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Many popular services in the Internet are based on a client-server architec-
ture. This is not an optimal model in some cases. Especially, where the server
becomes di�cult to reach due to link or path failures or tra�c overloadings.
This Master's thesis presents a design, implementation and evaluation of a dis-
tributed caching system for optimization of content retrieval in Delay-Tolerant
Networks (DTNs). The presented solution proposes pushing the content closer
to the requesting clients, by caching it in alternative locations on the path be-
tween client and server. In this case, the clients are able to retrieve the content
with lower latency and fewer network resource consumption. The approach is
motivated by the decreasing price of storage in caches.
The �rst part of the thesis introduces the research problem on a general ba-
sis, and a literature overview is given to present the current research in the
�eld of Web caching, proactive caching in Content Distribution Networks and
caching in DTN environments. A design of the distributed caching system
is then presented. Focus is to design a node that can participate in content
caching. Theoretical approach is taken to motivate network topologies, routing
protocols and distributions of the queries for simulations.
The experimental part of the thesis discusses the results of the simulations
performed to evaluate the feasibility of the proposed solution. As a result, the
presented distributed caching system is shown to increase the overall retrieval
performance, as well as reduce the latency for obtaining the responses. In
particular, caching policies that aggressively cache items always give the best
results, however, with increasing storage costs. Moreover, the distribution of
the queried items has a major impact on retrieval performance.
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Il modello client-server su cui si basa la moderna Internet non è sempre un mo-
dello ottimale, ad esempio quando il server diventa di�cilmente raggiungibile a
causa di situazioni di guasto o sovraccaricamento. Questa tesi presenta la pro-
gettazione, implementazione e valutazione di un sistema di caching distribuito,
per l'ottimizzazione dell'information retrieval in reti DTN. La soluzione pro-
posta consiste nel trasportare i contenuti più vicino ai client, replicandoli in
memorie cache distribuite. In questo modo il client può recuperare i contenuti
richiesti con inferiore ritardo e più limitato utilizzo delle risorse di rete. Questa
strategia è motivata dal decrescente costo delle memorie dati.
La prima parte di questa tesi é dedicata alla presentazione dei risultati delle
ricerche nel campo della Web Caching, delle Content Distribution Networks e
delle reti DTN. Segue una descrizione del sistema di caching distribuito, in par-
ticolare dei requisiti necessari per cui un nodo possa diventare un candidato a
partecipare al processo di caching. Inoltre sono presentate le proprietà teoriche
delle topologie di rete utilizzate, dei protocolli di routing, e delle distribuzioni
delle query inoltrate dai clients.
La parte sperimentale di questa tesi consiste nella discussione dei risultati ot-
tenuti tramite simulazioni e�ettuate allo scopo di valutare la fattibilità della
soluzione proposta. I risultati mostrano che il sistema di caching distribuito
contribuisce a migliorare le prestazioni generali, aumentando l'e�cienza del-
l'information retrieval e diminuendo i ritardi necessari ad ottenere i dati ri-
chiesti. In particolare, strategie di caching aggressive portano sempre a migliori
risultati, pur elevando i costi di memorizzazione delle informazioni.
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Chapter 1

Introduction

Today many popular services in the Internet are based on a client-server
architecture. Whenever the Internet users decide to look for some content
online (e.g., a simple text, webpage, image, video or other multimedia �le),
their web browsers act as a client and issue a query for a particular object.
The query message is forwarded through the network towards the server,
where the actual data is stored. The server receives the request and handles
it, together with other requests from the other clients, and sends back a reply
message (containing the requested item) to the requesting user. However, in
some cases this model is not optimal; a single server located in a di�erent
geographical region than the users may become hard to reach within rea-
sonable time. In fact, in some speci�c intervals of time frequency of queries
for a speci�c content may create overloadings in the server, for example,
the European basketball fans connecting simultaneously every morning to
the NBA.com server in New York and checking the previous night's results.
Moreover, link or path failures may create bottlenecks or even prevent the
connections to the server and retrieving the contents.

Possible solutions to make content retrieval process more e�cient have been
suggested already since the early 1990s. This thesis add a contribution to the
previous work. The goal is to optimize the content retrieval, and discuss the
distribution of the contents to multiple locations throughout the network. In

1



CHAPTER 1. INTRODUCTION 2

REQUEST

Figure 1.1: An example of a simple client-server content retrieval operation

particular, the intermediate nodes between the client and the server act as
caches : they are allowed to temporarily store the contents of the messages
that pass through them. This enables future requests for the same items to
be handled by the caching nodes, which can directly send back a response
to the clients without the need of invoking the server. This mechanism
allows faster content retrieval process than without caching. Moreover, the
mechanism leads to decreased resource consumption in terms of bandwidth
by avoiding the transmission of data on the path from cache to server. Several
caching schemes have been developed in order to reduce bandwidth usage
and server load for the retrieval of Web documents [4]. As a result, Content
Distribution Networks (CDNs) were born as a mechanism to support caching
in the Internet. The CDNs comprise a high number of Web servers networked
together and distributed over the Internet. The servers store copies of the
Web contents. In this way, the contents are made available closer to the
requesting clients. The clients do not have to know about caches, but can
access the Internet as normally. This thesis presents a pull-based caching
system that intelligently distributes the contents in the intermediate nodes
to improve retrieval performance.
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An illustrating example is shown in Figures 1.1 and 1.2. In the �rst case, the
client queries the server for a particular data item and a response is sent back
through three intermediate nodes. The second �gure illustrates an optimized
scenario, where a central cache node stores the requested item. Any query for
the item from any other client arriving to the caching node can be handled
without the need of redirecting the request to the server.

REQUEST

Figure 1.2: An optimized content retrieval operation from a cache node

It becomes a challenge to decide in which nodes it is feasible to cache the
di�erent items. An optimal distribution of items helps to cover the nodes
with a high probability of �nding responses from cache and leading to lower
retrieval latency. Moreover, there should not be too many items cached
around the network, since there is a cost for storage and it should not exceed
the savings obtained by not letting the queries be processed directly by the
server.
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1.1 Problem Statement

This thesis addresses problems that arise from di�cult access to resources,
and an access infrastructure that does not optimize the access to shared
items. A solution is proposed to push the content closer to the requesting
client, by caching it in alternative locations. In this case, the requesting
users are able to retrieve the content with lower latency and fewer network
resource consumption. This approach is motivated by the decreasing price
of storage, as well as high amount of bandwidth available for end users.

1.2 Goal and Scope of the Thesis

The main objective of this thesis is to evaluate performance improvement
when introducing caching mechanisms in the intermediate nodes between
client and server. The behavior of the network is analyzed, to investigate
both the distribution and amount of cached items, as well as savings in the
retrieval latency. The scope is limited to networks with static topology that
transfer data in self-contained messages. This transfer model is adopted from
Delay-Tolerant Networking (DTN) research [8]. The model allows to focus
on caching at the application layer and enables to abstract out investigating
the behavior of the network layer protocols such as IP.

1.3 Structure of the Thesis

Chapter 1 introduces distributed caching on a general basis. The chapter
describes, de�nes and limits the research problem in this thesis and describes
possible usage scenarios for discussed mechanisms.

Chapter 2 presents an overview about the related work that has been done
in the past on this research topic. Web caching schemes in the Internet
are presented in section 2.1, while the di�erent push-based approaches for
proactive caching in Content Distribution Networks (CDNs) are discussed
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in section 2.2. Moreover, the caching schemes in the �eld of Delay-Tolerant
Networks are presented in section 2.3.

Chapter 3 presents a distributed caching system; its design is carefully ex-
plained together with the requirements for a node to participate in content
caching. In addition, di�erent types of caching policies are introduced and
compared. Furthermore, the following sections of chapter 3 present the theo-
retical properties of the used topologies, the routing protocols, and the query
distributions.

Simulations are used to evaluate e�ciency of the proposed caching system
and the results are presented in chapter 4. The simulation environment is
brie�y introduced in section 4.1. The simulations are used to investigate the
behavior of the system in di�erent topologies, for several routing protocols
and for di�erent item distributions.

Finally, major �ndings and conclusions are drawn and explained in chapter 5
in order to have an overview of the results. Suggestions for future work and
possible improvements to the presented system are summarized in chapter 6.



Chapter 2

Related Work

Caching is a wide research topic, and several caching schemes have been
proposed in the literature. This chapter presents an overview on the work
done in the past in this research area. In particular, Web caching systems and
Content Distribution Networks (CDNs) are analyzed. Moreover, research on
caching in Ad-hoc and Delay-Tolerant Networks (DTN) are summarized.

2.1 Web Caching Systems

In many types of network, including the World Wide Web (WWW), the
exponentially growing amount of data transferred often leads to overloadings.
For this reason, the need to minimize the user latencies and reduce the overall
network tra�c has been a major motivation to implement caching schemes
in the Web [4],[28] starting from the early 1990s.

Harvest cache [6] was one of the �rst systems to be developed. It is a hierar-
chical mechanism based on the Internet Cache Protocol (ICP) [30]. Whenever
a request is received for a missing object, the node forwards the request itself
to his parent nodes, and so on via a remote procedure call, until the object
is found, and retrieved from the node with a lower latency.

Cachemesh [29] is a distributed caching system built on top of the Harvest.

6
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Its improvement to the precursor arises from the use of co-operative cache
placement and cache routing mechanisms. In fact, nodes contain cache rout-
ing tables so that each of them can be addressed as the caching target of a
subset of the resources to cache. The subset of the resources can then be
retrieved through the routing tables themselves. In this way latency and
search overheads can be dramatically reduced.

Alternatively, in Summary Cache [9] a compact summary of the cache direc-
tory of every other network caching element is kept in memory by each node.
In case of requests for something locally missing, the query can be redirected
properly to the relevant node - or to the server if there are no entries for that
object.

Adaptive Web Caching [15] is a more complex caching system composed of a
tight mesh of overlapping multicast groups. For each new request, the node
checks its own cache and then the cache of all the other group members. If
the look-up is not successful, the request is forwarded to another multicast
group.

Access-driven Cache [31] aims to �nd the most prevalent access patterns to
Web data, so that Web resources are divided into clusters, and nodes which
frequently access them are grouped together. When the resource is not found
the query is sent to the other members of the same information group.

Gwertzman et al. have proposed Geographical Push Caching [10], where
data is dynamically mirrored on a geographical basis, e.g., cached items are
kept close to the clients requesting them. Like Adaptive Caching, this system
is capable to launch cache commands that may cross administrative bound-
aries. While there are many di�erent Web caching schemes, with di�erent
architectures, deployment options, design techniques, the common problem
is often the inter-cache communication, e.g., how to advertise e�ciently the
caching/removing actions to the other nodes [3] as well as the cache consis-
tency [11].
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2.2 Content Distribution Networks

In the modern Internet, with the proliferation of new Web servers all around
the world, as well as the increase of the storage capabilities and the band-
width resources, Content Distribution Networks (CDNs) were born. CDNs
comprise a high number of Web servers networked together and widely dis-
tributed over the Internet. The servers cooperate transparently to the end
user to distribute the Web content the user requested. The content is copied
from the original target server to other servers, so that when a query is issued,
the look-up mechanism automatically redirects it to the most appropriate lo-
cation. BitTorrent [21] can be considered a CDN application that uses a
peer-to-peer overlay network on top of the Internet for content delivery.

Akamai [26] is one of the biggest and most successful commercial CDNs with
over 15'000 servers around the internet. To achieve network diversity and
proximity to users, the servers are distributed in data centers and points
of presence of all of the major Internet and communication carriers. These
servers store the replicas of contents of Akamai Company's customers web-
sites. Akamai also has its own DNS system to ensure fast delivery of the
requested content by resolving the host name of the URL for the requested
content to the IP address of the Akamai replica server that delivers the de-
sired content to the user most quickly. The choice of the replica server to
redirect to is made after extensive network and server measurements by the
Akamai Con�guration Management System (ACMS) [23], which is e�cient,
scalable and resistant to failures. In this way it is possible to modify internal
services' con�guration information with the certainty that the information
is propagated to the replica servers within reasonable time. The system is
quorum-based: whenever a publisher wants to transmit a new version of a
con�guration �le, it contacts an ACMS storage point, and the submission
is not acknowledged until the resource has been re-distributed to a major-
ity of other storage points that have to agree on the submission. Once an
agreement is reached, the data is made ready to be o�ered for distribution
to clients.
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This is done in order to provide a highly available and fault-tolerant man-
agement of con�guration updates.

2.3 Caching in Ad-Hoc and Delay-Tolerant
Networks

Caching becomes even more appealing in the case of Delay Tolerant Net-
works (DTNs) [16] where the end-to-end path from client to server may not
exist at any given time, and the client has to retrieve the needed resources in
some other way. The DTN model makes the communication possible when IP
communication fails [8], by using bundles to carry application data in seman-
tically self-contained application data units (ADUs). Basically, in DTNs the
content retrieval works under the store-carry-and-forward paradigm, where
messages may remain stored in a DTN router's bu�er for a certain amount
of time, and several replicated copies may be spread across several nodes.
E�ects of adding redundancy improved content retrieval performance in [19];
however, adding too much can lead to congestion and block the retrieval of
less-popular resources, leading to fewer responses being delivered. The ob-
servation that resources remain stored in the bu�ers suggests to leverage the
bu�er storage by allowing the nodes to actively understand the resources and
process the related requests at a higher application layer [20]. In fact, while a
message waits in the transmission bu�er, other requests for the same message
can be issued, and if the node has an intelligent view of what he owns in his
queue, it could respond to the query, just as a normal cache would do.

Pitkänen et al. [17] have also proposed a searching scheme in unreliable net-
working environments, with the result that popular contents will likely be
found while items from the long tail only by chance. Moreover, the distance
acts as a decisive factor for the success of the content retrieval. These charac-
teristics lead to a need of implementing a caching scheme which can exploit
both the topological information and the item's popularity as a metric.

DTN caching schemes su�er from security problems because the traditional
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security mechanisms are not always applicable in scenarios without the as-
sumption of end-to-end reliability [2]. Moreover, fairness has to be assumed
for the users, because the whole mechanism works thanks to the donation of
the intermediate node's resources for the system's use. If there are malicious
or sel�sh nodes, the overall performance will degrade. A method to �ght this
problem is proposed in [24].

Seligman et al. [22] have proposed a distributed caching system to share
the load in the network and relieve the server from over-exploitation. They
propose a concept of custody transfer - the use of hop-by-hop reliability
for enhancing end-to-end reliability and clearing retransmission bu�ers at
senders as fast as possible. In simple words, whenever necessary, especially
in the case of congestions, the aim is to try to prevent further tra�c from
�owing even when some outgoing connections are available. After rejecting
the hypothesis of discarding messages, while still using it as a last choice,
the proposed solution is to make the intermediate nodes act as custodians.
Their task is to simply accept custody for messages, store them in the storage
system, retrieve the messages at appropriate times, and keep track of where
stored messages have been placed. A custodian attempts to avoid discard-
ing any message for which it has taken custody, and if it gets congested it
will stop accepting custody for subsequent messages. By doing so, the other
nodes are aware that the custodian has made a promise of keeping the mes-
sage, so they can freely discard or refuse the message itself, knowing that in
case of a need they can easily retrieve it at anytime from the custodian. The
challenge is then to determine which messages to store, and in which nodes:
the message selection can be based on time, size, priority, while the node se-
lection focuses on selecting alternative custodians near to the congested node
(within a k-hop radius, using expanding ring search). The proposed approach
uses migration cost metric that considers both the weighted summation of
the normalized storage cost (available storage space) and transmission cost
(latency, bandwidth, up/down schedules). Moreover, message fragmenta-
tion [18] could be used to take advantage of multiple bu�ers, where each
fragment can be handled by di�erent custodians individually.
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Chuah et al. [7],[32] have proposed a caching scheme called K-copy Intelligent
Caching. It is an enhancement of the KRC, K-copy Random Caching, where
the item is simply cached in k random nodes. KIC implements the concept of
Friendliness Metric (FM) which is calculated as a function of the observation
interval and the number of unique nodes observed. The item is cached in the
node which has the maximum FM in the path, and the action is repeated k

times for di�erent paths.

Cao et al. [5] have implemented a cooperative caching mechanism for Ad-hoc
networks to save bandwidth and power as well as reduce delays by making
nodes act as request-forwarding routers. Multiple nodes share and coordinate
cached data to improve content delivery performance. Nodes pursue to cache
di�erent data items than their neighbors: it is then possible that nodes need
to access some data from their neighbors instead of accessing it locally. Cao
et al. propose two di�erent approaches: caching the path to the data or
caching the data. In the CachePath case, when nodes forward data, they
keep the information (hop distance) between themselves and the source, but
also between themselves and the destination. If successively new requests
for the same data item arrive, the node knows whether the data source or
the caching node is closer and forwards the request properly. Caching the
path results in a reduction of the needed bandwidth and energy because of a
need of fewer hops. However, the caching node may move or delete the data
item, hence the cached path might be unreliable. The node then caches the
data path only if the caching node is very close. Closeness is de�ned as a
function of node's distance to the data source, distance to the caching node,
route stability, and data update rate. On the other hand, in CacheData
case, if the node �nds out that the data is frequently accessed, it caches the
data instead of caching the path. A careful usage is required, because of
the storage space requirements. Cache consistency is based on time-to-live
mechanism: if TTL expires, the node removes the data (or the path) from
its cache. However, if a fresh copy passes by, the node updates the TTL �eld
and eventually also the data item itself if it has been modi�ed by the sender.
The result is that if data size is small CacheData is optimal (no need of large
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storage space), while if TTL is large CachePath is more convenient (as path
information in static networks maintains reliable for a long time). CachePath
performs better than CacheData when the size of available cache is small or
the update rate is low. CacheData performs better in the opposite situation.



Chapter 3

Distributed Caching System for
DTNs

In DTN environments, there is no centralized entity which has a control over
the entire network and is able to have a complete overview of the network
at any given time. The overview would be bene�cial for deciding whether
to cache or not a certain message in a certain node and for maintaining an
optimal distribution of items around the network. Other schemes need to
be developed; in these schemes every node doesn't know a priori information
about the rest of the network, but can only exchange information with the
surrounding nodes.

3.1 Design of the Caching System

3.1.1 Caching Signalling Mechanism

In this thesis, we implement a signalling mechanism, where each node broad-
casts (at regular intervals) the caching information to its neighbors. It sends
a list of the items it has cached, as well as another list called Popularity.
This list is a registration for each di�erent item of the number of times the
item has passed by the node. In this way, each node can build a frequently

13
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updated table containing the cached items in the node and its neighbors as
well as the popularity of the items. These tables cover the sub-region of the
network containing the node and its neighbors.
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Figure 3.1: Processing �ow for an incoming message at the application layer

Figure 3.1 illustrates the node's processing �ow at the application layer, for
di�erent types of message bundles. If the incoming bundle is a signalling
message, the node will update the popularity and the cached items' tables,
without further forwarding of the message. If the incoming message is a
query, the node performs �rst a lookup in its own cache to check if the
content is stored locally. If the lookup operation is successful, the node stops
further forwarding of the query message and generates a response to be sent
to the requesting client. If the item is not cached locally, the node checks
the table of its cached items if one of its neighbors is currently caching the
requested item. If so, the destination of the query message is changed and
the request is redirected to the neighbor node which has the item stored. If
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none of the neighbors is caching the requested item, the query is forwarded as
it is without modi�cations. If the incoming bundle is a response message, the
node �rst updates its popularity table, increasing the counter corresponding
to the item in the bundle. At this point, the node performs the operation of
checking if the content is to be cached. The functionality for this operation
is further explained in the following subsections. If the item yields positive
decision in this operation, it will be stored in the local cache memory. Then,
the cached items table will be updated and a new signalling message will be
sent. The signalling message contains the new updated information about the
cached items. After this operation, whether the item has been cached or not,
the response message is forwarded to its destination. Moreover, signalling
messages are generated by the node and sent to the neighbors at regular
intervals. However, whenever an item is cached, a signalling message is sent
immediately by automatically triggering the clock mechanism.

3.1.2 Caching Policies

Once each node has built its caching and popularity tables, it is ready to
take a decision whether it is feasible to cache a certain item the next time
it passes by. First, it is recommendable to wait for a certain warmup time
before starting to cache, leaving the �rst few messages �ow to the server. In
this way, the popularity values are initialized correctly, avoiding the e�ect
of sampling error when dealing with just a few samples which can lead to
caching mistakes. Second, the node is not allowed to cache items that are
already cached in it or in one of its neighbors. This is done to save storage
space, because it allows the node to know exactly where the item is cached
and the node can easily retrieve it without needing to waste extra resources.
Furthermore, the item is cached in the node only if the node itself holds the
maximum value of the popularity among his neighbors. This assures that
the node really is the right place to cache. In addition, to avoid redundancy,
the transit of a message on a server-client path is not allowed to lead to more
than a single caching decision in an intermediate node.
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It is possible that occasionally these rules are unintentionally broken, or sim-
ply the popularity values change during time and there is need for redrawing
the cache map. For example, it can happen that there is a concurrent access
to the cache system in two adjacent nodes at the same time (or within the
interval between two consequent signalling messages) so that a message is
cached twice. To deal with these situations, the node checks if it holds the
max popularity for the items that the neighbors have cached after the de-
livery of each signalling message. If some discrepancies are found, the node
caches the suggested item the next time it passes by, and sends a Custody
message to the neighbor which used to hold it, telling it that the node keeps
a copy of the message and that it can be deleted from the other cache where
it has no longer reason to be stored.

When a node ful�ls all the aforementioned requirements, it becomes a can-
didate for caching. The actual caching decision is then made considering the
applied caching policy. In Extreme Caching (ExC), the message is always
cached in the candidate node. This policy can lead to a large number of
items cached in the network, and it is recommended for networks where the
nodes have potentially unlimited storage space. Otherwise, in the case of
high cost of storage resources this policy should be avoided.

The Cache-Popular (CP) policy is implemented in a way that the higher the
item's popularity is - compared to the popularity of the other items in the
node - the higher is the probability that it is cached. This is done in order
to exploit the high frequency of access to the popular items and to o�er a
fast and reliable retrieval, as shown in work by Cao et al. [5].

On the other hand, as noticed in [17], in DTN environments retrieving the
less popular items from the long tail becomes di�cult, if not even impossible.
To avoid this problem, the Cache-Unpopular (CU) policy is implemented -
opposite to Cache-Popular - so that the least popular items are cached with
the highest probability.
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3.2 Topology Design

In the analysis part of this thesis, two di�erent kinds of network topology are
used. The �rst is called Grid network topology (Figure 3.2). In this scenario,
a server is located in the center of the network and it is surrounded by cache
nodes, while there are four clients standing at each corner.

Figure 3.2: Grid network topology with d = 4 distance parameter, ψ = 6
shortest paths, and n = 3.2 average node degree

The topology is de�ned by a parameter d, which represents the hopcount
distance between the clients. Consequently, there are (d + 1)2 total nodes
in the network, with the (d− 1)2 in the middle, including the server, having
node degree n = 4. Moreover, there are 4(d − 1) edge caches with n = 3

and the clients have n = 2. The interesting property of this topology is that
there are ψ di�erent alternative shortest paths from each client to the server,
each of which having d hop count length. ψ can be computed as:

ψ =
k∑

i=1

i

(
2k − i− 3

k − 3

)
given k =

d

2
+ 1 ∀k ∈ N, k ≥ 3
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This property can be exploited when using DTN routing protocols, where
there are no routing tables and the path is not predetermined from source
to destination, so the probability of reaching the target through one of the
shortest paths can be increased in a controllable manner. The existence of
multiple shortest paths is the motivation to choose the Grid topology.

Figure 3.3: Ring network topology with r = 10 rings and node degree n = 4

The Ring network topology (Figure 3.3) represents a more uniform scenario,
where the server is also located in the center, but is surrounded by r concen-
tric rings of nodes. The caches are situated on the �rst r− 1 rings and have
customizable node degree n, while the clients stand on the last ring, having
node degree n− 1. However, in this topology there is only one shortest path
from each client to the server - with distance r hops - which will be used only
with probability ( 1

n−1
)
r. Ring topology allows to investigate the behavior of

the system in networks with large path lengths. Moreover, a property of this
topology is that any routing mistake increases the path length by only one
hop.
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3.3 Routing Protocols

The query messages from client to server and the relative responses from
server (or cache) to client are routed in the network using zero-knowledge,
i.e., opportunistic DTN routing protocols. Under this assumption, the nodes
do not need to know any information about the network topology and can
forward the messages according to a predetermined self-controlled mecha-
nism. Three di�erent DTN routing protocols are used in the simulations:
First Contact, Epidemic, and Binary Spray-and-Wait Routing.

In First Contact routing [12], each node randomly chooses one of its neighbors
and forwards to it a single copy of the message. If all interfaces of the node
are busy, the message is held in the forwarding bu�er until the �rst contact
becomes available. To prevent loops, a node is not allowed to forward the
message to a node where the message has already passed by. The message
can be forwarded to a dead end and get lost. First Contact simply forwards
the message to a randomly chosen neighbor in the case of static topologies.

In Epidemic routing [27] each node forwards a copy of the message to all its
neighbors. In this way, the routing protocol eventually achieves very high
message delivery success, but at the cost of �ooding the network with an
exponentially increasing number of duplicate messages. In fact, in a well
connected topology with node degree n and destination node k hops away
from the source, nk messages are generated for a single query or response,
and the message reaches every region of the network, which is not necessarily
desired. In order to limit resource consumption, it is possible to limit the
maximum hop count or the TTL for every message to avoid excess number
of copies.

Binary Spray-and-Wait routing [25], sprays in the source node L copies of
the messages into the network, and then waits until one of these reaches the
destination. In more detail, the source of a message initially starts with L

copies; it then forwards to its �rst contact neighbor (with no copies) bL
2
c

copies and keeps dL
2
e for itself. Subsequently, it forwards half of the copies

it has kept for himself (i.e. bL
4
c ) to the following node, and so on, until one
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single copy is left. In order to reach the destination node k hops away, the
starting value of L is expected to be at least equal to 2k with �xed topology.
The use of this protocol is a good compromise that can exploit the advantages
of both Epidemic and First Contact routing.

However, the caching system has to be tested also in the simpler scenario
where the shortest paths from source to destination can be discovered by
using traditional routing protocols. For this purpose, we have implemented
SRIP, a simpli�ed version of RIP [14]. Every node has a routing table,
containing the mapping between the message destination and the next hop
node where the message has to be forwarded. A simplifying assumption is
made: the routing tables are �xed and static, and known by the nodes from
the start of the simulations.

A

ED

B

Destination Next hop

B B

C B

D D

C

F

E B or D

F D

A local

Figure 3.4: Example of SRIP routing table for node A

One peculiarity of SRIP is depicted in Figure 3.4. Whenever there are more
than one shortest paths between two nodes, like in the Grid topology, the
use of a predetermined routing table can lead to the use of only one of them,
eventually preventing the messages from ever passing through certain nodes.
To solve this problem, the node is free to choose the next hop randomly, in
order to avoid the use of the same path every time and balance the load in
the network. For example, there are two equal shortest paths from node A to
node E (A-B-E and A-D-E) so A can decide to forward the message either
through B or D. However, in the other cases (like the path from A to C)
the path is unambiguous and strictly determined.
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3.4 Query Distributions

In the simulation model of this thesis each server stores n items permanently.
The items are labeled with increasing integer numbers from 1 to n and the
clients issue queries for their retrieval. The query process is then a random
selection of one of the items, each of which can be selected with a certain
probability. The probability is modeled according to a predetermined prob-
ability distribution function (PDF). Three di�erent PDFs are implemented:
Uniform, Quadratic and Pareto distribution.

In Uniform distribution (UD) all items are queried with the same probability.
As a consequence, the probability pi of the i-th item being queried will simply
be (Figure 3.5):

pi =
1

n
∀i ∈ {1...n}
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Figure 3.5: PDF of Uniform distribution with n = 4 items

It is also relevant to implement a model where some items are more likely to
be requested than the others, as the content of the items is more interesting
to a larger number of users. Consequently, in Quadratic distribution (QD)
the items are queried with varying probabilities, so that the i-th item has
a higher probability of being queried than the (i + 1)-th. In particular the
formula used is (Figure 3.6):

pi =
(n− i + 1)2

∑n
i=1 (n− i + 1)2 ∀i ∈ {1...n}
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Figure 3.6: PDF of Quadratic distribution with n = 100 items

Pareto distribution (PD) is an enhancement of the Quadratic, and is used for
better modeling of the real-life distribution of items in the Internet according
to the Long Tail model discussed in [1]. The probability pi of the i-th item
being queried is obtained by (Figure 3.7):

pi =
k

i(k+1)∑n
i=1

k
i(k+1)

∀i ∈ {1...n}

where k is a positive integer-valued parameter.
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Figure 3.7: PDF of Pareto distribution with n = 100 items for three di�erent
values of parameter k



Chapter 4

Simulations

In this chapter simulation results are discussed to evaluate feasibility of the
proposed solution. We combine simulations for di�erent network topologies,
routing protocols, query distributions and caching policies. We evaluate the
performance of the distributed caching system by comparing it to the per-
formance of traditional scenarios with no caching mechanisms.

4.1 Simulation Environment

All the simulations for the purpose of this thesis are performed by using the
ONE - Opportunistic Networking Environment - simulator [13]. The ONE is
a simulation environment written in Java that is capable of modeling either
�xed or mobile network topology, given a settings �le. All the nodes in the
simulation can generate, query and exchange messages using the aforemen-
tioned DTN routing algorithms. The message passing can be monitored in
real-time in the graphical user interface (GUI). For the simulations of this
thesis, extensions to the source code had to be made. A system for metadata
exchange for caching purposes was implemented, as well as a caching prob-
ability function to determine if caching items in the cache node. Moreover,
the queries were given the functionality to be modeled according to di�erent
distributions. Finally, SRIP routing protocol was implemented.

23
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4.2 De�nition of Performance Metrics

First Contact routing is used to compare di�erent caching mechanisms with
four di�erent values of average inter-query time α from 1 to 4 minutes. Inter-
query time is de�ned as the amount of time each client waits after a query
before issuing the next one. This value is uniformly distributed in the interval
[α−30s, α+30s]. The approach allows to analyze the behavior of the system
with di�erent tra�c intensities in the network. With small values of α there
are many queries (and messages) traveling in the network, while there is less
tra�c (because of longer time between messages) when α is higher. The
measurement unit for time is the SimClock attribute in the ONE simulator,
which is expressed in seconds since the start of the simulation.

Binary Spray-and-Wait routing is used to compare di�erent performance
obtained by varying the number L of query messages distributed to the net-
work. As stated in [25], it is expected that a value of L = 2d guarantees
the reachability of nodes d hops away from the source. For this reason, a
subset of values of L (always powers of two) is used to explore the behavior
of the system in the interval L ∈ [2xmin , 2xmax ] where xmin, d, xmax ∈ N and
xmin < d < xmax. For Binary Spray-and-Wait routing, the average inter-
query time is always given value α = 1 minute and the standard deviation is
σ = 30s.

E�ciency η is de�ned as the ratio of responses which �nally reach back to
the clients, against the number of queries issued. It is straightforward that in
the best possible scenario, where all the queries are satis�ed and responded,
the value is η = 1.

Delay τ is calculated as the amount of time elapsed between the moment the
query is issued from the client until the corresponding response is received
back to the client. The delay is registered only for the messages which reach
back to the client, so e�ciency has to be considered as well when evaluating
the delay. The measurement unit is also simulation seconds.

Hopcount κ is the number of hops the response needs to pass by, only con-
sidering its way back from the server (or the cache) to the requesting client.
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Again, the measurement is only for the messages which reach back to the
client, so e�ciency needs to be considered again.

Simulations are run 10 times for each combination of parameters, and aver-
age values are drawn. This allows to decrease the in�uence of the random
variables used. In every graph, the average values are plotted. Every simu-
lation lasts 28'000 SimClock seconds, which is roughly equal to an 8 hours
working day. All parameters of the simulations are resumed in Table 4.1.
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Simulation parameters Value
Network topology [Grid; Ring]
Parameter d (Grid topology) 4
Parameter r (Ring topology) 10
Average node degree 4
Number of clients 4
Number of servers 1
Total number of nodes (Grid topology) 25
Total number of nodes (Ring topology) 41
Query distribution [uniform; quadratic; pareto]
Parameter k for Pareto distribution 1
Routing protocol [FC; SaW; SRIP]
Average inter-query time (FC and SRIP) [1; 2; 3; 4] min
Average inter-query time (SaW) 90 s
Inter-query time standard deviation 30 s
Parameter L for SAW (Grid topology) [8; 16; 32; 64]
Parameter L for SAW (Ring topology) [210 - 220]
Cache policy [NC; CP; CU, ExC]
Cache size 15 Mb
Number n of items 100
Simulation length 28k s (8 hours)
Warmup time 1000 s
Signalling message clock interval 60 s
Forward bu�er size 5 Mb
Link capacity 5 Mbps
Message TTL 60 s
Message size 1 Mb
Number of simulation runs 10

Table 4.1: Parameters used in the simulations
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4.3 Analysis of Grid Topology Scenario

Simulations are performed �rst in Grid topology with parameter d = 4. The
topology is similar to the one presented in Figure 3.2. The server has n = 100

di�erent items in its static memory. The clients are willing to request these
resources. In particular, the client in the top left corner and the one in the
bottom right corner issue queries for the items labeled with an odd number,
while the clients in the top right and bottom left corners request the even-
numbered items. Retrieval performance is �rst analyzed in the case where
the intermediate nodes just forward the messages towards their destination
(No Caching), and then compared to the cases where the caching policies
presented in subsection 3.1.2 are applied.

4.3.1 Evaluation of First Contact Routing
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Figure 4.1: E�ciency η versus inter-query time α for Grid topology with
parameter d = 4, First Contact routing and Uniform distribution

Uniform Distribution

First, e�ciency is measured and the results are presented in Figure 4.1. The
�gure shows that over 65% of the queries successfully reach the server and the
requested items are delivered back to the clients, in a scenario where caching
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Figure 4.2: Delay τ (left) and hopcount κ (right) versus inter-query time α
for Grid topology with parameter d = 4, First Contact routing and Uniform
distribution

is not applied in the nodes. However, adding a caching system improves e�-
ciency by only few percentages for the Cache-Popular and Cache-Unpopular,
and up to η ' 70% on average for Extreme Caching. Another interesting
observation is that performance keeps relatively stable in all tra�c condi-
tions without caching, while it seems that when applying Extreme Caching
retrieval e�ciency increases when the inter-query time is higher. This is
explained by the fact that when there is less tra�c, there is an higher prob-
ability for the messages of successfully reaching their destination without
being queued too long and expire their TTL.

On the other hand, delay and hopcount distance of the reply are clearly de-
creased when using a caching mechanism (Figure 4.2). The delay in the NC
case decreases when the inter-query time is high, and the same behavior is
obtained when applying CP policy, however with not a particular improve-
ment (just 6% on average). This is probably due to the longer waiting times
in the forwarding queues caused by the higher amount of messages in the
network when α is small. Cache-Unpopular and Extreme Caching instead
keep their delay performance stable when varying the inter-query time, with
ExC producing delays smaller than CU in the order of 500 ms on average.

The hopcount distance of replies is also decreased, as 2 to 3 fewer hops
on average are needed to return a response when applying a caching policy
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Figure 4.3: Total number of cached items (left) and percentage of responses
obtained by a cache (right) versus inter-query time α for Grid topology with
parameter d = 4, First Contact routing and Uniform distribution

(Figure 4.2 right). However, the hopcount increases for CP, CU and ExC
policies when the inter-query time increases while it keeps stable in the sce-
nario without caching. This is explained (Figure 4.3 left) by the fact that
when there is less tra�c in the network (higher inter-query time) there are
less items cached and consequently it is less probable that the requests �nd
the cached item on their path. As a consequence, in these cases it is more
probable that the request needs to be anyway forwarded up to the server,
but when α is small a higher percentage of query/response transmissions are
handled by the intermediate caches without invoking the server (Figure 4.3
right). However, the results show that a very small percentage of queries
is responded by the caches when applying Cache-Popular and even when
applying more aggressive policies still more than half of the requests have
to be redirected to the server. This happens when the distribution of the
queries is uniform, because it is statistically very rare that a request issued
for the same item happens to be routed through the same path when we are
using a routing protocol like FC which basically routes randomly. For the
same reasons, Cache-Popular fails to obtain a signi�cative improvement in
all performance tests, as it tends to behave very similarly to the NC. This
happens mostly because the node tries to cache the most popular item be-
tween a large collection of equally popular items, so the choice made is not
always correct and consistent.
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Figure 4.4: PDF of the responses received back for Grid topology with pa-
rameter d = 4, First Contact routing and Uniform query distribution

Figure 4.4 shows the distribution of the items that are successfully received
back in the clients side. For better readability, the graph presents the average
from all samples from all the caching policies. If plotted separately, CP, CU
and ExC would have practically been overlapping, since they roughly have
the same mean value and variance, so we can consider them as the same,
and we can draw general conclusions. It is clear that the average of the
probabilities equals the theoretical value of p = 1

100
presented in Section

3.4, with just a small additional noise contribution. This means that, in
general, if the distribution is uniform all items are received back with the
same probability.

Quadratic and Pareto Distribution

When exploring behavior of the system in a case where the distribution of the
items in the network is not uniform, performance tests give the same results
as for the uniform distribution scenario. In fact, in both the quadratic and
Pareto simulations (Figure 4.5), e�ciency keeps more or less stable between
65% and 70%, with Extreme Caching performing better than Cache-Popular
and Cache-Unpopular, regardless of the inter-query time.

However, when the distribution of the queries is not uniform, the delay is
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Figure 4.5: E�ciency η versus inter-query time α for Grid topology with
parameter d = 4, First Contact routing and Quadratic distribution (left) or
Pareto distribution (right)
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Figure 4.6: Delay τ versus inter-query time α for Grid topology with param-
eter d = 4, First Contact routing and Quadratic distribution (left) or Pareto
distribution (right)
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Figure 4.7: Hopcount κ versus inter-query time α for Grid topology with
parameter d = 4, First Contact routing and Quadratic distribution (left) or
Pareto distribution (right)

considerably reduced (Figure 4.6). In fact, while the delay for NC has the
same average values than in the uniform distribution scenario, applying a
caching policy reduces it to approximately one half for QD distribution and
even to a third for PD distribution. Moreover, the delay in case of any
caching policy increases with the increase of the inter-query time.

The hopcount results are again similar to the UD distribution scenario, as
shown in Figure 4.7. The number of hops needed for retrieving a message
to the client keeps stable for No Caching while it increases with increasing
inter-query time for all the other cache policies.

The main di�erence between the uniform distribution scenario and the others
stands in the amount of items cached and, as a consequence, the percent-
age of responses obtained directly from a cache (Figures 4.8 - 4.9). Since
the distributions are not uniform, the popularity values in the intermediate
nodes are registered correctly, a much easier task than ordering 100 equally
probable items as was needed in the UD distribution case. For this reason,
the caching decisions are performed in a very e�cient way, as even 80% of
the requests are sent by the cache nodes on average for Pareto distribution,
with the need of caching only 30% of the total items needed for the uniform
distribution. Quadratic distribution results are similar, but not so outstand-
ing as in the Pareto case, probably because of a less steep popularity curve,
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Figure 4.8: Total number of cached items versus inter-query time α for Grid
topology with parameter d = 4, First Contact routing and Quadratic distri-
bution (left) or Pareto distribution (right)
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Figure 4.9: Percentage of responses obtained by a cache versus inter-query
time α for Grid topology with parameter d = 4, First Contact routing and
Quadratic distribution (left) or Pareto distribution (right)
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Figure 4.10: PDF of the responses received back for Grid topology with
parameter d = 4, First Contact routing and Quadratic distribution (left) or
Pareto distribution (right)

and consecutive items are likely to be misordered. However, just like in
the uniform distribution case, the percentage of responses obtained from a
cache node decreases with the increase of the average inter-query time, for
both quadratic and Pareto distributions. This is, again, a consequence of
the smaller number of items cached, that causes the need of redirecting more
queries up to the server.

Figure 4.10 (left) presents the distribution of the responses received back,
when the query distribution is quadratic. If we compare these values to the
theoretical ones presented in Figure 3.6, we can see that the most popular
items have even higher probability to be received, while for the least popular
the probability is smaller than expected. This behavior is even more clear in
the case of Pareto distribution (Figure 4.10 right). An interesting observation
is that Cache-Popular results in higher probabilities of receiving items with
a small identi�er, while after a certain threshold (n ' 20) Cache-Unpopular
starts to become the policy who has the higher probability of receiving the
items, for both quadratic and Pareto cases. This is an explanation why
Cache-Unpopular performs much better than Cache-Popular. In fact, while
CP concentrates on caching only few popular items, CU exploits the long
tail, which overall comprises a bigger portion of the items.
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4.3.2 Evaluation of Spray-and-Wait Routing

Uniform Distribution

The simulations for Spray-and-Wait routing use values of L = {8, 16, 32, 64},
i.e., from 23 to 26. The optimal value for reaching nodes 4 hops away, as
proposed in [25], is L = 16 in this Grid topology. As expected, e�ciency
in the No Caching case is really poor when L = 8, while it is acceptable
(more than 70% of queries responded back, and slightly better than with
First Contact routing) only when L = 32. Moreover, when the number
of copies increases further, performance increases again, giving results not
far from full 100% e�ciency. Nevertheless, when applying a caching policy
the performance is even higher. In fact, Cache-Popular gives an e�ciency
value which is two times better than NC, while Extreme Caching performs
at η = 55% e�ciency, both when L = 8. Starting from L = 16 the results
again approach 100% e�ciency (Figure 4.11).
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Figure 4.11: E�ciency η versus number L of message copies initially sprayed
for Grid topology with parameter d = 4, Binary Spray-and-Wait routing and
Uniform distribution

Good performance of caching in terms of retrieval success has its drawback
as an increased delay (Figure 4.12 left). In fact, without caching the delay
keeps more or less constant (τ ' 8.5 seconds) when varying L. If CP, CU or
ExC caching policies are implemented, the delay exponentially increases up
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Figure 4.12: Delay τ (left) and hopcount κ (right) versus number L of mes-
sage copies initially sprayed for Grid topology with parameter d = 4, Binary
Spray-and-Wait routing and Uniform distribution

to τ = 50 seconds on average with L = 64, which is rather unacceptable. This
is caused by the very high number of distributed messages in the network,
which creates longer queues in the forwarding bu�ers and additional latency.
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Figure 4.13: Total number of cached items versus number L of message copies
initially sprayed for Grid topology with parameter d = 4, Binary Spray-and-
Wait routing and Uniform distribution

On the other hand, performance in terms of hopcount is improved (Fig-
ure 4.12 right). As expected NC performs exactly with κ = 4 hops, which is
the shortest path distance calculated in Section 3.2 regardless of the actual
value of L . Cache-Popular, Cache-Unpopular and Extreme Caching can re-
duce the distance of about 1 hop, when L increases. This is due to the fact
that it is more likely, with high values of L, that the query reaches a node
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Figure 4.14: E�ciency η versus number L of message copies initially sprayed
for Grid topology with parameter d = 4, Binary Spray-and-Wait routing and
Pareto distribution

which has cached the desired item within a small distance from the client, as
there are more cached items all around the network (Figure 4.13). Finally,
the percentage of queries responded directly by the cache nodes does not
change when varying L, it remains 57% on average.

Quadratic and Pareto Distribution

Quadratic and Pareto distribution behave similarly than with First Contact
routing. When the query distribution is not uniform, the overall performance
of the system is improved. However, there is not relevant di�erence between
the quadratic and Pareto distribution results, hence only the graphs related
to PD are shown.

E�ciency η with Pareto distribution is shown in Figure 4.14. The results
are notably better than in the UD distribution case, as η is high already
with L = 16. The reason is probably the same that we explained in the FC
routing evaluation, as with uniform distribution the nodes try to cache the
most popular item between a large collection of equally popular items, so the
choice made is not always consistent, while correct decisions are made when
the popularity rankings of the items are clear.
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Figure 4.15: Delay τ (left) and hopcount κ (right) versus number L of mes-
sage copies initially sprayed for Grid topology with parameter d = 4, Binary
Spray-and-Wait routing and Pareto distribution

The delay and hopcount results are also similar to the uniform distribution
case (Figure 4.15). Performance of No Caching keeps always stable, but when
applying any cache policy the delay increases and the hopcount decreases
when L is increased. However, delay is generally smaller than when we have
uniform distribution. The hopcount performance is also better with PD
distribution. Again, all these results are obtained without the need of caching
a large amount of items in the nodes, opposite than with UD distribution,
as shown in Figure 4.16.
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Figure 4.16: Total number of cached items versus number L of message copies
initially sprayed for Grid topology with parameter d = 4, Binary Spray-and-
Wait routing and Pareto distribution
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Percentage of queries responded directly by the cache nodes does not change
when varying L, with an average value of 91% for Pareto distribution. Ad-
ditionally, the distribution of the items that have successfully been received
by the clients is similar to the ones presented in Figures 4.4 and 4.10. From
this point of view, there is no di�erence between First Contact and Spray-
and-Wait routing.

4.3.3 Evaluation of Simpli�ed RIP Routing

When routing the messages with a traditional routing protocol (under the
simpli�ed assumptions mentioned in Section 3.3) like Simpli�ed Routing In-
formation Protocol (SRIP), which assumes a predetermined routing table
in every node, we have a single path between a client and a server and no
topology changes. Hence, there are no packet losses, and all the queries and
responses are successfully delivered to their �nal destination. As a conse-
quence, our results show that e�ciency is η = 1 for all query distributions
and all caching policies when using SRIP. Moreover, since the paths are cer-
tain and determined, results show the presence of a strong direct relationship
between delay and hopcount performance, as they both measure the distance
of the responding node from the client, whether the measurement unit is time
or space.

Uniform Distribution

Delay performance with a uniform query distribution is shown in Figure 4.17
(left). As expected, the delay keeps stable for NC, with an average value
of τ ' 9 seconds, when varying the inter-query time. Quite surprisingly,
also Cache-Popular 's performance is stable, just few milliseconds better than
NC. Extreme Caching gives the best results, with an average delay of only
6 seconds when inter-query time is α = 1 minute. However, when the inter-
query time increases, the delay increases as well, approaching the 9 seconds
threshold value on the long term. Cache-Unpopular 's performance is in the
case of UD distribution very similar to ExC policy case.



CHAPTER 4. SIMULATIONS 40

1 2 3 4

4

5

6

7

8

9

10

Inter−query time

D
el

ay

No Caching
Cache−Popular
Cache−Unpopular
Extreme Caching

1 2 3 4
2.5

3

3.5

4

4.5

Inter−query time

H
op

co
un

t

No Caching
Cache−Popular
Cache−Unpopular
Extreme Caching

Figure 4.17: Delay τ (left) and hopcount κ (right) versus inter-query time α
for Grid topology with parameter d = 4, Simpli�ed RIP routing and Uniform
distribution

Hopcount performance with No Caching policy is always κ = 4, the shortest
path distance from the clients to the server. Similarly to the delay results,
Cache-Popular doesn't give a signi�cant performance improvement. Again,
Cache-Unpopular and Extreme Caching behave very similarly, but can reduce
the hopcount average value by only less than one hop with small values of α,
while when the queries are more sparsely spaced the performance approaches
the NC case. Hopcount results are shown in Figure 4.17 (right).
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Figure 4.18: Total number of cached items (left) and percentage of responses
obtained by a cache (right) versus inter-query time α for Grid topology with
parameter d = 4, Simpli�ed RIP routing and Uniform distribution
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Figure 4.19: Delay τ versus inter-query time α for Grid topology with pa-
rameter d = 4, Simpli�ed RIP routing and Quadratic distribution (left) or
Pareto distribution (right)

Explanation for bad performance can be found in Figure 4.18. Cache-Popular
fails to correctly initialize the popularity values, and caches only few items,
resulting in percentage of responses from cache to approach 0%. Cache-
Unpopular and Extreme Caching, while caching a high amount of items, can-
not obtain more than 42% of responses from cache even in the best case with
α = 1 min. For all caching policies, when the inter-query time increases, the
amount of cached items decreases, and the percentage of responses obtained
by a cache decreases as well.

Quadratic and Pareto Distribution

Caching system performance improves signi�cantly when the query distribu-
tion is not uniform. For both quadratic and Pareto distributions the delay
in the No Caching case con�rms the UD distribution results, and so does
the hopcount performance, with τ ' 9 seconds and κ = 4 (Figures 4.19 -
4.20). Extreme Caching is always the best performing caching policy with
the minimum delay τ ' 4.3 and τ ' 3.7 seconds for QD and PD respectively
when α = 1 minute. Hopcount is also reduced to a small value of κ = 2.7

and κ = 2.5. Cache-Unpopular results are again very similar to ExC policy.
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Figure 4.20: Hopcount κ versus inter-query time α for Grid topology with
parameter d = 4, Simpli�ed RIP routing and Quadratic distribution (left) or
Pareto distribution (right)

However, in this case Cache-Popular performs su�ciently well, with a delay
just about one second higher than with Extreme Caching on average (and
less than 0.5 hops more) for both quadratic and Pareto distribution. As in
the previous simulations, delay and hopcount increase with the increase of
inter-query time α for all caching policies.
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Figure 4.21: Total number of cached items versus inter-query time α for
Grid topology with parameter d = 4, Simpli�ed RIP routing and Quadratic
distribution (left) or Pareto distribution (right)

Figures 4.21 and 4.22 explain these improved results. In fact, even if caching
six times less items than in the UD distribution case, with a Pareto query dis-
tribution we can obtain up to 70% of responses from a cache. For quadratic
distribution however, about a half of the total items for the UD case are
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Figure 4.22: Percentage of responses obtained by a cache versus inter-query
time α for Grid topology with parameter d = 4, Simpli�ed RIP routing and
Quadratic distribution (left) or Pareto distribution (right)

cached, resulting in almost 60% of responses from cache. Again, for all
caching policies, the number of items cached and the percentage of responses
obtained from cache both decrease with the increase of average inter-query
time. Like in the previous results, Extreme Caching requires the highest
amount of cached items, followed by Cache-Unpopular. Cache-Popular in-
stead always tends to cache a very small amount of items.
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4.4 Analysis of Ring Topology Scenario

In this section, simulations are performed in a Ring topology with r = 10

concentric rings and node degree n = 4, like the one presented in Figure 3.3.
The server has in its static memory n = 100 di�erent resources, that the
clients are willing to request. Like in Grid topology, the client in the top
left and the one in the bottom right corner request odd items, while the
client in the top right corner and the one in the bottom left corner query for
even-numbered items. Again, performance is �rst analyzed in the case where
the intermediate nodes just forward the messages towards their destination,
and then compared to the cases where Cache-Popular (or Cache-Unpopular)
and Extreme Caching are applied. Simulation results show in several cases
similar behavior than for Grid topology: for this reason, whenever not dif-
ferently explained, the conclusions drawn in the previous section are valid.
In particular, the performance of ExC policy is always better than CU and
CP.

4.4.1 Evaluation of First Contact Routing

Uniform Distribution

E�ciency �gures for First Contact routing in the ring topology show un-
acceptable performance (Figure 4.23). Simulations give results of η = 15%

regardless of the inter-query time for NC. However, when applying any cache
policy, there is no apparent improvement, and performance keeps stable.

On the other hand, di�erently than Grid topology, delay performance keeps
stable for every value of α in the No Caching case, while using a caching
mechanism reduces the retrieval time (Figure 4.24 left). The same behavior is
observable for hopcount performance (Figure 4.24 right). Again as the inter-
query time increases, performance for delay and hopcount metrics su�ers
and closes to NC performance, as there are fewer cached items around the
network (Figure 4.25 left) and less responses are handled by cache nodes
(Figure 4.25 right), i.e., as most 30% with ExC.
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Figure 4.23: E�ciency η versus inter-query time for Ring topology with
r = 10 rings and node degree n = 4, First Contact routing and Uniform
distribution
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Figure 4.24: Delay τ (left) and hopcount κ (right) versus inter-query time
for Ring topology with r = 10 rings and node degree n = 4, First Contact
routing and Uniform distribution
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Figure 4.25: Total number of cached items (left) and percentage of responses
obtained by a cache (right) versus inter-query time for Ring topology with
r = 10 rings and node degree n = 4, First Contact routing and Uniform
distribution

Quadratic and Pareto Distribution

First Contact routing performs again very poorly in the case of No Caching
policy, as we have e�ciency η ' 13% for all the values of α. However, di�er-
ently than with UD distribution, performance is improved when applying the
caching schemes. Extreme Caching performs about 6% better than Cache-
Popular, and Cache-Unpopular shows performance between these cases. Qua-
dratic distribution shows e�ciency up to 43% for ExC (Figure 4.26 left),
while the best result with Pareto distribution is 57% (Figure 4.26 right).
Moreover, one observation stands out quite clearly: for all caching schemes
e�ciency increases when there is more tra�c, i.e., with smaller values of
α. The conclusion is again that when there are more messages travelling in
the network, it is more probable that a nearby caching node has stored the
requested message.

Delay in the case of No Caching has the same average value than in the
UD distribution case, i.e., τ ' 45 seconds for both quadratic and Pareto
distribution. When applying cache mechanisms, the delay increases with the
increase of the inter-query time. However, quadratic distribution leads to a
delay of 15-20 seconds, while Pareto distribution even reduces delay down to
6 seconds on average (Figure 4.27).
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Figure 4.26: E�ciency η versus inter-query time for Ring topology with
r = 10 rings and node degree n = 4, First Contact routing and Quadratic
distribution (left) or Pareto distribution (right)
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Figure 4.27: Delay τ versus inter-query time for Ring topology with r = 10
rings and node degree n = 4, First Contact routing and Quadratic distribu-
tion (left) or Pareto distribution (right)
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Figure 4.28: Hopcount κ versus inter-query time for Ring topology with
r = 10 rings and node degree n = 4, First Contact routing and Quadratic
distribution (left) or Pareto distribution (right)

Characteristics of hopcount performance are very similar. Hopcount is κ ' 24

for NC for both non-uniform distributions. The use of a caching systems re-
duces the hops needed to retrieve the response, with Extreme Caching having
its best result with κ ' 10 for inter-query time α = 1 minute and quadratic
distribution (Figure 4.28 left), and κ = 6 for Pareto distribution (Figure 4.28
right).

Figure 4.29 shows the amount of cached items in the system. The results
con�rm the observations obtained with the Grid topology, where Pareto and
quadratic distribution require to cache less items than with UD distribu-
tion. However, QD can provide up to 70% of responses obtained from a
cache, while even 95% performance can be reached with PD distribution
(Figure 4.30).
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Figure 4.29: Total number of cached items versus inter-query time for Ring
topology with r = 10 rings and node degree n = 4, First Contact routing
and Quadratic distribution (left) or Pareto distribution (right)
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Figure 4.30: Percentage of responses obtained by a cache versus inter-query
time for Ring topology with r = 10 rings and node degree n = 4, First Con-
tact routing and Quadratic distribution (left) or Pareto distribution (right)
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Figure 4.31: E�ciency η versus number L of message copies initially sprayed
for Ring topology with r = 10 rings and node degree n = 4, Binary Spray-
and-Wait routing and Uniform distribution

4.4.2 Evaluation of Spray-and-Wait Routing

Uniform Distribution

According to the paper by Spyropoulos et al. [25], implementing a Binary
Spray-and-Wait routing mechanism with initial number of copies L = 210 =

2048 should be enough to reach nodes within 10 hops distance, like in the
Ring topology we use. However, our results indicate that only 0.002% of the
queries reach back to the �nal target, i.e., an amount of data too small to
have realistic analysis. This bad result is motivated by the fact, as explained
in Section 3.2, that the probability of �nding the shortest path is just ( 1

n−1
)
r.

For this reason, values of L smaller or equal than 210 are not considered, hence
we are focusing on the interval L ∈ [211, 220] acknowledging that these values
are extremely high (up to a million messages sprayed for a single query):
Spray-and-Wait �ts poorly in static topologies with large path lengths.

E�ciency of NC policy increases, as expected, with the increase of L (Fig-
ure 4.31). However, while performance of Cache Popular and Extreme Caching
is better, the improvement is just 10% and 20% on average, respectively for
CP and ExC.
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Figure 4.32: Delay τ (left) and hopcount κ (right) versus number L of mes-
sage copies initially sprayed for Ring topology with r = 10 rings and node
degree n = 4, Binary Spray-and-Wait routing and Uniform distribution

Di�erently than Grid topology, in this situation delay does not increase so
rapidly in the NC case when increasing L (Figure 4.32 left). Nevertheless,
when appliying CP, CU or ExC policies the behaviour is the same, with
delays intolerably high, up to τ ' 130 SimClock seconds. This depends
on the very high number of messages travelling in the network, due to high
values of L.

Hopcount performance κ is improved, as about two less hops are needed for
NC than are requested in the case of CP policy and even less for Extreme
Caching (Figure 4.32 right). This behavior is similar to what was observed
with Grid topology, with the only di�erence that without caching, the average
value of κ increases with the increase of L while in the other case (Figure 4.12
right) it was stable. One possible explanation is that with high values of L

the probability of reaching the destination through longer paths is included,
so that the average is in�uenced. However, when we explore the data further
we can see that the majority of the entries have a hopcount value of κ ' 11.

Quadratic and Pareto Distribution

When the query distribution is not uniform, e�ciency does not change con-
siderably, so the results are comparable to Figure 4.31. However, delay and
hopcount are notably reduced (Figures 4.33 - 4.34). In particular, delay is
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Figure 4.33: Delay τ versus number L of message copies initially sprayed
for Ring topology with r = 10 rings and node degree n = 4, Binary Spray-
and-Wait routing and Quadratic distribution (left) or Pareto distribution
(right)

reduced by 20 seconds on average with quadratic distribution, and up to
30 seconds with Pareto distribution. The hops needed for delivering the
responses are reduced to κ = 6.5 on average for QD and κ ' 4 for PD.
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Figure 4.34: Hopcount κ versus number L of message copies initially sprayed
for Ring topology with r = 10 rings and node degree n = 4, Binary Spray-
and-Wait routing and Quadratic distribution (left) or Pareto distribution
(right)
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4.4.3 Evaluation of Simpli�ed RIP Routing

Simulation results for SRIP routing in Ring topology con�rm the results ob-
tained in Section 4.3.3. In the No Caching case delay and hopcount keep
stable for all inter-query time values, and all query distributions (τ = 25

seconds and κ = 10 hops). On the other hand, when applying any caching
mechanism, delay and hopcount increase with the increase of inter-query
time. In particular, delay can be reduced to 17, 14 and 12 seconds (with Ex-
treme Caching) for uniform, quadratic and Pareto distribution respectively,
while hopcount is as small as 8.1, 6.5 and 5.1 hops in the three cases. More-
over, as mentioned previously for other simulations, Pareto and quadratic
distribution require less items to be cached than uniform distribution, but
they can provide a higher percentage of responses obtained from cache (in
this case up to 56% for PD distribution). Detailed results are shown in
Figures 4.35 - 4.40.
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Figure 4.35: Delay τ (left) and hopcount κ (right) versus inter-query time
for Ring topology with r = 10 rings and node degree n = 4, Simpli�ed RIP
routing and Uniform distribution
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Figure 4.36: Total number of cached items (left) and percentage of responses
obtained by a cache (right) versus inter-query time for Ring topology with
r = 10 rings and node degree n = 4, Simpli�ed RIP routing and Uniform
distribution
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Figure 4.37: Delay τ versus inter-query time for Ring topology with r = 10
rings and node degree n = 4, Simpli�ed RIP routing and Quadratic distri-
bution (left) or Pareto distribution (right)

1 2 3 4
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Inter−query time

H
op

co
un

t No Caching
Cache−Popular
Cache−Unpopular
Extreme Caching

1 2 3 4
5

6

7

8

9

10

11

Inter−query time

H
op

co
un

t No Caching
Cache−Popular
Cache−Unpopular
Extreme Caching

Figure 4.38: Hopcount κ versus inter-query time for Ring topology with
r = 10 rings and node degree n = 4, Simpli�ed RIP routing and Quadratic
distribution (left) or Pareto distribution (right)
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Figure 4.39: Total number of cached items versus inter-query time for Ring
topology with r = 10 rings and node degree n = 4, Simpli�ed RIP routing
and Quadratic distribution (left) or Pareto distribution (right)
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Figure 4.40: Percentage of responses obtained by a cache versus inter-query
time for Ring topology with r = 10 rings and node degree n = 4, Simpli�ed
RIP routing and Quadratic distribution (left) or Pareto distribution (right)
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4.5 Cache Maps

This section provides discussion on how the proposed system distributes
the content in the network, i.e., which nodes are most probably chosen for
caching. The following results are collected from the simulations that use
the best performing cache policy (Extreme Caching) with Pareto query dis-
tribution in a Grid topology scenario. However, the behavior of other cache
policies is similar from this point of view, even if they require less cached
items on average. Similar results can be obtained also with a quadratic
query distribution. On the other hand, uniform distribution requires a very
high number of items cached, so that large amount of caching resources is
required and this type of analysis is not reasonable. In the case of Ring
topology, di�erent clients do not share paths to the server and the requests
that pass in an individual cache node are all coming from the same direction.
As a consequence, the popularity values are the same for every intermediate
node, so the items are cached with equal probability along the entire path.
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Figure 4.41: Distribution of cached items in the network, for Grid topology
with parameter d = 4, First Contact routing, Extreme Caching policy and
Pareto distribution
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Figures 4.41 - 4.43 depict the network topology (as in Figure 3.2) and high-
light the nodes, both with size and color of the glyph, that cache on average
the highest amount of items. As explained in the previous sections, First
Contact routing (Figure 4.41) requires to cache on average less items than
Binary Spray-and-Wait (Figure 4.42). SRIP (Figure 4.43) minimizes the use
of resources by exploiting the shortest paths, hence it requires the smallest
amount of cached items. However, it stands out clearly that for every routing
protocol used, the nodes which tend to be used mostly for caching are the
ones closer to the server.
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Figure 4.42: Distribution of cached items in the network, for Grid topology
with parameter d = 4, Spray-and-Wait routing, Extreme Caching policy and
Pareto distribution

In particular, the use of opportunistic DTN routing protocols results in the
exploitation of all paths in all directions of the network. For this reason,
the nodes within the same hop distance from the server are used for caching
with the same probability. This probability remains higher as the hopcount
distance to the server decreases. The behavior is particularly clear for Spray-
and-Wait, where the cache map is symmetric and we can clearly identify
di�erent rings of nodes with equal amount of items cached.
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On the other hand, the use of SRIP leads to a di�erent behavior. In fact,
the edge nodes are almost never used, while the central nodes within only
one hop distance from the server are not used with the same probability.
The nodes in the top-down direction cache a number of items notably higher
than those in the left-right direction. This behavior is explained by the fact
that those nodes are located on the last segment of the shortest path that is
shared between clients that request the same items.
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Figure 4.43: Distribution of cached items in the network, for Grid topology
with parameter d = 4, SRIP routing, Extreme Caching policy and Pareto
distribution
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Conclusions

A distributed caching system was presented in this thesis. Simulation results
were shown to illustrate that the system helps to increase the overall retrieval
performance, as well as reduce the delay and hopcount for obtaining the re-
sponses from the network. In particular, a policy that aggressively caches
items (Extreme Caching) was shown to always give the best results. More
conservative performance improvement is achieved by less aggressive poli-
cies (Cache-Unpopular and Cache-Popular). On the other hand, Extreme
Caching results in high storage cost, as it requires the caching of high num-
ber of items around the network. For this reasons, this aggressive caching
policy should be used only when the storage space is not a scarce resource.
Moreover, when the probability distribution of the queries is uniform, apply-
ing caching does not yield to as good retrieval performance improvement as
in the case of non-uniform query distributions. In latter case, Pareto distri-
bution performs better than quadratic distribution. For example, a policy
that caches popular items (Cache-Popular) together with uniform distribu-
tion of queries fails to obtain a signi�cative improvement in all performance
tests with DTN routing protocols, as it tends to behave similarly to the
situation without caching. This happens mostly because the node tries to
cache the most popular items between a large collection of equally popular
items, so the caching decision is not always correct and consistent. Further-
more, when the query distribution is not uniform, caching less popular items
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(Cache-Unpopular) performs much better than Cache-Popular in terms of
increased e�ciency and reduced delay. In fact, while Cache-Popular concen-
trates on caching only few popular items, Cache-Unpopular exploits the long
tail, which overall comprises a bigger portion of the items.

First Contact routing protocol was used to explore performance of the caching
system when random path discovery is used. This avoids distribution of
multiple message copies in the network. However, it does not seem recom-
mendable, as retrieval e�ciency is mediocre at its best and applying caching
mechanisms does not yield to considerable improvements. This result is seen
in simulations with di�erent topologies (Grid and Ring) which have varying
node degrees. Moreover, retrieval performance in networks with large path
lengths (Ring topology) is very poor, as only few requests are handled cor-
rectly. However, caching reduces the average delay of the responses. In this
scenario, the delay has two di�erent components. On one hand, the actual
transmission delay is higher when there is more tra�c in the network, be-
cause there are longer waiting times in the forwarding bu�ers. On the other
hand, a higher number of cached items, together with increased tra�c, helps
to reduce retrieval delay by allowing the retrieval from intermediate cache
nodes, which are physically closer to the requesting clients.

In the case of topologies with high number of shortest paths (Grid topology)
and with uniform query distribution, caching does not give notable delay
reduction and the tra�c delay increase is very strong, while with non-uniform
distributions the behavior is opposite. In networks with large path lengths
(Ring topology), the absolute value of the delay is higher, so that the tra�c
component of the delay has only a small e�ect. The total number of items
cached in the network decreases with the decreased amount of tra�c in the
network, and so does the percentage of responses obtained from cache nodes.
However, the distance of replies, measured in terms of hopcount, increases
with the decrease of the amount of tra�c. For these reasons, single-copy
routing with random walk (First Contact) should be used only where the
retrieval latency is the primary goal, and it will be eventually possible to
retransmit the request after a certain time if not successful.
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Another routing protocol that spreads a limited number of message copies
(Binary Spray-and-Wait) gives better retrieval performance results, espe-
cially when increasing the number of message copies, giving results not far
from 100% e�ciency. This allows to increase the explored portion of the net-
work by varying the number of copies sprayed. Good performance of caching
in terms of retrieval success has its drawback in terms of high delay, which
exponentially increases when increasing the number of created copies. This
is caused by the very high number of distributed messages in the network,
especially in networks with large path lengths (Ring topology), which results
in long queues in the forwarding bu�ers. For these reasons, Binary Spray-
and-Wait should be used only when the priority is to retrieve correctly a
large portion of the messages, in scenarios where the retrieval latency is not
a key factor.

Epidemic routing allows to explore the entire network by �ooding the query
messages in a manner similar to broadcast. However, simulations showed
that �ooding presents the same performance improvement results as Spray-
and-Wait, but it results in higher cost in terms of delay and amount of tra�c.
Hence, its use is not recommended.

The use of traditional routing schemes which use a single shortest path to
destination (SRIP) gives the best overall performance, as delay and hopcount
show the smallest values in all simulations, and retrieval success is always
100%. However, in a real-life DTN scenario it is not always possible to have
the routing tables distributed in such a e�cient way and, most importantly,
the stability of the paths can vary. Nevertheless, at least some topological
information should be used by the routing protocol, to e�ciently forward
queries and responses and to obtain acceptable performance.
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Future Work

A lot of research on caching has been done in the past, leading to numer-
ous caching approaches. In this thesis we explore only some of them, and
design and implement a distributed caching system. The proposed system
serves as a basis for further work and improvements, where there is space for
implementing new cache management mechanisms as networking technology
evolves. For example, the popularity distribution of the queries appears to
be a key factor for the caching performance. For this reason, new types
of content distribution mechanism have to take into account the evolving
distribution of items in the Internet, as well as alternative more sparse net-
work topologies. Moreover, the models that describe clients' behavior can be
improved, for example, to model more realistically the tra�c and the inter-
query times observed in the real Internet, with di�erent peak tra�c behavior
at di�erent times during the day, and for various time zones of the world.
Furthermore, better congestion control techniques can be implemented, for
example a mechanism of alternative custodians to deal with the problem of
full forwarding bu�ers and caches, and mechanisms to handle the incoming
requests when they exceed the link capacity.

Another important factor that an e�cient caching system should take into
account is the distance of the cache node from the client. In fact, a system
based on popularity tends to cache the items in the nodes with the highest
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tra�c, which are typically near the server. In this case, the savings in terms
of transmission cost are not always worth the cost of storage, and the system
should be able to push the contents closer to the client. For this reason, nodes
should be aware of their location in the network, and their distance both from
the server and the client. The caching distance could serve as an additional
input to the �nal caching decision, together with the content popularity.
In addition, evaluating the tradeo� between the incurred storage cost and
the retrieval performance improvement from caching seems an interesting
challenge. This can help to gain deeper understanding about which caching
policy has the best outcome.

Finally, a distributed caching system should also take into account special
needs of mobile DTNs, where the use of opportunistic routing protocols is a
more reasonable approach. Moreover, running the proposed caching system
in the real Internet requires an overlay architecture which needs to be further
investigated.
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