18 research outputs found

    On Burst Error Correction and Storage Security of Noisy Data

    Full text link
    Secure storage of noisy data for authentication purposes usually involves the use of error correcting codes. We propose a new model scenario involving burst errors and present for that several constructions.Comment: to be presented at MTNS 201

    On fuzzy syndrome hashing with LDPC coding

    Full text link
    The last decades have seen a growing interest in hash functions that allow some sort of tolerance, e.g. for the purpose of biometric authentication. Among these, the syndrome fuzzy hashing construction allows to securely store biometric data and to perform user authentication without the need of sharing any secret key. This paper analyzes this model, showing that it offers a suitable protection against information leakage and several advantages with respect to similar solutions, such as the fuzzy commitment scheme. Furthermore, the design and characterization of LDPC codes to be used for this purpose is addressed.Comment: in Proceedings 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), ACM 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistributio

    Secret-key rates and privacy leakage in biometric systems

    Get PDF
    In this thesis both the generation of secret keys from biometric data and the binding of secret keys to biometric data are investigated. These secret keys can be used to regulate access to sensitive data, services, and environments. In a biometric secrecy system a secret key is generated or chosen during an enrollment procedure in which biometric data are observed for the first time. This key is to be reconstructed after these biometric data are observed for the second time when authentication is required. Since biometric measurements are typically noisy, reliable biometric secrecy systems also extract so-called helper data from the biometric observation at the time of enrollment. These helper data facilitate reliable reconstruction of the secret key in the authentication process. Since the helper data are assumed to be public, they should not contain information about the secret key. We say that the secrecy leakage should be negligible. Important parameters of biometric key-generation and key-binding systems include the size of the generated or chosen secret key and the information that the helper data contain (leak) about the biometric observation. This latter parameter is called privacy leakage. Ideally the privacy leakage should be small, to prevent the biometric data of an individual from being compromised. Moreover, the secret-key length (also characterized by the secret-key rate) should be large to minimize the probability that the secret key is guessed and unauthorized access is granted. The first part of this thesis mainly focuses on the fundamental trade-off between the secret-key rate and the privacy-leakage rate in biometric secret-generation and secretbinding systems. This trade-off is studied from an information-theoretical perspective for four biometric settings. The first setting is the classical secret-generation setting as proposed by Maurer [1993] and Ahlswede and Csiszár [1993]. For this setting the achievable secret-key vs. privacy-leakage rate region is determined in this thesis. In the second setting the secret key is not generated by the terminals, but independently chosen during enrollment (key binding). Also for this setting the region of achievable secret-key vs. privacy-leakage rate pairs is determined. In settings three and four zero-leakage systems are considered. In these systems the public message should contain only a negligible amount of information about both the secret key and the biometric enrollment sequence. To achieve this, a private key is needed, which can be observed only by the two terminals. Again both the secret generation setting and chosen secret setting are considered. For these two cases the regions of achievable secret-key vs. private-key rate pairs are determined. For all four settings two notions of leakage are considered. Depending on whether one looks at secrecy and privacy leakage separately or in combination, unconditional or conditional privacy leakage is considered. Here unconditional leakage corresponds to the mutual information between the helper data and the biometric enrollment sequence, while the conditional leakage relates to the conditional version of this mutual information, given the secret. The second part of the thesis focuses on the privacy- and secrecy-leakage analysis of the fuzzy commitment scheme. Fuzzy commitment, proposed by Juels and Wattenberg [1999], is, in fact, a particular realization of a binary biometric secrecy system with a chosen secret key. In this scheme the helper data are constructed as a codeword from an error-correcting code, used to encode a chosen secret, masked with the biometric sequence that has been observed during enrollment. Since this scheme is not privacy preserving in the conditional privacy-leakage sense, the unconditional privacy-leakage case is investigated. Four cases of biometric sources are considered, i.e. memoryless and totally-symmetric biometric sources, memoryless and input-symmetric biometric sources, memoryless biometric sources, and stationary and ergodic biometric sources. For the first two cases the achievable rate-leakage regions are determined. In these cases the secrecy leakage rate need not be positive. For the other two cases only outer bounds on achievable rate-leakage regions are found. These bounds, moreover, are sharpened for fuzzy commitment based on systematic parity-check codes. Using the fundamental trade-offs found in the first part of this thesis, it is shown that fuzzy commitment is only optimal for memoryless totally-symmetric biometric sources and only at the maximum secret-key rate. Moreover, it is demonstrated that for memoryless and stationary ergodic biometric sources, which are not input-symmetric, the fuzzy commitment scheme leaks information on both the secret key and the biometric data. Biometric sequences have an often unknown statistical structure (model) that can be quite complex. The last part of this dissertation addresses the problem of finding the maximum a posteriori (MAP) model for a pair of observed biometric sequences and the problem of estimating the maximum secret-key rate from these sequences. A universal source coding procedure called the Context-TreeWeighting (CTW) method [1995] can be used to find this MAP model. In this thesis a procedure that determines the MAP model, based on the so-called beta-implementation of the CTW method, is proposed. Moreover, CTW methods are used to compress the biometric sequences and sequence pairs in order to estimate the mutual information between the sequences. However, CTW methods were primarily developed for compressing onedimensional sources, while biometric data are often modeled as two-dimensional processes. Therefore it is proved here that the entropy of a stationary two-dimensional source can be expressed as a limit of a series of conditional entropies. This result is also extended to the conditional entropy of one two-dimensional source given another one. As a consequence entropy and mutual information estimates can be obtained from CTW methods using properly-chosen templates. Using such techniques estimates of the maximum secret-key rate for physical unclonable functions (PUFs) are determined from a data-set of observed sequences. PUFs can be regarded as inanimate analogues of biometrics

    Ultra-Low-Power Uwb Impulse Radio Design: Architecture, Circuits, And Applications

    Full text link
    Recent advances in home healthcare, environmental sensing, and low power computing have created a need for wireless communication at very low power for low data rate applications. Due to higher energy/bit requirements at lower data -rate, achieving power levels low enough to enable long battery lifetime (~10 years) or power-harvesting supplies have not been possible with traditional approaches. Dutycycled radios have often been proposed in literature as a solution for such applications due to their ability to shut off the static power consumption at low data rates. While earlier radio nodes for such systems have been proposed based on a type of sleepwake scheduling, such implementations are still power hungry due to large synchronization uncertainty (~1[MICRO SIGN]s). In this dissertation, we utilize impulsive signaling and a pulse-coupled oscillator (PCO) based synchronization scheme to facilitate a globally synchronized wireless network. We have modeled this network over a widely varying parameter space and found that it is capable of reducing system cost as well as providing scalability in wireless sensor networks. Based on this scheme, we implemented an FCC compliant, 3-5GHz, timemultiplexed, dual-band UWB impulse radio transceiver, measured to consume only 20[MICRO SIGN]W when the nodes are synchronized for peer-peer communication. At the system level the design was measured to consume 86[MICRO SIGN]W of power, while facilitating multi- hop communication. Simple pulse-shaping circuitry ensures spectral efficiency, FCC compliance and ~30dB band-isolation. Similarly, the band-switchable, ~2ns turn-on receiver implements a non-coherent pulse detection scheme that facilitates low power consumption with -87dBm sensitivity at 100Kbps. Once synchronized the nodes exchange information while duty-cycling, and can use any type of high level network protocols utilized in packet based communication. For robust network performance, a localized synchronization detection scheme based on relative timing and statistics of the PCO firing and the timing pulses ("sync") is reported. No active hand-shaking is required for nodes to detect synchronization. A self-reinforcement scheme also helps maintain synchronization even in the presence of miss-detections. Finally we discuss unique ways to exploit properties of pulse coupled oscillator networks to realize novel low power event communication, prioritization, localization and immediate neighborhood validation for low power wireless sensor applications

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Bio-inspired electronics for micropower vision processing

    No full text
    Vision processing is a topic traditionally associated with neurobiology; known to encode, process and interpret visual data most effectively. For example, the human retina; an exquisite sheet of neurobiological wetware, is amongst the most powerful and efficient vision processors known to mankind. With improving integrated technologies, this has generated considerable research interest in the microelectronics community in a quest to develop effective, efficient and robust vision processing hardware with real-time capability. This thesis describes the design of a novel biologically-inspired hybrid analogue/digital vision chip ORASIS1 for centroiding, sizing and counting of enclosed objects. This chip is the first two-dimensional silicon retina capable of centroiding and sizing multiple objects2 in true parallel fashion. Based on a novel distributed architecture, this system achieves ultra-fast and ultra-low power operation in comparison to conventional techniques. Although specifically applied to centroid detection, the generalised architecture in fact presents a new biologically-inspired processing paradigm entitled: distributed asynchronous mixed-signal logic processing. This is applicable to vision and sensory processing applications in general that require processing of large numbers of parallel inputs, normally presenting a computational bottleneck. Apart from the distributed architecture, the specific centroiding algorithm and vision chip other original contributions include: an ultra-low power tunable edge-detection circuit, an adjustable threshold local/global smoothing network and an ON/OFF-adaptive spiking photoreceptor circuit. Finally, a concise yet comprehensive overview of photodiode design methodology is provided for standard CMOS technologies. This aims to form a basic reference from an engineering perspective, bridging together theory with measured results. Furthermore, an approximate photodiode expression is presented, aiming to provide vision chip designers with a basic tool for pre-fabrication calculations

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others
    corecore