357 research outputs found

    Best-effort authentication for opportunistic networks

    Get PDF

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares

    On the Feasibility of Real-Time 3D Hand Tracking using Edge GPGPU Acceleration

    Get PDF
    This paper presents the case study of a non-intrusive porting of a monolithic C++ library for real-time 3D hand tracking, to the domain of edge-based computation. Towards a proof of concept, the case study considers a pair of workstations, a computationally powerful and a computationally weak one. By wrapping the C++ library in Java container and by capitalizing on a Java-based offloading infrastructure that supports both CPU and GPGPU computations, we are able to establish automatically the required server-client workflow that best addresses the resource allocation problem in the effort to execute from the weak workstation. As a result, the weak workstation can perform well at the task, despite lacking the sufficient hardware to do the required computations locally. This is achieved by offloading computations which rely on GPGPU, to the powerful workstation, across the network that connects them. We show the edge-based computation challenges associated with the information flow of the ported algorithm, demonstrate how we cope with them, and identify what needs to be improved for achieving even better performance.Comment: 6 pages, 5 figure

    A Distributed Caching System in DTNs

    Get PDF
    Many popular services in the Internet are based on a client-server architecture. This is not an optimal model in some cases. Especially, where the server becomes difficult to reach due to link or path failures or traffic overloadings. This Master's thesis presents a design, implementation and evaluation of a distributed caching system for optimization of content retrieval in Delay-Tolerant Networks (DTNs). The presented solution proposes pushing the content closer to the requesting clients, by caching it in alternative locations on the path between client and server. In this case, the clients are able to retrieve the content with lower latency and fewer network resource consumption. The approach is motivated by the decreasing price of storage in caches. The first part of the thesis introduces the research problem on a general basis, and a literature overview is given to present the current research in the field of Web caching, proactive caching in Content Distribution Networks and caching in DTN environments. A design of the distributed caching system is then presented. Focus is to design a node that can participate in content caching. Theoretical approach is taken to motivate network topologies, routing protocols and distributions of the queries for simulations. The experimental part of the thesis discusses the results of the simulations performed to evaluate the feasibility of the proposed solution. As a result, the presented distributed caching system is shown to increase the overall retrieval performance, as well as reduce the latency for obtaining the responses. In particular, caching policies that aggressively cache items always give the best results, however, with increasing storage costs. Moreover, the distribution of the queried items has a major impact on retrieval performance

    Comnet: Annual Report 2012

    Get PDF

    Content dissemination in participatory delay tolerant networks

    Get PDF
    As experience with the Web 2.0 has demonstrated, users have evolved from being only consumers of digital content to producers. Powerful handheld devices have further pushed this trend, enabling users to consume rich media (for example, through high resolution displays), as well as create it on the go by means of peripherals such as built-in cameras. As a result, there is an enormous amount of user-generated content, most of which is relevant only within local communities. For example, students advertising events taking place around campus. For such scenarios, where producers and consumers of content belong to the same local community, networks spontaneously formed on top of colocated user devices can offer a valid platform for sharing and disseminating content. Recently, there has been much research in the field of content dissemination in mobile networks, most of which exploits user mobility prediction in order to deliver messages from the producer to the consumer, via spontaneously formed Delay Tolerant Networks (DTNs). Common to most protocols is the assumption that users are willing to participate in the content distribution network; however, because of the energy restrictions of handheld devices, users’ participation cannot be taken for granted. In this thesis, we design content dissemination protocols that leverage information about user mobility, as well as interest, in order to deliver content, while avoiding overwhelming noninterested users. We explicitly reason about battery consumption of mobile devices to model participation, and achieve fairness in terms of workload distribution. We introduce a dynamic priority scheduling framework, which enables the network to allocate the scarce energy resources available to support the delivery of the most desired messages. We evaluate this work extensively by means of simulation on a variety of real mobility traces and social networks, and draw a comparative evaluation with the major related works in the field
    corecore