. To assess the com-
putational time possibly associated with the single-fidelity 
Bayesian optimization based on high-fidelity evaluations 
only, consider that a single evaluation of the aerothermody-
namic model at Sect. 2.3 takes about 150 min on the same 
computing platform. This would amount to about 150 × 22 

Fig. 11   Space of the design variables related to the best multifidelity test

Fig. 12   Stagnation point heat flux with altitude outcoming from the 
best multifidelity analysis
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min for a single HF only iteration with a re-entry trajectory 
discretized into 22 stages

6 � Concluding remarks

This paper introduces an original formulation of multifidel-
ity domain-aware active learning for the multidisciplinary 
design optimization (MDO) of re-entry vehicles. We recog-
nize the multi-domain nature of the design task and adopt 
a multidisciplinary feasible architecture to shape the MDO 
problem. Our physics-based modeling framework includes 
several disciplinary blocks: the model of the propulsion sys-
tem; the model of the re-entry trajectory; the thermo-struc-
tural model of the thermal protection system; and two repre-
sentations of the aerothermodynamic phenomena, namely a 
low-fidelity model based on simplified physics assumptions 
and an high-fidelity model based on Navier-Stokes equa-
tions. The objective of the design optimization is to identify 
the best combination of thrust capabilities and TPS size that 
minimizes the mass of propellant burned during the entire 
entry maneuver, the temperature of the TPS structure, and 
the mass of the TPS structure.

The optimization algorithm is based on a Bayesian frame-
work that (i) permits to speed up the search through the 
use of a surrogate model and (ii) allows to actively learn 
the model at each iteration through a tailored and highly 
informative sequential sampling. We use Gaussian processes 
to compute the surrogate models and propose a particular 
multifidelity formulation for the acquisition function that 
guides the active learning task. The goal is to obtain a com-
putational method to wisely select a reduced number of 
expensive high fidelity evaluations that efficiently enrich the 
design knowledge at preliminary stages without an unman-
ageable explosion of the computational cost.

Our acquisition function incorporates both data-driven 
and domain-aware utility functions to drive the iterative opti-
mization process toward the optimal design solution. The 
particular implementation discussed in this paper allows to 
select the aerothermodynamic model to query at each point 
of the discretized trajectory and to identify the set of design 
variables for the next iteration to evaluate. The domain-
aware utility function captures the expert knowledge about 
the range of altitudes where the heat loads are expected to be 
critical. Accordingly, the algorithm prioritizes the interroga-
tion of the costly aerothermodynamic model when higher 
fidelity estimations are essential.

The results for the MDO of an Orion-like re-entry capsule 
demonstrate that the domain awareness capability introduced 
with our multifidelity active learning scheme allows to effec-
tively achieve better design solutions than the single-fidelity 

counterpart informed by the low-fidelity aerothermodynamic 
model. In addition, the computational cost of the design 
solution identified through 100 iterations of our multifidel-
ity optimization strategy corresponds to the expense required 
for 6 iterations of the single-fidelity optimization informed 
by the HF aerothermodynamic model.

Future developments might consider a broader spectrum 
of physical aspects and include models of the vibrational and 
chemical non-equilibrium phenomena to refine the consider-
ations of the aerothermodynamics implications and the esti-
mation of heat loads. An additional avenue to explore could 
expand the model of the trajectory and/or investigate design 
alternatives that comprise the assessment of different entry 
points. Future research would also consider the extension of 
our approach to a multifidelity modeling of more than one 
physical domain involved in the atmospheric re-entry.
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