119,501 research outputs found

    Experimental and theoretical evidence for molecular forces driving surface segregation in photonic colloidal assemblies

    Get PDF
    Surface segregation in binary colloidal mixtures offers a simple way to control both surface and bulk properties without affecting their bulk composition. Here, we combine experiments and coarse-grained molecular dynamics (CG-MD) simulations to delineate the effects of particle chemistry and size on surface segregation in photonic colloidal assemblies from binary mixtures of melanin and silica particles of size ratio (Dlarge/Dsmall) ranging from 1.0 to similar to 2.2. We find that melanin and/or smaller particles segregate at the surface of micrometer-sized colloidal assemblies (supraballs) prepared by an emulsion process. Conversely, no such surface segregation occurs in films prepared by evaporative assembly. CG-MD simulations explain the experimental observations by showing that particles with the larger contact angle (melanin) are enriched at the supraball surface regardless of the relative strength of particle-interface interactions, a result with implications for the broad understanding and design of colloidal particle assemblies

    Anarchic manufacturing: implementing fully distributed control and planning in assembly

    Get PDF
    This paper demonstrates that a distributed control and planning system can fulfil an idealised mixed-model assembly problem and compete with traditional systems. The anarchic manufacturing system is a distributed planning and control system, based on a free market structure, where system elements have decision-making authority and autonomy. Mixed-model assembly is typically managed centrally for production planning and control, using simplification and hierarchical structures to manage complexity. In developing anarchy, inter-job cooperation is implemented to synergise jobs together and fulfil global objectives efficiently. The anarchic system maximises available flexibility, through embracing complexity, and reduces myopic decision making by maximising an agent’s lifetime profitability. Through agent-based simulation experiments, the anarchic system is compared to fixed and flexible centralised systems. The proposed system outperforms traditional systems when the scenario’s structural flexibility allows agile and delayed dynamic decision making. Additionally, the anarchic system managed dynamic bottleneck disruptions as effectively as flexible centralised systems

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    SALBPGen - A systematic data generator for (simple) assembly line balancing

    Get PDF
    Assembly line balancing is a well-known and extensively researched decision problem which arises when assembly line production systems are designed and operated. A large variety of real-world problem variations and elaborate solution methods were developed and presented in the academic literature in the past 60 years. Nevertheless, computational experiments examining and comparing the performance of solution procedures were mostly based on very limited data sets unsystematically collected from the literature and from some real-world cases. In particular, the precedence graphs used as the basis of former tests are limited in number and characteristics. As a consequence, former performance analyses suffer from a lack of systematics and statistical evidence. In this article, we propose SALPBGen, a new instance generator for the simple assembly line balancing problem (SALBP) which can be applied to any other assembly line balancing problem, too. It is able to systematically create instances with very diverse structures under full control of the experiment's designer. In particular, based on our analysis of real-world problems from automotive and related industries, typical substructures of the precedence graph like chains, bottlenecks and modules can be generated and combined as required based on a detailed analysis of graph structures and structure measures like the order strength. We also present a collection of new challenging benchmark data sets which are suited for comprehensive statistical tests in comparative studies of solution methods for SALBP and generalized problems as well. Researchers are invited to participate in a challenge to solve these new problem instances.manufacturing, benchmark data set, assembly line balancing, precedence graph, structure analysis, complexity measures

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Beta-diversity of Central European forests decreases along an elevational gradient due to the variation in local community assembly processes

    Get PDF
    Beta-diversity has been repeatedly shown to decline with increasing elevation, but the causes of this pattern remain unclear, partly because they are confounded by coincident variation in alpha- and gamma-diversity. We used 8,795 forest vegetation-plot records from the Czech National Phytosociological Database to compare the observed patterns of beta diversity to null-model expectations (beta-deviation) controlling for the effects of alpha- and gamma-diversity. We tested whether \b{eta}-diversity patterns along a 1,200 m elevation gradient exclusively depend on the effect of varying species pool size, or also on the variation of the magnitude of community assembly mechanisms determining the distribution of species across communities (e.g., environmental filtering, dispersal limitation). The null model we used is a novel extension of an existing null-model designed for presence/absence data and was specifically designed to disrupt the effect of community assembly mechanisms, while retaining some key features of observed communities such as average species richness and species abundance distribution. Analyses were replicated in ten subregions with comparable elevation ranges. Beta-diversity declined along the elevation gradient due to a decrease in gamma-diversity, which was steeper than the decrease in alpha-diversity. This pattern persisted after controlling for alpha- and gamma-diversity variation, and the results were robust when different resampling schemes and diversity metrics were used. We conclude that in temperate forests the pattern of decreasing beta-diversity with elevation does not exclusively depend on variation in species pool size, as has been hypothesized, but also on variation in community assembly mechanisms. The results were consistent across resampling schemes and diversity measures, thus supporting the use of vegetation plot databases for understanding...Comment: Accepted version 25 pages, 5 figures, 1 tabl
    • …
    corecore