5,245 research outputs found

    Control of feedback for assistive listening devices

    Get PDF
    Acoustic feedback refers to the undesired acoustic coupling between the loudspeaker and microphone in hearing aids. This feedback channel poses limitations to the normal operation of hearing aids under varying acoustic scenarios. This work makes contributions to improve the performance of adaptive feedback cancellation techniques and speech quality in hearing aids. For this purpose a two microphone approach is proposed and analysed; and probe signal injection methods are also investigated and improved upon

    Equalization Methods in Digital Communication Systems

    Get PDF
    Tato práce je psaná v angličtině a je zaměřená na problematiku ekvalizace v digitálních komunikačních systémech. Teoretická část zahrnuje stručné pozorování různých způsobů návrhu ekvalizérů. Praktická část se zabývá implementací nejčastěji používaných ekvalizérů a s jejich adaptačními algoritmy. Cílem praktické části je porovnat jejich charakteristiky a odhalit činitele, které ovlivňují kvalitu ekvalizace. V rámci problematiky ekvalizace jsou prozkoumány tři typy ekvalizérů. Lineární ekvalizér, ekvalizér se zpětnou vazbou a ML (Maximum likelihood) ekvalizér. Každý ekvalizér byl testován na modelu, který simuloval reálnou přenosovou soustavu s komplexním zkreslením, která je složena z útlumu, mezisymbolové interference a aditivního šumu. Na základě implenentace byli určeny charakteristiky ekvalizérů a stanoveno že optimální výkon má ML ekvalizér. Adaptační algoritmy hrají významnou roli ve výkonnosti všech zmíněných ekvalizérů. V práci je nastudována skupina stochastických algoritmů jako algoritmus nejmenších čtverců(LMS), Normalizovaný LMS, Variable step-size LMS a algoritmus RLS jako zástupce deterministického přístupu. Bylo zjištěno, že RLS konverguje mnohem rychleji, než algoritmy založené na LMS. Byly nastudovány činitele, které ovlivnili výkon popisovaných algoritmů. Jedním z důležitých činitelů, který ovlivňuje rychlost konvergence a stabilitu algoritmů LMS je parametr velikosti kroku. Dalším velmi důležitým faktorem je výběr trénovací sekvence. Bylo zjištěno, že velkou nevýhodou algoritmů založených na LMS v porovnání s RLS algoritmy je, že kvalita ekvalizace je velmi závislá na spektrální výkonové hustotě a a trénovací sekvenci.The thesis is focused on the problem of equalization in digital communication systems. Theoretical part includes brief observation of different approaches of equalizer designing. The practical part deals with implementation of the most often used equalizers and their adaptation algorithms. The aim of practical part is to make a comparison characteristic of different type of equalizers and reveal factors that influence the quality of equalization. Within a framework of the problem of equalization three types of equalizers were researched: linear equalizers, decision feedback equalizers (DFE) and maximum likelihood equalizers (ML). Each equalizer was tested on the model which approximates the real transmission system with complex distortion consisted of attenuation, intersymbol interference and additive noise. The comparison characteristics of equalizers were revealed on the basis of implementation. It was ascertained that ML equalizer has the optimum performance among three equalizers. The adaptation algorithm play significant role in performance of mentioned equalizers. Two groups of algorithms were studied: stochastic and deterministic. The first one includes following algorithms: least-mean-square algorithm (LMS), normalized LMS algorithm (NLMS) and variable step-size LMS algorithm (VSLMS). The second one is represented by RLS algorithm. It was determined that RLS algorithm converges much faster than LMS-based algorithms. The several factors that influenced the performance of all algorithms were studied. One of the most important factors that influences the speed of convergence and stability of the LMS algorithm is step-size parameter. Another very important factor is selecting the training sequence. The big disadvantage of LMS-based algorithms compare to RLS-based algorithms was found: the quality of equalization is highly dependent on the power spectral density of the training sequence.

    Adaptive IIR filtering using the homotopy continuation method

    Get PDF
    The objective of this study is to develop an algorithmic approach for solving problems associated with the convergence to the local minima in adaptive IIR filtering. The approach is based on a numerical method called the homotopy continuation method;The homotopy continuation method is a solution exhaustive method for calculating all solutions of a set of nonlinear equations. The globally optimum filter coefficients correspond to the solutions with minimum mean square error. In order to apply the technique to the adaptive IIR filtering problem, the homotopy continuation method is modified to handle a set of nonlinear polynomials with time-varying coefficients. Then, the adaptive IIR filtering problem is formulated in terms of a set of nonlinear polynomials using the mean square output error minimization approach. The adaptive homotopy continuation method (AHCM) for the case of time-varying coefficients is then applied to solve the IIR filtering problem. After demonstrating the feasibility of the approach, problems encountered in the basic AHCM algorithm are discussed and alternative structures of the filter are proposed. In the development of the proposed algorithm and its variations, the instability problem which is a second disadvantage of IIR filters is also considered;Simulation results for a system identification example validate the proposed algorithm by determining the filter coefficients at the global minimum position. For further validation, the AHCM algorithm is then applied to an adaptive noise cancellation application in ultrasonic nondestructive evaluation. Ultrasonic inspection signal reflections from defects and material grain boundaries are considered. The AHCM algorithm is applied to the noise cancellation mode to filter out the material noise. The experimental results show that the proposed algorithm shows considerable promise for real as well as for simulated data

    Feedrate planning for machining with industrial six-axis robots

    Get PDF
    The authors want to thank Stäubli for providing the necessary information of the controller, Dynalog for its contribution to the experimental validations and X. Helle for its material contributions.Nowadays, the adaptation of industrial robots to carry out high-speed machining operations is strongly required by the manufacturing industry. This new technology machining process demands the improvement of the overall performances of robots to achieve an accuracy level close to that realized by machine-tools. This paper presents a method of trajectory planning adapted for continuous machining by robot. The methodology used is based on a parametric interpolation of the geometry in the operational space. FIR filters properties are exploited to generate the tool feedrate with limited jerk. This planning method is validated experimentally on an industrial robot

    A study on adaptive filtering for noise and echo cancellation.

    Get PDF
    The objective of this thesis is to investigate the adaptive filtering technique on the application of noise and echo cancellation. As a relatively new area in Digital Signal Processing (DSP), adaptive filters have gained a lot of popularity in the past several decades due to the advantages that they can deal with time-varying digital system and they do not require a priori knowledge of the statistics of the information to be processed. Adaptive filters have been successfully applied in a great many areas such as communications, speech processing, image processing, and noise/echo cancellation. Since Bernard Widrow and his colleagues introduced adaptive filter in the 1960s, many researchers have been working on noise/echo cancellation by using adaptive filters with different algorithms. Among these algorithms, normalized least mean square (NLMS) provides an efficient and robust approach, in which the model parameters are obtained on the base of mean square error (MSE). The choice of a structure for the adaptive filters also plays an important role on the performance of the algorithm as a whole. For this purpose, two different filter structures: finite impulse response (FIR) filter and infinite impulse response (IIR) filter have been studied. The adaptive processes with two kinds of filter structures and the aforementioned algorithm have been implemented and simulated using Matlab.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .J53. Source: Masters Abstracts International, Volume: 44-01, page: 0472. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005
    corecore