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Summary

Secret-Key Rates and Privacy Leakage in Biometric Systems

In this thesis both the generation of secret keys from biometric data and the binding
of secret keys to biometric data are investigated. These secret keys can be used to
regulate access to sensitive data, services, and environments. In a biometric secrecy
system a secret key is generated or chosen during an enrollment procedure in which
biometric data are observed for the first time. This key is to be reconstructed after
these biometric data are observed for the second time when authentication is required.
Since biometric measurements are typically noisy, reliable biometric secrecy systems
also extract so-called helper data from the biometric observation at the time of en-
rollment. These helper data facilitate reliable reconstruction of the secret key in the
authentication process. Since the helper data are assumed to be public, they should
not contain information about the secret key. We say that the secrecy leakage should
be negligible. Important parameters of biometric key-generation and key-binding
systems include the size of the generated or chosen secret key and the information
that the helper data contain (leak) about the biometric observation. This latter pa-
rameter is called privacy leakage. Ideally the privacy leakage should be small, to
prevent the biometric data of an individual from being compromised. Moreover, the
secret-key length (also characterized by the secret-key rate) should be large to mini-
mize the probability that the secret key is guessed and unauthorized access is granted.
The first part of this thesis mainly focuses on the fundamental trade-off between the
secret-key rate and the privacy-leakage rate in biometric secret-generation and secret-
binding systems. This trade-off is studied from an information-theoretical perspective
for four biometric settings. The first setting is the classical secret-generation setting
as proposed by Maurer [1993] and Ahlswede and Csiszár [1993]. For this setting the
achievable secret-key vs. privacy-leakage rate region is determined in this thesis. In
the second setting the secret key is not generated by the terminals, but independently
chosen during enrollment (key binding). Also for this setting the region of achievable
secret-key vs. privacy-leakage rate pairs is determined. In settings three and four
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zero-leakage systems are considered. In these systems the public message should
contain only a negligible amount of information about both the secret key and the
biometric enrollment sequence. To achieve this, a private key is needed, which can
be observed only by the two terminals. Again both the secret generation setting and
chosen secret setting are considered. For these two cases the regions of achievable
secret-key vs. private-key rate pairs are determined. For all four settings two notions
of leakage are considered. Depending on whether one looks at secrecy and privacy
leakage separately or in combination, unconditional or conditional privacy leakage is
considered. Here unconditional leakage corresponds to the mutual information be-
tween the helper data and the biometric enrollment sequence, while the conditional
leakage relates to the conditional version of this mutual information, given the secret.

The second part of the thesis focuses on the privacy- and secrecy-leakage anal-
ysis of the fuzzy commitment scheme. Fuzzy commitment, proposed by Juels and
Wattenberg [1999], is, in fact, a particular realization of a binary biometric secrecy
system with a chosen secret key. In this scheme the helper data are constructed as
a codeword from an error-correcting code, used to encode a chosen secret, masked
with the biometric sequence that has been observed during enrollment. Since this
scheme is not privacy preserving in the conditional privacy-leakage sense, the un-
conditional privacy-leakage case is investigated. Four cases of biometric sources are
considered, i.e. memoryless and totally-symmetric biometric sources, memoryless
and input-symmetric biometric sources, memoryless biometric sources, and station-
ary and ergodic biometric sources. For the first two cases the achievable rate-leakage
regions are determined. In these cases the secrecy leakage rate need not be posi-
tive. For the other two cases only outer bounds on achievable rate-leakage regions
are found. These bounds, moreover, are sharpened for fuzzy commitment based on
systematic parity-check codes. Using the fundamental trade-offs found in the first
part of this thesis, it is shown that fuzzy commitment is only optimal for memoryless
totally-symmetric biometric sources and only at the maximum secret-key rate. More-
over, it is demonstrated that for memoryless and stationary ergodic biometric sources,
which are not input-symmetric, the fuzzy commitment scheme leaks information on
both the secret key and the biometric data.

Biometric sequences have an often unknown statistical structure (model) that can
be quite complex. The last part of this dissertation addresses the problem of finding
the maximum a posteriori (MAP) model for a pair of observed biometric sequences
and the problem of estimating the maximum secret-key rate from these sequences. A
universal source coding procedure called the Context-Tree Weighting (CTW) method
[1995] can be used to find this MAP model. In this thesis a procedure that de-
termines the MAP model, based on the so-called beta-implementation of the CTW
method, is proposed. Moreover, CTW methods are used to compress the biometric
sequences and sequence pairs in order to estimate the mutual information between the
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sequences. However, CTW methods were primarily developed for compressing one-
dimensional sources, while biometric data are often modeled as two-dimensional pro-
cesses. Therefore it is proved here that the entropy of a stationary two-dimensional
source can be expressed as a limit of a series of conditional entropies. This result
is also extended to the conditional entropy of one two-dimensional source given an-
other one. As a consequence entropy and mutual information estimates can be ob-
tained from CTW methods using properly-chosen templates. Using such techniques
estimates of the maximum secret-key rate for physical unclonable functions (PUFs)
are determined from a data-set of observed sequences. PUFs can be regarded as
inanimate analogues of biometrics.
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Samenvatting

In dit proefschrift wordt de generatie van geheime sleutels uit biometrische data en
het binden van geheime sleutels aan biometrische data onderzocht. Deze geheime
sleutels kunnen gebruikt worden om de toegang te regelen tot gevoelige gegevens,
diensten en omgevingen. In een biometrisch secrecy-systeem wordt een geheime
sleutel gegenereerd of gekozen (gebonden) tijdens een enrollment procedure waar-
bij de biometrische data voor de eerste keer worden geobserveerd. Deze geheime
sleutel moet gereconstrueerd kunnen worden als de authentieke biometrische data
voor een tweede keer geobserveerd worden tijdens de authentication procedure. Om-
dat biometrische metingen in het algemeen verruist zijn, extraheert een biometrisch
secrecy-systeem ook zogenaamde helper-data uit de biometrische observatie tijdens
de enrollment procedure. Deze helper-data maken betrouwbare reconstructie mo-
gelijk tijdens de authentication procedure. Omdat de helper-data openbaar worden
verondersteld, zouden ze geen informatie mogen bevatten over de geheime sleutel.
We zeggen dat de secrecy-leakage verwaarloosbaar klein moet zijn. Belang-rijke pa-
rameters van een biometrisch sleutel-generatie schema en een sleutel-binding schema
zijn de grootte van de geheime sleutel en de informatie die de helper-data bevat over
de biometrische data. Deze laatste parameter wordt de privacy-leakage genoemd. In
het ideale geval is deze privacy-leakage klein om te voorkomen dat de biometrische
gegevens van een persoon gecompromitteerd raken. Bovendien moet de lengte van
de geheime sleutel (ofwel de secret-key rate) groot zijn om de kans dat hij geraden
wordt, waardoor onbevoegde toegang wordt verkregen, zo klein mogelijk te maken.

Het eerste deel van dit proefschrift richt zich op de fundamentele balans tussen
secret-key rate en privacy-leakage in sleutel-generatie en sleutel-binding systemen.
Deze balans wordt vanuit een informatietheoretisch perspectief bestudeerd voor vier
biometrische situaties. De eerste situatie is de klassieke sleutel-generatie situatie
zoals voorgesteld door Maurer [1993] en Ahlswede en Csiszár [1993]. Voor deze
situatie wordt het bereikbare secret-key versus privacy-leakage gebied bepaald in dit
proefschrift. In de tweede situatie wordt de geheime sleutel niet gegenereerd tijdens
de enrollment-procedure maar onafhankelijk gekozen (sleutel-binding). Ook voor
deze situatie wordt het gebied van bereikbare secret-key versus privacy-leakage paren
hier afgeleid. In situaties drie en vier worden zero-leakage systemen beschouwd. In
deze systemen mag de publieke helper-data slechts een verwaarloosbare hoeveel-
heid informatie over de geheime sleutel en de biometrische enrollment data bevat-



xii

ten. Om dit te kunnen bereiken is een private sleutel nodig die alleen maar beschik-
baar is voor beide terminals (tijdens enrollment en authentication). Ook hier worden
sleutel-generatie en sleutel-binding onderzocht. Voor deze twee gevallen worden de
bereikbare gebieden van secret-key versus private-key rate paren afgeleid. In alle
vier de situaties beschouwen we twee soorten van privacy-leakage. Afhankelijk van
of men nu kijkt naar secrecy-leakage en privacy-leakage afzonderlijk of in combi-
natie, wordt niet-conditionele of conditionele privacy-leakage beschouwd. Hierbij
correspondeert niet-conditionele leakage met de mutuele informatie tussen de helper-
data en de biometrische data, terwijl conditionele leakage correspondeert met deze
mutuele informatie gegeven de geheime sleutel.

Het tweede deel van het proefschrift richt zich op de privacy-leakage versus
secrecy-leakage analyse van fuzzy-commitment schema’s. Fuzzy commitment, voor-
gesteld door Juels en Wattenberg [1999], is een speciale realisatie van een binair
biometrisch systeem met een gekozen geheime sleutel (sleutel-binding). In ditschema
wordt de helper-data gevormd door het codewoord van een fout-verbeterende code,
dat ontstaan is uit de sleutel, te maskeren door er de biometrische enrollment data
bij op te tellen. Omdat dit schema geen bescherming biedt tegen privacy-leakage
in het conditionele geval, onderzoeken we hier niet-conditionele privacy-leakage.
We beschouwen vier soorten bronnen, geheugenloze totaalsymmetrische bronnen,
geheugenloze inputsymmetrische bronnen, geheugenloze bronnen, en stationaire er-
godische bronnen. Voor de eerste twee klassen bepalen we het bereikbare secret-
key rate versus privacy-leakage gebied. Het blijkt dat hier de secrecy-leakage niet
positief hoeft te zijn. Voor de andere twee klassen kunnen we alleen bovengren-
zen voor de bereikbare gebieden afleiden. Deze bovengrenzen kunnen worden ver-
scherpt als in het fuzzy-commitment schema gebruik wordt gemaakt van systema-
tische parity-check codes. Als we de fundamentele balans die we afgeleid hebben
in het eerste gedeelte van dit proefschrift vergelijken met de balans voor fuzzy com-
mitment, blijkt dat fuzzy commitment alleen optimaal kan zijn voor geheugenloze
totaalsymmetrische bronnen als de secret-key rate maximaal is. Bovendien wordt
voor geheugenloze en stationaire ergodische bronnen, die niet inputsymmetrisch zijn,
aangetoond dat fuzzy commitment informatie lekt over zowel de biometrische data
als de geheime sleutel.

Biometrische rijen hebben een statistische structuur (model) die vaak onbekend
en vrij complex is. Het laatste gedeelte van dit proefschrift gaat over de bepaling
van het maximum a-posteriori (MAP) model dat past bij een paar geobserveerde
biometrisch rijen. Een universele broncodeer-methode die de naam Context-Tree
Weighting (CTW) [1995] methode heeft, kan gebruikt worden om dit MAP-model
te vinden. In dit proefschrift stellen we een procedure voor die het MAP-model
bepaalt, gebaseerd op de zogenaamde beta-implementatie van het CTW algoritme.
Daarnaast gebruiken we het CTW algoritme om biometrische rijen en paren van ri-
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jen te comprimeren om zodoende een schatting te krijgen van de mutuele informatie
tussen deze rijen. Omdat CTW methodes primair ontwikkeld zijn om eendimension-
ale data-rijen te comprimeren terwijl biometrische data vaak gemodelleerd worden
als tweedimensionaal, bewijzen we eerst dat de entropie van een stationair tweedi-
mensionaal proces uitgedrukt kan worden als een limiet van een reeks conditionele
entropieën. Dit resultaat wordt vervolgens uitgebreid naar de conditionele entropie
van een tweedimensionaal proces gegeven een tweede proces. Als gevolg hiervan
kunnen schattingen van entropieën en mutuele informaties verkregen worden met het
CTW algoritme als we behoorlijk-gekozen context-templates gebruiken. Met behulp
van deze technieken worden schattingen van de maximale secret-key rate voor physi-
cal unclonable functions (PUFs) gemaakt gebaseerd op een dataset die geobserveerde
paren van data-rijen bevat. PUFs kunnen beschouwd worden als levenloze analogons
van biometrieën.
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Chapter 1

Introduction

Big Brother is watching you (G. Orwell).

1.1 Introduction

Nowadays people live in the era of large-scale computer networks connecting huge
numbers of electronic devices. These devices execute applications that use the net-
works for exchanging information. Sometimes the information that is transmitted
within these networks and stored by the devices is sensitive to misuse. Moreover,
the networks and devices cannot always be trusted. This can lead to intrusions into
the privacy of users by e.g. hackers, commercial parties, or even by governmental
institutions. Also illegal copying of copyrighted content, illegal use of e–payment
systems, and identity theft can be foreseen. In order to prevent all such malicious
actions the security of networks and devices should be adequate.

Traditional systems for access control, which are based on the possession of se-
cret knowledge (passwords, secret keys, etc.) or on a physical token (ID card, smart-
card, etc.), have the drawback that they cannot guarantee that it is the legitimate user
who e.g. enters a password or presents a smart-card. Moreover, passwords can often
be guessed, since people tend to use passwords which are easy to remember. Physical
tokens in their turn can be lost, stolen, or copied.

Biometric systems offer a solution to most of the problems mentioned above.
They could be either substituted for traditional systems or used to reinforce them.
Biometric systems are based on physical or behavioral characteristics of human be-
ings, like faces, fingerprints, voice, irises, gait, see Jain et al. [36]. The results of
the measurement of these characteristics are called biometric data. Biometric data
have the advantage that potentially they are unique identifiers of human beings, as
was argued by Clarke [12]. They provide therefore a closer bond with the identity
of their owner than a password or a token does. Moreover, biometric data cannot
be stolen or lost. They potentially contain a large amount of information and there-
fore are hard to guess. All this makes biometrics a good candidate for substitution of
traditional passwords and secret keys. A drawback of using biometrics is that the out-



4 Introduction

come of their measurements is, in general, noisy due to intrinsic variability, varying
measurement conditions, or due to the use of different hardware. However, advanced
signal-processing and error-correcting techniques can be applied to guarantee reliable
overall behavior.

The attractive property of uniqueness, that holds for biometrics, also results in its
major weakness. Unlike passwords and secret keys, biometric information, if com-
promised once, cannot be canceled and easily replaced by other biometric informa-
tion, since people only have limited resources of biometric data. Theft of biometric
data results in a partially stolen identity, and this is, in principle, irreversible. There-
fore requirements for biometric systems should include secure storage and secure
communication of biometric data in the applications where they are used.

Although biometric data may provide solutions to the problems discussed above,
there are situations when they cannot be used. There is e.g. a small percentage of
people whose fingerprints cannot be used due to intrinsic bad quality, see Dorizzi
[24]. Also DNA recognition fails for identical twins. In such situations standard
cryptographic tools are needed to provide additional security.

An artificial inanimate analog of biometrics is a Physical Unclonable Function
(PUF). PUFs were introduced by Pappu [52] as objects having properties similar
to standard biometric modalities. They cannot easily be copied or cloned and are
unique, and just like human biometrics the data that result from their measurements
are noisy. The most prominent advantage of PUFs over human biometrics is that it
can easily be replaced when necessary. Privacy is not a point of concern in systems
based on PUFs, but note also that there is no strong bonding between a PUF and its
owner.

In what follows we will first describe traditional biometric systems in more detail.
In these systems biometric data are supposed to be stored in the clear although these
data can provide access to data or to a service. After that, we will discuss techniques
that make (complete) reconstruction of the biometric data from the stored information
practically impossible. These techniques therefore prevent an attacker from getting
access to data or to a service after breaking into the database or eavesdropping on the
network.

1.2 Biometrics and Physical Unclonable Functions

1.2.1 Traditional Biometric Systems

The terms “Biometrics” and “Biometry” have been used since the first part of the 20th
century to refer to the field of development of statistical and mathematical methods
applicable to data analysis problems in biological sciences [1]. Relatively recently
the term “Biometrics” has also been used to refer to the field of technology devoted
to automatic identification of individuals using biological traits, such as those based
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on retinal or iris scanning, fingerprints, faces, signatures, etc. Such biological traits
are unique for individuals as noted in Jain et al. [36].

Traditionally, biometric recognition was used in forensic applications and per-
formed by human experts. However, recent advantages in automated recognition re-
sulted in the spreading of biometric applications, now ranging from border control at
airports to access control in Walt Disney amusement parks (see Wayman et al. [85]).

A typical biometric system is essentially a pattern recognition system, which
performs one or more identity checks based on specific physiological or behavioral
characteristics possessed by individuals. There are two different ways to resolve an
individual’s identity, i.e. authentication and identification. Authentication (Am I who
I claim I to be?) involves confirming or denying the individual’s claimed identity.
In identification, one has to establish the individual’s identity (Who am I?). Each of
these approaches has its own characteristics and could be solved best by biometric
systems.

All biometric technology systems have certain aspects in common. All are de-
pendent upon an accurate reference or enrollment data. If a biometric system is to
identify or to authenticate an individual, it first must have these reference data posi-
tively linked to the subject. Modern biometric identification systems, based on digital
technologies, analyze personal physical attributes at the time of enrollment and dis-
till them into a series of numbers. Once this reference sample or template is in the
system, future attempts to identify an individual rest on comparing “live” data to the
reference data.

A perfect system would always recognize an individual, and always reject an
impostor. However, biometric data are gathered from individuals under environmen-
tal conditions that cannot always be controlled, over equipment that may slowly be
wearing out, and using technologies and methods that vary in their level of precision.
Consequently, an ideal behavior of biometric systems cannot be realized in practice.
Traditionally, the probability that an authorized individual is rejected by a biometric
system is called False Rejection Rate (FRR), and the probability that an unauthorized
individual is accepted by a biometric system is called False Acceptance Rate (FAR).
There are also other performance measures that characterize biometric systems. For
for an excellent overview and similar issues see Jain et al. [36], Maltoni et al. [21], or
Wayman et al. [85].

Although biometric technologies have their advantages when they are applied
in access control systems, privacy aspects of biometric data should not be ignored.
Identification and authentication require storage of biometric reference data in some
way. However, people feel uncomfortable with supplying their biometric information
to a huge number of seemingly secure databases for various reasons, such as

• practice shows that one cannot fully trust an implementation of secure algo-
rithms by third parties. Even governmental organizations that are typically
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trusted by the majority of the population cannot always guarantee that impor-
tant sensitive data are securely stored;

• databases might be attacked from inside, which allows an owner of a database
to abuse biometric information, for example, by selling it to third parties;

• people have limited resources of biometric data, that can be conveniently used
for access control. Therefore an “identity theft” of biometric information has
much more serious implications than a “simple” theft of a credit card. In the
latter case, one can simply block and replace this credit card, while biometric
information cannot be easily revoked and replaced by other biometric informa-
tion.

It is often argued that privacy need not be a real issue in biometric systems, since
biometric data are not secret and can easily be captured (faces, irises) or left in public
(fingerprints), see Schneier [65]. However, this information, unlike the reference
data, is typically of low quality and therefore cannot be easily used for impersonation.
Even if it was of good quality, which might be the case with faces, connecting it to
the corresponding database is not always an easy task.

Another important point is, that obtaining biometric data of a specific person as
well as any other secret information belonging to him, is always possible when suf-
ficient effort is exerted. In contrast, compromising a database, requires a comparable
effort, but then provides immediate access to the biometric data of large number of
individuals. Therefore it makes sense to concentrate on protecting the database. It
would be ideal if, in case the database becomes public, the biometric reference data
could not be recovered.

1.2.2 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) were first discovered and studied in Pappu
[52]. Pappu used the name “physical one-way” functions for PUFs. Later, the name
was changed to “physical random functions” and to “physical unclonable functions”,
see Gassend et al. [30]. This was done to avoid confusion since PUFs do not match
the standard definition of one-way functions, see e.g. Schneier [64]. A PUF is defined
as a function that maps challenges to responses and is embodied by a physical device.
The properties of PUFs are

• the response to challenge is easy to obtain;

• they are hard to characterize, i.e. given physical measurements of a PUF, an
attacker can only extract a negligible amount of information about the response
to a randomly chosen challenge.
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PUFs can be used to obtain unique, tamper resistant and unforgeable identifiers
from physical structures. This was observed by Pappu [52]. Uniqueness implies that
the number of independent degrees of freedom in the output space should be large.
Tamper resistance means that the output of the physical system is very sensitive to
changes in the challenge or in the system itself. Finally, unforgeable stands for the
property of the system to be very difficult to clone in such a way that the cloned
version produces an identical response to all challenges.

From the above we can conclude that PUFs can be regarded as a particular bio-
metric modality that comes from inanimate objects. However, unlike standard bio-
metric modalities, for PUF-based systems privacy is not a major point of concern.
Unlike human biometrics, PUFs can be easily replaced. The main problem with us-
ing PUFs lies in their noisy nature and therefore can be formulated as extraction of
secure keys out of noisy data.

In the first part of this thesis we will focus on standard biometrics and on the
corresponding privacy problems, while in the second part, we will investigate PUFs
without considering privacy issues.

1.3 From Traditional Biometric Systems to Biometric Se-
crecy Systems

1.3.1 Types of Security

To assess cryptographic protocols, two notions of security are commonly used, i.e.
information-theoretical security and computational security.

Computationally secure protocols rely on such an assumption as hardness of
mathematical problems, e.g. factoring and taking discrete logarithms, and assume
that an adversary has bounded computing power. However, hardness of a problem
is sometimes difficult to prove, and in practice certain problems are “assumed” to be
hard.

Protocols whose security does not rely on computational assumptions, i.e. they
are secure even when the adversary has unbounded computing power, are called un-
conditionally or information-theoretically secure. Information-theoretically secure
protocols are more desirable, but not always achievable. Therefore, in practice, cryp-
tographers mostly use computational security.

In the present thesis we will treat security from an information-theoretical point of
view. The key mathematical concept on which information theory is built and which
is also relevant for considering information-theoretical security, is entropy. The no-
tion of entropy comes from Shannon [68]. Entropy is a measure of the information
contained in a random variable. Although there are a number of alternative entropy
concepts, e.g. Rényi and min-entropy (Rényi entropy of order 2) [59], and smooth



8 Introduction

Rényi entropy [58], we will only use the classical (Shannon) notion of entropy here.
Another Shannon-type concept is that of mutual information. Mutual information
measures by how much the entropy of the first random variable decreases if access
to the second random variable is obtained, and this notion can be defined in terms of
entropies. For the exact definitions, properties and their proofs of entropy and mutual
information we refer to Shannon [68] or e.g. Cover and Thomas [13].

An interesting special case of information-theoretical security is perfect security.
This concept was introduced by Shannon [69]. He defined a secrecy system to be
perfect if the mutual information between plaintext M and ciphertext C satisfies

I(M;C) = 0, (1.1)

i.e. if a ciphertext C, which is a function of a plaintext M and a secret key K, provides
no information about the plaintext M, in other words, if C and M are statistically
independent. Shannon proved that perfect secrecy can only be achieved when the
key-entropy and plaintext-entropy satisfy

H(K)≥ H(M). (1.2)

An example of a perfectly secure system is the one-time pad system, also referred to
as the Vernam cipher [82]. In one-time pad, a binary plaintext is concealed by adding
modulo-2 (XOR-ing) a random binary secret key.

In practice it is quite possible and common for a secrecy system to leak some
information. Although such a system is not perfectly secure, it can be information-
theoretically secure up to a certain level.

1.3.2 Biometric Secrecy Systems with Helper Data

Biometric secrecy systems in which the stored reference data satisfy certain secrecy
and privacy constraints can be realized using the notion of helper data. In the next
subsections we will follow an intuitive discussion that will eventually introduce us to
systems in which helper data are applied. After that we will discuss two applications
in which helper data play a role.

Noisy Passwords and Helper Data

A perfect system for a secure biometric access control has to satisfy three require-
ments. Biometric data have to be private, namely, the reference information stored
in a database should not reveal the actual biometric data. Reference data that are
communicated from a database to a point where access can be granted have to be
resilient to eavesdropping. Reference data stored in a database have to be resilient to
guessing, i.e. to brute-force attacks.
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A simple naive approach to satisfy both the first and the second requirements
would be to use the biometric data as a password in a UNIX-password authentication
scheme. In such a scheme, a user possesses a password x that gives access to his
account. There is a trusted server that stores some information y = f (x) about the
password. The user gains access to the account only if he enters the password x′,
such that f (x′) = y. The scheme has the requirement that nobody can figure out the
password x from y in any way other than by guessing. To fulfill this requirement, a
UNIX-password scheme relies on one-way functions. A one-way function f (·) is a
function that is easy to compute but “hard to invert”, where “hard to invert” refers
to the property that no probabilistic polynomial-time algorithm can compute a pre-
image of f (x) with a better than negligible probability when x is chosen at random.

Thus, if we would use the UNIX-password authentication scheme and apply a
one-way function to the biometric data, the storage of biometric data in the clear
would be circumvented. However, there are a number of problems that would arise
if we use biometric data in the UNIX scheme. First, the security properties that are
guaranteed by one-way functions rely on the assumption that x is truly uniform, while
we know that biometric data are far from uniform, although they do contain random-
ness of course. Moreover, one-way functions, as all cryptographic primitives, require
their entries to be exactly reproducible for positive authentication1, while biomet-
ric data measurements are almost never identical. Therefore additional processing
(e.g. error-correction and compression) is needed to realize a biometric UNIX-like
authentication scheme that can tolerate a reasonable amount of errors in biometric
measurements and results in uniform entries to the one-way function. One way of
operating would be to use a collection of error-correcting codes such that for each
observed biometric enrollment template there is a code that contains this template
as a codeword. The index to this code is then stored in the database as helper data.
Upon observing the individual for a second time, the helper can then be used to re-
trieve the enrollment template from the authentication template. The error-correcting
code should be strong enough to correct the errors between the enrollment and au-
thentication templates. From this we may conclude that error-correcting techniques
and helper data can be applied to combat errors. Subsequently compression methods
can be used to achieve almost uniform entries.

Now that we have argued that helper data could be used to create a reliable sys-
tem, the question arises what requirements ideal helper data should satisfy. Since
helper data need to be stored (and communicated) for authentication, it would be ad-
vantageous if they could be made publicly available without compromising or leaking
any information about the data that are used to get access to the system. We say that

1Positive authentication can also be a result of an entry that produces a collision. However, here we
do not consider collisions, since this is a problem associated with the design of one-way functions and
therefore beyond the scope of this thesis.
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secrecy leakage from the helper data has to be negligible. Note that these data could
be obtained using a one-way function as in the UNIX-scheme, but better procedures
may exist as well. On the other hand, the helper data should leak as little information
as possible about the observed biometric enrollment template. This would reduce
privacy-related problems. Note that it might be impossible to make this leakage neg-
ligible, since helper data should contain some information about the biometric data
in order to set up a reliable system. It will become clear later in this thesis that a
notion of secret key sharing originated from Information Theory (see Ahlswede and
Csiszár [4]) will be essential in designing and analyzing biometric systems in which
public helper data is used. For these secret-key sharing systems, the problem of max-
imizing the size of the extracted secrets (the data needed to get access) was solved.
This provides the solution for our third requirement, resilience to guessing.

In what we have discussed up to now, we have always assumed that keys were
obtained as a result of a one-way operation on a password or on a biometric template.
A biometric system would however be more flexible if we could choose the keys
ourselves. We will show that the helper-data construction will make this possible.
In the rest of the thesis we will therefore distinguish between generated-key systems
and chosen-key systems. Sometimes their performance will not differ that much, but
in other situations the differences can be dramatic.

In the next two subsections, we will shortly discuss two applications of biometric
access with helper data. In the first application the secret key is stored in the database
in an encrypted form, while in the second application the key is discarded.

Application A: Biometric Access

A general protocol for secure authentication can be schematically represented as the
diagram in Fig. 1.1. A typical authentication procedure reads as follows.

During enrollment, the biometric data of a subject are captured and analyzed, and
the template XN is extracted. A secret K is chosen or generated from these data. Then
the template XN is linked to the key K via a helper message M. The key is encrypted
using a one-way function and stored in a database as f (K), together with an ID of the
subject and the helper message M.

During authentication, the subject claims his identity (ID). His biometric data
are captured and preprocessed again, resulting in the template Y N . The key K̂ is es-
timated based on Y N and the helper message M that corresponds to the claimed ID.
This estimated key is encrypted and then matched against the encrypted key f (K)
corresponding to the claimed ID. Only if f (K̂) is the same as f (K) the subject is
positively authenticated.
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Application B: Biometric Encryption

Another system of interest is a system that uses biometric based keys for encryption.
A protocol for biometric based encryption is depicted in Fig. 1.2.

The first step of biometric based encryption is similar to the enrollment proce-
dure in the authentication protocol, viz. biometric data of a subject are captured and
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analyzed, and a template XN is derived. Then, a secret key K is extracted/chosen and
linked to the template via a helper message M. This secret is used to encrypt a plain-
text m as EncK(m) (here encryption is assumed to be symmetric). This encrypted
plaintext and the helper message are either stored or transmitted, while the key is
discarded.

In the decryption phase, in order to decrypt the plaintext, the subject provides
a measurement of his biometrics. This measurement is preprocessed, resulting in a
noisy template Y N . The template and the helper message M are now used to derive a
key K̂. The key K̂ is used to decrypt the encrypted plaintext EncK(m). The decryption
is successful, viz. DecK̂(EncK(m)) = m, only if K̂ = K, since symmetric encryption
is used.

Two Generic Settings

-
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Decoder
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Figure 1.3: Generic settings, generated and chosen keys.

From the discussions above we may conclude that in order to design a good
biometric secrecy system, it is enough to focus on a number of generic structures,
i.e. models that constitute the core of any biometric secrecy system. These generic,
secret-key sharing models can be subdivided into a class of models with generated
keys, see Fig. 1.3(a), and a class of models with chosen keys, see Fig. 1.3(b). This
subdivision also appears in the overview paper of Jain et al. [37]. In both models
K is a randomly generated/chosen secret key, XN and Y N are biometric enrollment
and authentication sequences having length N, M is a helper message, and K̂ is an
estimated secret key. The channel between an encoder and decoder is assumed to be
public. We only assume that passive attacks are possible, namely, an attacker can see
all public information but cannot change it. The information leakage is characterized
in terms of mutual information, and the size of the secret keys in terms of entropy.
The generic models must satisfy the following requirements

Pr(K 6= K̂)≈ 0 (reliability), (1.3)

H(K)/N ≈ log |K |/N is as large as possible (secret-key rate), (1.4)

I(K;M)/N ≈ 0 (secrecy leakage), (1.5)
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I(XN ;M)/N is as small as possible (privacy leakage). (1.6)

Remark: In this thesis log denotes logarithm to the base 2. Moreover, further in the
thesis, we denote the generated and chosen keys by S and K, respectively.

1.4 Modeling Biometric Data

Throughout this thesis we assume that our biometric sequences (feature vectors) are
discrete, independent and identically distributed (i.i.d.). Fingerprints and irises are
typical examples of such biometric sources. A discrete representation of other bio-
metric modalities can by obtained using quantization. The independence of biomet-
ric features is not unreasonable to assume, since PCA, LDA and other transforms,
which are applied to biometric measurements during feature extraction (see Wayman
et al. [85]) result in more or less independent features. In general, different compo-
nents of biometric sequences may have different ranges of correlation. However for
reasons of simplicity we will only discus identically distributed biometrics here.

In Chapters 2, 4 and 6 we consider stationary ergodic biometric sources. Whether
biometric data sources can be modeled as stationary and ergodic is still a research
question, however, there are some indications that irises, fingerprints and DNA can be
considered to be stationary ergodic, see [2]. On the other hand, PUFs are modeled as
stationary ergodic processes. Indeed from Feng et al. [26] we know that the two-point
intensity correlations in a speckle pattern are translation invariant. Moreover, these
processes are also ergodic due to the fact that the spatial distribution of intensities is
the same as the PUF ensemble distribution of intensities, see Goodman [31].

In the first part of the thesis, we assume that our biometric secrecy systems are
based on a biometric source with distribution {Q(x,y),x ∈ X ,y ∈ Y }. This source
produces enrollment sequences xN = (x1,x2, . . . ,xN) of N symbols from the finite
alphabet X and authentication sequences yN = (y1,y2, . . . ,yN) of N symbols from the
finite alphabet Y . When a sequence pair (xN ,yN) comes from the same person, then
it is characterized in terms of joint probability distribution {Q(x,y),x ∈ X ,y ∈ Y }.
In that case the biometric sequences XN and Y N are in general not independent of
each other. However, when in the sequence pair (xN ,yN) the sequences come from
different persons, the pair is characterized in terms of {Q(x)Q(y),x ∈ X ,y ∈ Y },
where Q(x) and Q(y) are marginals of Q(x,y). Therefore the biometric sequences
XN and Y N that come from different persons are assumed to be independent. These
assumptions can also be observed in Schmid and Nicolo [62], where biometric system
capacity is studied under global PCA and ICA encoding.



14 Introduction

1.5 Related Work

Privacy concerns related to the use of biometric data in various secrecy systems are
not new. Schneier [65] pointed out that biometric data are not standard secret keys
that cannot be easily canceled. Ratha et al. [56] investigated the vulnerability points
of biometric secrecy systems. In Prabhakar et al. [54] security and privacy concerns
were raised. Linnartz and Tuyls [45] looked at the problem of achieving biometric
systems with no secrecy leakage. Finally, at the DSP forum [83] secrecy- and privacy-
protecting technologies were discussed. The extent to which secrecy and privacy
problems were investigated in literature also received attention there.

Considerable interest in the topic of biometric secrecy systems resulted in the
proposal of various techniques over the past decade. Recent developments in the area
of biometric secrecy systems led to methods grouped around two classes: cancelable
biometrics and “fuzzy encryption”. Detailed summaries of these two approaches can
be found in Uludag et al. [80] and in Jain et al. [37].

It is the objective of cancelable biometrics, introduced by Ratha et al. [56], [57],
Ang et al. [7], and Maiorana et al. [46], to avoid storage of reference biometric data
in the clear in biometric authentication systems. These methods are based on non-
invertible transformations that preserve the statistical properties of biometric data and
rely on the assumption that it is hard to exactly reconstruct biometric data from the
transformed data and applied transformation. However, hardness of a problem is
difficult to prove, and, in practice, the properties of these schemes are assessed using
brute-force attacks. Moreover, visual inspection shows that transformed data, e.g. the
distorted faces in Ratha et al. [57], still contain a lot of biometric information.

The “fuzzy encryption” approach focuses on generation and binding of secret-
keys from/to biometric data. Implementation of “fuzzy encryption” includes methods
based on various forms of Shamir’s secret sharing [67]. These methods are used to
harden passwords with biometric data (Monrose et al. [49], [48]). Methods based
on error-correcting codes, that bind uniformly distributed secret keys to biometric
data and that tolerate (biometric) errors in these secret keys, were formally defined
by Juels and Wattenberg [41]. Less formal approaches can be found in Davida et al.
[19], [18]. Error-correction based methods were extended to the set difference metric
developed by Juels and Sudan [40]. Some other approaches focus on continuous
biometric data and provide solutions which are based on quantization of biometric
data as in Linnartz and Tuyls [45], Denteneer et al. [20] (with emphasis on reliable
components), Teoh et al. [74], and Buhan et al. [10].

Finally, a formal approach for designing secure biometric systems for three metric
distances (Hamming, edit and set), called fuzzy extractors, was introduced in Dodis
et al. [22] and further elaborated in [23]. Dodis et al. [22], [23] were the first ones
who addressed the problem of code construction for biometric secret-key generation
in a systematic information-theoretical way. Although their works provide results on
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the maximum secret-key rates in biometric secrecy systems, they also give the cor-
responding results for the maximum privacy leakage. In biometric setting, however,
the goal is to minimize the privacy leakage. The need for quantifying the exact in-
formation leakage on biometric data was also stated as an open question in Sutcu et
al. [73].

Another branch of work on “fuzzy encryption” focuses on combination of bio-
metric and cryptographic keys. Methods in this direction include attempts to harden
the fuzzy vault scheme of Juels and Sudan [40] with passwords by Nandakumar et
al. [50] and dithering techniques that were proposed by Buhan et al. [9].

1.6 Thesis Organization

In the current thesis we study a number of problems related to the design of biometric
secrecy systems.

First of all we address the problems of what the fundamental trade-off between
the secret-key rate and the privacy leakage is in biometric secrecy systems that ex-
tract or convey secret keys, and what the methods are to achieve optimal systems.
Chapter 3 is devoted to these problems and is the main chapter of this thesis.

The results obtained in Chapter 3 are further used to assess the optimality of a
popular existing technique for designing biometric secrecy systems, i.e. fuzzy com-
mitment, which was proposed by Juels and Wattenberg [41]. We study the properties
of fuzzy commitment in Chapter 4.

Then we focus on a problem that needs to be addressed before any practical
biometric secrecy system is built, viz. how much secret information can be extracted
or conveyed with a certain biometric modality. In Chapter 5 we describe the methods
that we use to estimate this amount of secret-key information. Moreover, since to
design codes that achieve a nearly-optimal performance we need to know the statistics
of the biometric source, we also study in this chapter the problem of how to find the
model that matches best a pair of observed biometric sequences.

Then, in Chapter 6, we concentrate on the estimation of maximum secret-key
rates for two-dimensional biometric sources. We use the techniques described in
Chapter 5 and perform a series of experiments to estimate the secret-key rates for
optical PUFs.

Next, we present in detail the content of the chapters that compound this thesis.

1.6.1 Chapter 2: Secret Sharing and Biometric Systems

Chapter 2 is mainly a review chapter that sets theoretical grounds for our investi-
gation of secret-key rates and privacy leakage in biometric secrecy systems. In this
chapter we revisit the classical Ahlswede and Csiszár [3] and Maurer [47] problem of
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generating a secret from two dependent sequences but in the biometric setting. Here
the biometric source is assumed to be discrete memoryless. The maximum secret-
key rate that is achievable for this model is equal to the mutual information between
a biometric enrollment sequence XN and a biometric authentication sequence Y N , i.e.
I(X ;Y ). Although this result was already proved using strong typicality by Ahlswede
and Csiszár [3], we provide our version of the proof, which is based on weak typi-
cality. This proof will be the core part of the achievability proofs given in Chapter 3
where we deal with more general biometric settings.

Then, as a warm-up, we derive a characterization for privacy leakage for the
biometric secret generation systems, which achieve the maximum secret-key rates
with codes determined in our achievability proof.

Moreover, we discuss how typical biometric performance measures, i.e. the FRR
and the FAR, relate to the results obtained for the biometric secret generation model.
We show that these error probabilities can be made arbitrarily small for positive
secret-key rates smaller than or equal to I(X ;Y ). Furthermore, we argue that the
FAR for the biometric secret generation model can be characterized in terms of the
identification capacity of a typical biometric identification system with no security
constraints.

Finally, we extend the i.i.d. results derived in this chapter to stationary ergodic
sources.

1.6.2 Chapter 3: Privacy Leakage in Biometric Secrecy Systems

In Chapter 3 we continue to study secret-key rates and privacy leakage. There, how-
ever, we concentrate on a more general situation. One of the challenges in designing
biometric secrecy systems is to minimize the privacy leakage for a given secret-key
rate. Therefore, in Chapter 3, we focus on finding the fundamental trade-off between
secret-key rates and privacy leakage. In this chapter we assume that our biometric
source is discrete memoryless.

Since biometric secrecy systems can be designed as those where secret keys are
generated from biometric data but also as those where secret keys are bound to bio-
metric data, see the overview paper of Jain et al. [37] and our discussions above,
we investigate both types of systems, i.e. biometric secret generation systems and
biometric systems with chosen (bound) secret keys.

We consider four biometric settings. The first one is again the standard Ahlswede-
Csiszár secret-generation setting. Now, however, we have the requirements that the
helper data should not only contain a negligible amount of information about the
secret, but also should leak as little information as possible about the biometric data.

In the second setting we consider a biometric model with chosen keys where the
secret key is not generated by the terminals but independently chosen at the encoder
side and conveyed to the decoder. This model has the same requirements as biometric
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secret generation model.

The other two biometric settings that we consider correspond to biometric secrecy
systems with zero privacy leakage. Ideally, biometric secrecy systems should leak a
negligible amount of information not only on the secret but also on the biometric
data. However, in order to be able to generate or convey large secret keys reliably, we
have to send some data (helper data) to the second terminal. Without any precautions,
the helper data leak a certain amount of information on the biometric data. In this
way biometrics solely may not always satisfy the security and privacy requirements
of certain systems. However, the performance of biometric systems can be enhanced
using standard cryptographic keys. In our models we assume that only the two termi-
nals have access to an extra independent private key, which is observed together with
the correlated biometric sequences. The private key is used to achieve a negligible
amount of privacy leakage (zero leakage). We investigate both the secret generation
model with zero-leakage and the model with chosen keys and zero-leakage.

All the four settings that we have described are studied for two types of leak-
age, i.e. unconditional and conditional privacy leakage. Unconditional leakage cor-
responds to the mutual information between the helper data and the biometric en-
rollment sequence and describes the information that the helper data leak about the
biometric data. The second type of leakage, the conditional one, relates to the mutual
information between the helper data and the biometric enrollment sequence condi-
tioned on the secret. This type of privacy leakage is motivated by the fact that the
helper data may provide more information on the pair of secret key and biometric
data than on each of these entities separately. Therefore we have to consider the mu-
tual information between the pair of secret key and biometric enrollment sequence
and the helper data. This mutual information has to be as small as possible. In Chap-
ter 3 we show that this requirement on the leakage on the pair can be reformulated
in terms of conditional privacy leakage that has to be minimized and secrecy leakage
that has to be negligible.

The four described biometric settings combined with two notions of privacy leak-
age result in eight biometric models. In Chapter 3 we determine the fundamental
trade-offs between secret-key rates and privacy-leakage rates, and secret-key rates
and private-key rates for all eight models. The result obtained for the first set-
ting is similar and a special case of the secret-key part of Thm. 2.4 in Csiszár and
Narayan [16].

For systems without a private key the achievable regions that we find are all equal,
except for the chosen-key model with conditional leakage where the achievable re-
gion is in principle smaller. Similarly, for zero-leakage systems the achievable re-
gions are all equal, except for the chosen-key model with conditional leakage. In the
latter case, it is important to note that from the derived region we may conclude that
the biometrics are actually useless. Generally, in zero-leakage systems the secret-key
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rate cannot be smaller than the private-key rate.
The achievability proofs that we provide in Chapter 3 suggest that optimal codes

should incorporate both vector quantization methods and Slepian-Wolf techniques.

1.6.3 Chapter 4: Leakage in Fuzzy Commitment Schemes

Chapter 4 is devoted to the analysis of the properties of fuzzy commitment, intro-
duced by Juels and Wattenberg [41]. Fuzzy commitment is a particular realization
of a binary biometric secrecy system with chosen secret keys. It became a popular
technique for designing biometric secrecy systems, since it is convenient and easy
to implement using standard error-correcting codes. However, fuzzy commitment
is primarily designed for binary uniform memoryless biometric sequences, and it is
provably secure for this case.

In Chapter 4 we focus on the achievable regions for fuzzy commitment. We
investigate fuzzy commitment when the biometric data statistic is memoryless and
totally-symmetric, memoryless and input-symmetric, memoryless, and stationary er-
godic. Unlike in Chapter 3, where we obtain the regions of secret-key vs. privacy
leakage pairs, the regions for fuzzy commitment are given for triples of achievable
secret-key, secrecy-leakage, and privacy-leakage rates.

We could determine the achievable regions when data statistics are memoryless
and totally-symmetric, and memoryless and input-symmetric. For the general mem-
oryless and stationary ergodic cases we cannot determine the achievable rate-leakage
regions, and we only provide outer bounds on the corresponding regions. These
bounds, moreover, can be sharpened for systematic parity-check codes.

Given the achievable regions (bounds), the optimality of fuzzy commitment in
terms of secret-key vs. privacy-leakage balance is assessed using the fundamental
secret-key vs. privacy-leakage rate trade-offs found in Chapter 3, if we “project” the
fuzzy-commitment regions on secret-key vs. privacy-leakage rate plane. It turns out
that the fuzzy commitment scheme is only optimal for the totally-symmetric memory-
less case and only if the scheme operates at the maximum secret-key rate. Moreover,
for the general memoryless case the scheme reveals more information than necessary
on both the secret and biometric data.

To assess the stationary ergodic case, we use the results obtained in Chapter 2.
Then we compare the fuzzy commitment scheme to a two-layer scheme for stationary
ergodic biometric sources. The latter scheme is based on a biometric secret gener-
ation model with a masking layer on top of it. It appears that the two-layer scheme
enjoys better properties. Hence we may conclude that also for the stationary ergodic
case the scheme reveals more than necessary information on both the secret and bio-
metric data.
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1.6.4 Chapter 5: Context Weighting And Maximizing Using Ratio Rep-
resentation

In order to design codes that achieve near-optimal performance according to the
guidelines stated in Chapter 3, we need to know the statistics of the biometric source.
The statistics of the source is determined by the model (structure) of the biometric
source and the probabilities which the biometric source uses to generate symbols.
Given a model of the source we can partition an observed biometric sequence into
subsequences according to the model and then calculate the empirical probabilities
in these subsequences as a fraction of digits that occur in the subsequences. The main
problem therefore is to find the model of the biometric source.

In Chapter 5 we derive the procedure to find the best model that matches an ob-
served biometric sequence pair. This procedure is based on the universal source cod-
ing method, i.e. on the Context-Tree Weighting (CTW) method of Willems, Shtarkov,
and Tjalkens [88]. In order to obtain an efficient procedure, we focused on the im-
plementation of the CTW method based on ratios of block probabilities, proposed
in Willems and Tjalkens [91]. Our procedure for finding the best model therefore
uses these ratios. The best model for an observed biometric sequence turns out to
be the maximum a posteriori (MAP) model. In Chapter 5 we describe a procedure
for deriving the MAP-model for two classes of general finite context sources, i.e. for
tree sources and for the so-called class III models. The general finite context sources
were described in [90]. The class III weighting methods are based on a richer model
than tree sources, and therefore with this class we may obtain more reliable model
estimates and, consequently, parameters of the source.

1.6.5 Chapter 6: Secret-Key Rate Estimation Based on Context Weight-
ing Methods

In Chapter 6 we study a problem that has to be addressed before any practical bio-
metric secrecy system is built, viz. how much secret information can be extracted or
conveyed with a certain biometric modality. In Chapters 2 and 4 it was argued that
the maximum secret-key rate in biometric secret generation systems and biometric
systems with chosen keys is equal to the mutual information between the biometric
enrollment and authentication sequences. These results hold for both i.i.d. biometric
sources and stationary ergodic sources. Thus we have to estimate the mutual infor-
mation between the biometric enrollment and authentication sequences. In Chapter 6
we focus on stationary ergodic biometrics.

The CTW method that we discuss in Chapter 5 can be used to estimate the re-
quired mutual information. Since the CTW method finds a good coding distribution
and therefore the resulting codeword has a small redundancy, the codeword length,
divided by the length of the source sequence, gives a good estimate of the entropy.
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Thus while estimating the mutual information we can focus on estimating the corre-
sponding entropies.

Biometric data such as iris codes, fingerprint minutiae maps, face patterns, PUFs,
etc. are often modeled as realizations of two-dimensional processes, see e.g. Jain et
al. [36]. Therefore we concentrate on estimating the mutual information and, corre-
spondingly, the entropy for two-dimensional sources.

In order to apply CTW methods, we first show that the entropy of a stationary
two-dimensional source is a limit of a series of conditional entropies. A similar
result was obtained by Anastassiou and Sakrison [6]. Then we extend this result to
the conditional entropy of one two-dimensional source given another one. Finally,
we demonstrate that the CTW method also approaches the source entropy in the two-
dimensional stationary ergodic case. This result carries over to conditional entropies
and joint entropies in the two-dimensional stationary ergodic case.

Using the CTW methods and the results discussed in Chapter 6, we further esti-
mate the maximum secret-key rate of speckle patterns from optical PUFs. We use the
CTW method, referred to as class IV, and the class III context weighting method to
obtain maximum secret-key rate estimates. We show that class III context weighting
methods give more reliable and slightly higher estimates of the secret-key capacity
than class IV methods. This result can be explained by noting that, on one hand, class
III context weighting methods are based on a richer model class than class IV meth-
ods, but on the other hand, the size of PUF-sequences is large enough to compensate
for the model redundancy.

The estimates that we obtain in Chapter 6 can be used to evaluate not only the
suitability of a biometric modality for a certain system but also the performance of
existing methods for secret-key extraction and secret-key binding.
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Security with Noisy Data: Private Biometrics, Secure Key Storage and Anti-
Counterfeiting. Springer, 2007. Chapter 13. Entropy Estimation for Optical
PUFs Based on Context-Tree Weighting Methods, pp. 217-234.
See Chapter 6.

[BC-2] P. Tuyls, G.J. Schrijen, F. Willems, T. Ignatenko, and B. Škorić. In Book
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ronment, were supposed to increase the user acceptance of the “ambient-intelligence
scenario”, as it would combine user convenience with a basic notion of trust in the
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Chapter 2

Secret Sharing and Biometric Systems

There are two ways to live: you can live as if nothing is a miracle;
you can live as if everything is a miracle (Albert Einstein).

2.1 Introduction

The problem of generating secret-keys from biometric data is closely related to the
concept of secret sharing, which was introduced by Maurer [47] and (slightly later)
by Ahlswede and Csiszár [3]. In the source model of Ahlswede and Csiszár [3] two
terminals observe two correlated sequences XN and Y N and aim at producing an as
large as possible common secret S by interchanging a public message M. This mes-
sage, to which we refer as helper data, should only provide a negligible amount of
information on the secret. It was shown that the maximum secret-key rate in this
model is equal to the mutual information I(X ;Y ) between the observed sequences.
The secret sharing concept is also closely related to the concept of common random-
ness generation that was studied by Ahlswede and Csiszár [4] and later extended with
helper terminals by Csiszár and Narayan [16]. In common randomness schemes the
requirement that the helper data should provide only a negligible amount of informa-
tion on the generated randomness is dropped.

In a biometric system where two terminals need to generate a common secret key
S from a biometric enrollment sequence XN and a biometric authentication sequence
Y N , the helper-message M should provide no information on the generated secret,
but it is also crucial that it provides as little information as possible on the biometric
data. We call this information the privacy leakage. The interest in the privacy leakage
is motivated by the fact that stolen biometric data result in a stolen identity. More-
over, compromised biometrics cannot be canceled and easily substituted as people
have only limited resources of biometric data. Therefore the use of biometrics raises
privacy concerns, as noted by Schneier [65], Ratha et al. [56], Prabhakar et al. [54],
Linnartz and Tuyls [45], in DSP forum [83], etc.

This chapter is devoted to theoretical grounds for our further investigation of
secret-key rates and privacy leakage in biometric secrecy systems. In this chapter
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we, first, revisit the classical Ahlswede and Csiszár [3] problem of generating a se-
cret from two dependent sequences. We focus on the biometric setting. We pro-
vide here the results on the largest achievable secret-key rate and the corresponding
privacy leakage for the case when the biometric data are discrete, independent and
identically distributed (i.i.d.). Our achievability proofs are expressed in terms of the
Slepian-Wolf techniques that were presented by Cover [14], in which binning of typ-
ical sequences plays an important role. We extend these results to the stationary
ergodic case. In the last part of the chapter we also discuss how typical biometric
performance measures, i.e. the False Rejection Rate (FRR) and the False Acceptance
Rate (FAR), relate to the results obtained for the biometric secret generation model.

2.2 Biometric Secret Generation Model

2.2.1 Definitions

66

66
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XN Y N
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Figure 2.1: Biometric secret generation.

Consider a biometric system, see Fig. 2.1, which is based on a biometric source
with distribution {Q(x,y),x ∈ X ,y ∈ Y }. This source produces an enrollment se-
quence xN = (x1,x2, . . . ,xN) of N symbols from the finite alphabet X and an authen-
tication sequence yN = (y1,y2, . . . ,yN) of N symbols from the finite alphabet Y . The
sequence pair (xN ,yN) occurs with probability

Pr{XN = xN ,Y N = yN}=
N

∏
n=1

Q(xn,yn), (2.1)

for all xN ∈ X N and yN ∈ Y N , in other words, the sequence pairs (Xn,Yn), n = 1,2,
. . . ,N are i.i.d. according to Q(x,y). The biometric sequences XN and Y N are in
general not independent of each other.

Next consider an encoder that observes the enrollment sequence XN . From this
sequence the encoder generates a secret S ∈ S = {1,2, . . . , |S |} and a public helper-
message M ∈M = {1,2, . . . , |M |}. The helper-message is sent to a decoder. Hence

(S,M) = e(XN), (2.2)
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where e(·) is the deterministic encoder mapping. The decoder, on its turn, observes
the authentication sequence Y N and produces an estimate Ŝ of the secret S using the
received helper-message M and the observed sequence Y N , hence

Ŝ = d(Y N ,M), (2.3)

where d(·) is the deterministic decoder mapping.
It is the goal of the encoder and decoder to produce as much key information as

possible, in such a way that the secret key is close to uniform, that the probability
that the estimated secret Ŝ is not equal to the secret S is close to zero and that the
information that the helper-message reveals about the secret is negligible. In this
thesis log denotes the base 2 logarithm.

Definition 2.1 A secret-key rate Rs, for Rs ≥ 0, is called achievable if for all δ > 0
and all N large enough, there exist encoders and decoders such that

Pr{Ŝ 6= S} ≤ δ,

1
N

H(S)+δ ≥ 1
N

log |S | ≥ Rs−δ,

1
N

I(S;M) ≤ δ. (2.4)

2.2.2 Statement of Result

The main result of this chapter is stated in the next theorem. This is actually the
Ahlswede and Csiszár [3] result but put in a biometric setting.

Theorem 2.1 For a biometric secret generation model the largest achievable secret-
key rate Rs is equal to I(X ;Y ).

This theorem was proven by Ahlswede and Csiszár [3] using strong typicality.
However, for the sake of completeness, we will give a proof of this result. Unlike the
original proof of Ahlswede and Csiszár [3], our proof is based on weak typicality.
This proof will be the core part of the achievability proofs presented in the later
chapters of this thesis where we deal with more general biometric settings.

The difference between weak and strong typicality can be summarized in the fol-
lowing lines. Weak typicality requires that the empirical entropy of a sequence is
close to the true entropy, while strong typicality requires that the relative frequency
of each possible outcome is close to the corresponding probability. Although strong
typicality is more powerful than weak typicality as a tool used to prove theorems for
memoryless problems, it cannot be used for continuous alphabets while weak typical-
ity can be. Therefore using proofs based on weak typicality make it easy to extend the
results for discrete biometric sources to continuous biometric sources. Although in
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this thesis we only concentrate on discrete i.i.d. data, we see the extension to sources
with memory as a future research direction. Another important difference is the joint
typicality property. In the case of strong typicality, joint typicality guarantees that if
two sequences uN and xN are jointly typical, and Y N is some random sequence drawn
according to some distribution {Q(y|x),x ∈ X ,y ∈ Y }, then with probability close to
one uN ,xN and Y N are also jointly typical if U → X →Y, see Cover and Thomas [13],
p. 436. This property does not hold for weak typicality. However, as we will see in
the next chapter, we can modify a typical set in such a way that a similar property
also holds when weakly typical sequences are used.

2.3 Proof of Thm. 2.1

2.3.1 Jointly Typical Sequences

First, we give the definition of jointly typical sequences and their main properties,
since typicality is an important notion in our proofs. For more details and the proofs
of the properties see e.g. Cover and Thomas [13], Section 14.2.

Definition 2.2 (Set of jointly typical sequences, [13]) Let (X1,X2, . . . ,XK) be a fi-
nite collection of K discrete random variables with some joint distribution {P(x1,

x2, . . . ,xK),(x1,x2, . . . , xK) ∈ X1×X2× . . .×XK}. The set A(N)
ε (X1,X2, . . . ,XK) of ε-

typical N-sequences (xN
1 , xN

2 , . . . ,xN
K) is defined as

A(N)
ε (X1,X2, . . . ,XK) ∆=

{
(xN

1 ,xN
2 , . . . ,xN

K) :
∣∣∣− 1

N
logP(vN)−H(V )

∣∣∣ < ε,

∀V ⊆ {X1,X2, . . . ,XK}
}
, (2.5)

where vN is a subset of N-sequences (xN
1 , xN

2 , . . . ,xN
K) corresponding to V, and P(vN)=

∏N
n=1 P(vn). Moreover, let V,W ⊆ {X1,X2, . . . ,XK}, then for a given wN we define

T (N)
ε (V |wN) ∆= {vN : (vN ,wN) ∈ A(N)

ε (V,W )}. (2.6)

Lemma 2.1 (Properties of jointly typical sequences, [13]) For any ε > 0

1. ∀V ⊆ {X1,X2, . . . ,XK} and N large enough

Pr{A(N)
ε (V )} ≥ 1− ε. (2.7)

2. ∀V ⊆ {X1,X2, . . . ,XK}

|A(N)
ε (V )| ≤ 2N(H(V )+ε). (2.8)
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3. Let V,W ⊆ {X1,X2, . . . ,XK}, then

|T (N)
ε (V |wN)| ≤ 2N(H(V |W )+2ε). (2.9)

4. Let K = 2. If (X̃1
N
, X̃2

N) are drawn according to P(xN
1 )P(xN

2 ), i.e. X̃1
N and X̃2

N

are independent sequences with the same marginals as P(xN
1 ,xN

2 ), then

Pr{(X̃1
N
, X̃2

N) ∈ A(N)
ε (X1,X2)} ≤ 2−N(I(X1;X2)−3ε). (2.10)

¥

2.3.2 Achievability Proof

Fix an ε > 0 and let A(N)
ε (X) and A(N)

ε (X ,Y ) be the sets of ε-typical and jointly ε-
typical N-sequences based on the joint distribution {Q(x,y),x ∈ X ,y ∈ Y } of the
XY -source. We prove the achievability with a random labeling argument.

Random labeling: The coding strategy is as follows. Let us define a random
partition of space X N , viz. space of typical XN-sequences, into |M | bins. An en-
coder independently assigns to each sequence xN a helper-label (index of the bin)
m ∈ {1,2, . . . , |M |} with probability

Pr{M(xN) = m} = 1/|M |. (2.11)

Furthermore, we define the second random partition over X N with |S | bins, and the
encoder also assigns to each sequence xN a randomness-label (bin-index of this sec-
ond partition) s ∈ {1,2, . . . , |S |} with probability

Pr{S(xN) = s} = 1/|S |. (2.12)

Encoding: The encoder observes the sequence xN and determines the secret and
helper labels s and m. If xN is not a typical sequence, an error is declared. Moreover,
the encoder checks if there exists another X-sequence with the same label pair, if so
also an error is declared. The encoder sends the helper label m to the decoder.

Decoding: The decoder, after having observed yN , looks for a unique sequence
xN with label m such that (xN ,yN) ∈ A(N)

ε (X ,Y ). If such a sequence is found, the
decoder emits its randomness-label ŝ = S(xN), otherwise an error is declared.

Error probability: The first problem now is to determine the error probability
averaged over the random labeling. An error at the encoder can occur in the following
situations

1) if xN /∈ A(N)
ε (X),

2) the sequence xN with labels m and s is not unique.
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Moreover, an error at the decoder would occur in the following situations

3) if (xN ,yN) /∈ A(N)
ε (X ,Y ),

4) there exists a sequence x′N 6= xN such that M(x′N) = M(xN) and (x′N ,yN) ∈
A(N)

ε (X ,Y ).

The decoder error probability averaged over the ensemble of random labelings
satisfies

Pd,ε ≤ Pr{(XN ,Y N) /∈ A(N)
ε (X ,Y )∪

(
∪

xN 6=XN :(xN ,Y N)∈A(N)
ε (X ,Y )

M(xN) = M(XN)
)
}

(a)
≤ Pr{(XN ,Y N) /∈ A(N)

ε (X ,Y )}+ ∑
xN 6=XN :(xN ,Y N)∈A(N)

ε (X ,Y )

Pr{M(xN) = M(XN)}

(b)
= Pr{(XN ,Y N) /∈ A(N)

ε (X ,Y )}+ |{xN 6= XN : (xN ,Y N) ∈ A(N)
ε (X ,Y )}| · 1

|M |
≤ Pr{(XN ,Y N) /∈ A(N)

ε (X ,Y )}+ |{xN : (xN ,Y N) ∈ A(N)
ε (X ,Y )}| · 1

|M |
(c)
≤ ε+2N(H(X |Y )+2ε) · 1

|M |
≤ 2ε, (2.13)

for N large enough if we we take 1
N log |M | = H(X |Y )+ 3ε. Here step (a) follows

from the union bound, (b) follows from random labeling, and (c) follows from (2.7)
and (2.9).

For the encoder error probability averaged over the ensemble of random labelings
we can write

Pe,ε ≤ Pr{XN /∈ A(N)
ε (X)∪

(
∪

xN 6=XN :xN∈A(N)
ε (X)

M(xN) = M(XN)∩S(xN) = S(XN)
)
}

(a)
≤ Pr{XN /∈ A(N)

ε (X)}+ ∑
xN 6=XN :xN∈A(N)

ε (X)

Pr{M(xN) = M(XN)} ·Pr{S(xN) = S(XN)}

(b)
≤ Pr{XN /∈ A(N)

ε (X)}+ |{xN : xN ∈ A(N)
ε (X)}| · 1

|M | ·
1
|S |

(c)
≤ ε+2N(H(X)+ε) · 1

|M | ·
1
|S |

≤ 2ε, (2.14)

for N large enough if we take 1
N log |S |= I(X ;Y )−ε (and 1

N log |M |= H(X |Y )+3ε).
Here step (a) follows from the union bound, (b) follows from random labeling, and
step (c) follows from (2.8).
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Since Pd,ε + Pe,ε ≤ 4ε for N large enough, this implies that for N large enough,
there exist at least two random labelings such that Pd,ε +Pe,ε ≤ 4ε. Now we focus on
these codes for the rest of the proof. Note that for these codes

Pr{Ŝ 6= S} ≤ 4ε, (2.15)

H(M) ≤ log |M |= N(H(X |Y )+3ε), (2.16)

H(S) ≤ log |S |= N(I(X ;Y )− ε). (2.17)

Since the encoder requires the secret and helper labels to be unique for xN , we
can assume that it can reconstruct the sequence based on the label pair. Now let X̂N

e
be the encoder’s estimate of XN based on S and M, then we find that

H(XN) = H(XN ,S,M)
= H(S)+H(M|S)+H(XN |S,M)

≤ H(S)+H(M)+H(XN |S,M, X̂N
e )

≤ H(S)+H(M)+NPe,ε log |X |+1, (2.18)

where the last step follows from Fano’s inequality, see e.g. Cover and Thomas [13],
p. 205.

Hence the entropy of the secret is lower bounded by

H(S) ≥ H(XN)−H(M)−NPe,ε log |X |−1
(a)
≥ NH(X)−N(H(X |Y )+3ε)−NPe,ε log |X |−1

≥ N(I(X ;Y )−3ε−4ε log |X |− 1
N

)

(b)
= N(

1
N

log |S |−2ε−4ε log |X |− 1
N

), (2.19)

where (a) follows from the fact that XN is an i.i.d. sequence and from (2.16), and (b)
from (2.17).

Next we study the secrecy

I(S;M) = H(S)+H(M)−H(S,M)
= H(S)+H(M)−H(S,M,XN)+H(XN |S,M)
(a)
= H(S)+H(M)−H(XN)+H(XN |S,M, X̂N

e )
(b)
≤ H(S)+H(M)−NH(X)+NPe,ε log |X |+1
(c)
≤ N(2ε+4ε log |X |+ 1

N
), (2.20)
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where step (a) holds, since S and M are functions of XN , and X̂N
e is a function of S and

M, (b) follows from the fact that XN is an i.i.d. sequence and from Fano’s inequality,
and (c) follows from (2.16) and (2.17).

Thus, letting ε ↓ 0 and N → ∞, we obtain the achievability from (2.15), (2.17),
(2.19), and (2.20).

2.3.3 Converse

Assume that the rate Rs is achievable. Now we consider the entropy of the secret

H(S) = I(S;Y N ,M)+H(S|Y N ,M)
(a)
= I(S;M)+ I(S;Y N |M)+H(S|Y N ,M, Ŝ)
≤ I(S;M)+H(Y N)−H(Y N |M,S,XN)+H(S|Ŝ)
(b)
≤ I(S;M)+H(Y N)−H(Y N |XN)+Pr{Ŝ 6= S} log |S |+1
(c)
≤ I(S;M)+ I(XN ;Y N)+N Pr{Ŝ 6= S} log |X |+1
(d)
≤ N(δ+ I(X ;Y )+δ log |X |+ 1

N
), (2.21)

where step (a) holds, since Ŝ is a function of M and Y N , (b) follows from the fact that
S and M are functions of XN and from Fano’s inequality, (c) holds, since the encoder
is deterministic and therefore |S | ≤ |X |N (possibly) after renumbering, and step (d)
follows from the fact that (XN ,Y N) is a sequence of i.i.d. pairs and the fact that for
achievable rates Rs we have that I(S;M)≤ Nδ and Pr{Ŝ 6= S} ≤ δ.

Then for achievable rates Rs we obtain

Rs−2δ≤ 1
N

H(S)≤ I(X ;Y )+δ+δ log |X |+ 1
N

. (2.22)

Finally, letting δ ↓ 0 and N → ∞, we obtain the converse.

2.4 Privacy Leakage for Codes Achieving the Maximum
Secret-Key Rate

In biometric secrecy systems we are also interested in the amount of information that
the helper data leak about the biometric data, which is called privacy leakage. We
define I(M;XN)/N to be the privacy leakage per biometric source symbol. Now we
concentrate on codes that we have determined in the achievability proof of Thm. 2.1.
The following proposition gives us the privacy leakage per source symbol corre-
sponding to the maximum achievable secret-key rate in the biometric secret genera-
tion model when such codes are used. A similar result for error-correcting codes was



2.5 Stationary Ergodic Case 31

also demonstrated in Dodis et al. [22] and Smith [72] and for binary error-correcting
codes in Tuyls and Goseling [79]. The result obtained in this proposition is somewhat
more general.

Proposition 2.1 In a biometric secret generation model, for the codes that demon-
strate the achievability of secret-key rate I(X ;Y ), the privacy leakage per source
symbol is equal to H(X |Y ).

Proof of Prop. 2.1:
Note that, since M is a function of XN , we have that I(XN ;M) = H(M). Hence the
privacy leakage is equal to the entropy of the helper data. From the achievability
proof corresponding to Thm. 2.1, we can write for the entropy of the helper data,
using (2.18), (2.17) and the fact that XN is an i.i.d. sequence, that

I(XN ;M) = H(M) ≥ H(XN)−H(S)−NPe,ε log |X |−1

≥ N(H(X |Y )+ ε−4ε log |X |− 1
N

). (2.23)

On the other hand, for the helper data (2.16) holds, and thus

I(XN ;M) = H(M)≤ N(H(X |Y )+3ε). (2.24)

Then, dividing both sides of the above expressions by N and letting ε ↓ 0 and N →∞,
we finalize the proof.

¥
The above proposition gives us the privacy leakage per source symbol if we apply

the coding scheme outlined in the achievability proof. However, it may be possible
to achieve a privacy leakage that is smaller if an alternative coding scheme is applied.
Note that in the biometric setting we are interested in a system where the helper data
leak as little information as possible about the biometric data. Therefore now the
question arises what the minimum achievable privacy leakage in a biometric secrecy
system is for a fixed secret-key rate. The answer to this question, though, we postpone
to the next chapter.

2.5 Stationary Ergodic Case

In the previous sections we considered the case when the biometric data source is
i.i.d. Now we argue that the results, similar to those derived for the i.i.d. case, hold
for biometric sequences that are generated by jointly stationary ergodic sources. In
Csiszár and Narayan [17] it was also argued that the i.i.d. results on strong secrecy
capacity for multiple terminals can be extended to the stationary ergodic case.
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Let (XN ,Y N) be a jointly stationary ergodic sequence pair and define

H∞(X) ∆= lim
N→∞

1
N

H(X1,X2, . . . ,XN),

H∞(Y ) ∆= lim
N→∞

1
N

H(Y1,Y2, . . . ,YN),

H∞(X ,Y ) ∆= lim
N→∞

1
N

H(X1,Y1,X2,Y2, . . . ,XN ,YN),

H∞(X |Y ) ∆= H∞(X ,Y )−H∞(Y ),

I∞(X ;Y ) ∆= H∞(X)+H∞(Y )−H∞(X ,Y ). (2.25)

Then the following theorem holds.

Theorem 2.2 For a jointly stationary ergodic sequence pair (XN ,Y N) the result of
Thm. 2.1 holds if we replace I(X ;Y ) with I∞(X ;Y ). Moreover, for the codes that
demonstrate the achievability of secret-key rate I∞(X ;Y ), the privacy leakage per
source symbol is equal to H∞(X |Y ).

Proof of Thm. 2.2:
The proof of this theorem is similar to the proofs of Thm. 2.1 and Prop. 2.1. The
difference is that now the definitions of typical sets are as in Cover [14].

Moreover, in both the achievability and converse proofs, the steps involving
equalities H(XN) = NH(X) and I(XN ;Y N) = NI(X ;Y ) have to be adjusted. Using
the definitions of the stationary ergodic sequences and noting that the achievability
proof and the converse hold for N large enough, we substitute NH∞(X) for H(XN)
and I∞(X ;Y ) for I(XN ;Y N) in (2.19), (2.20), (2.21) and (2.23).

¥

2.6 FRR and FAR in Biometric Secret Generation Models

The FRR and FAR are typical performance measures for biometric systems. Recall
that in standard biometric authentication systems the FRR is defined as the probability
that an authorized individual cannot get access to a system, while the FAR is defined
as the probability that an unauthorized individual (an imposter) is granted access.

For a biometric secret generation system, described in Section 2.2.1, we consid-
ered the probability that the estimated secret Ŝ is not equal to the generated secret
S. When these secrets are not equal, an authorized individual is rejected. Thus the
probability that Ŝ is not equal to S is equivalent to the FRR. Hence, according to the
definition of achievability, we obtain that for the biometric secret generation model
for rates up to I(X ;Y ) there exist codes that achieve

FRR = Pr{S 6= Ŝ} ≤ δ, (2.26)
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for any δ > 0 and all N large enough.
Now consider an imposter who would like to obtain access to the system. He

provides his biometric data during authentication. False acceptance would occur if
the secret estimated by the system based on these presented data is equal to the secret
generated for the authorized individual. Next we look at the probability of such an
error.

The biometric secret generation system, described in Section 2.2.1, is based on a
biometric source with distribution {Q(x,y),x ∈ X ,y ∈ Y }. Consider a biometric im-
poster sequence ỹN = (ỹ1, ỹ2, . . . , ỹN) produced by the biometric source according to
{Q(y),y ∈ Y }, where Q(y) = ∑x Q(x,y). The biometric imposter sequences have the
same distribution as the biometric sequences of an authorized individual. However,
since they come from different persons, we can assume that the biometric source se-
quences XN and Ỹ N are independent. Then the sequence pair (xN , ỹN) occurs with
probability

Pr{XN = xN ,Ỹ N = ỹN} =
N

∏
n=1

Q(xn)Q(ỹn). (2.27)

In this way sequence pairs (Xn,Ỹn),n = 1,2, . . . ,N are i.i.d. according to Q(x)Q(y).
Now consider the situation when the decoder observes a biometric imposter se-

quence Ỹ N and forms an estimate

S̃ = d(Ỹ N ,M). (2.28)

We are interested now in the probability that the imposter is granted access to the
system, i.e. in the FAR. This probability is defined as Pr{S̃ = S}. The following
theorem provides us with an upper bound on the FAR that can be achieved in the
biometric secret generation model.

Theorem 2.3 For a biometric secret generation model, that is based on a source with
distribution {Q(x,y),x ∈ X ,y ∈ Y }, for all δ > 0 and all N large enough there exist
codes with positive rates up to I(X ;Y ) such that

FAR = Pr{S = S̃} ≤ δ. (2.29)

Proof of Thm. 2.3
Assume that the positive rate Rs is achievable, and consider the secret entropy

H(S) = I(S;Ỹ N ,M)+H(S|Ỹ N ,M)
(a)
≤ I(S;M)+ I(Ỹ N ;XN)+Pr{S̃ 6= S} log |S |+1
(b)
≤ Nδ+Pr{S̃ 6= S} log |S |+1, (2.30)
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where step (a) follows from Fano’s inequality, from the fact that S and M are func-
tions of XN , and (b) follows from the fact that for achievable rates Rs we have that
I(S;M)≤ Nδ and from the fact that XN and Ỹ N are independent.

Then we can write

1
N

log |S |−δ≤ 1
N

H(S)≤ δ+
1
N

Pr{S̃ 6= S} log |S |+ 1
N

. (2.31)

Rearranging the above expression and noting that FAR = 1−Pr{S̃ 6= S}, we obtain

FAR≤ 2Nδ+1
log |S | ≤

2δ+1/N
Rs−δ

, (2.32)

where the last step follows from the definition of achievable rates.
Finally, letting δ ↓ 0 and N → ∞, we obtain the proof.

¥
The result provided in the above theorem states that we can obtain an arbitrarily

small FAR in biometric secret generation systems for rates up to I(X ;Y ). However,
this is an asymptotic result, which means that arbitrarily small FARs can be obtained
for infinitely long biometric sequences.

To obtain a better, non-asymptotic, characterization of the FAR, we consider the
problem from a different prospective. From the achievability proof of Thm. 2.1 it
follows that the estimate of the generated secret key will be equal to the generated
key only if a biometric authentication sequence is jointly typical with the biometric
enrollment sequence. Therefore an imposter can try to generate a biometric sequence
Ỹ N that is jointly typical with XN according to the distribution {Q(x,y),x∈X ,y∈Y }.
However, from the properties of jointly typical sequences, see (2.10), it follows that

FAR≤ Pr{(XN ,Ỹ N) ∈ A(N)
ε (X ,Y )} ≤ 2−N(I(X ;Y )−3ε). (2.33)

Note that I(X ;Y ) corresponds to the maximum secret-key rate achievable in the bio-
metric secret generation system. Therefore we may conclude that generating a se-
quence which will be jointly typical with XN is at least as hard as guessing the secret
key (note that the secret-key rates achievable in a biometric secret generation model
are smaller than or equal to I(X ;Y )).

The result presented above holds on average for biometric sequences xN . More-
over, we can obtain even stronger result stating that the upper bound on the FAR
holds for all sequences xN . Consider a specific biometric enrollment sequence xN .
An imposter generates a sequence Ỹ N according to {Q(y),y ∈ Y }. Then the FAR
will be upper bounded by the probability that the imposter sequence Ỹ N is jointly
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typical with xN . We can write

Pr{Ỹ N ∈ T (N)
ε (Y |xN)} = ∑

yN∈T (N)
ε (Y |xN)

Q(yN)

= ∑
yN∈T (N)

ε (Y |xN)

Q(yN |xN)
Q(xN)Q(yN)

Q(xN ,yN)

(a)
≤ 2−N(I(X ;Y )−3ε) ∑

yN∈T (N)
ε (Y |xN)

Q(yN |xN)

≤ 2−N(I(X ;Y )−3ε), (2.34)

where step (a) follows from typicality.
It is interesting to see that the upper bound on the FAR is the inverse of the

identification capacity in biometric identification systems without secrecy constraints
found in Willems et al. [86] and Schmid and O’Sullivan [63].

Note that the results presented in this section also hold for the stationary ergodic
case.

2.7 Conclusions

In this chapter we have considered the classical Ahlswede-Csiszár secret generation
model in a biometric setting. The maximum secret-key rate achievable for this model
is equal to I(X ;Y ). Although this result was proved using strong typicality before by
Ahlswede and Csiszár [3], for the sake of completeness we have provided a proof
here too. Our proof, which is based on weak typicality, will be the core part of the
achievability proofs given in the later chapters of this thesis where we deal with more
general biometric settings.

We have also demonstrated that the privacy leakage that corresponds to the max-
imum secret-key rate in biometric secret generation systems is roughly equal to
H(X |Y ). A similar result but for error-correcting codes was also obtained in Dodis et
al. [22], Smith [72] and Tuyls and Goseling [79]. The question whether it is possible
to achieve smaller privacy leakage will be addressed in the next chapter.

Next we have investigated the question of which FRR and FAR can be achieved
in biometric secret generation systems. We have shown that these error probabilities
can be made arbitrarily small for positive secret-key rates of less than or equal to
I(X ;Y ).

The biometric secret generation model was studied for discrete i.i.d. biometric
sources. We could also extend the i.i.d. results to stationary ergodic sources.

It should be noted that the results that we have presented in this chapter are
asymptotic, and thus hold for infinitely long biometric sequences.
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Chapter 3

Privacy Leakage in Biometric Secrecy
Systems

Look deep into nature, and then you will understand everything bet-
ter (Albert Einstein).

3.1 Introduction

3.1.1 Motivation

In the previous chapter we have started the analysis of biometric secret generation
systems. We have considered the setup where the system was optimized with re-
spect to achieving the maximum secret-key rate, and for this case we analyzed the
corresponding privacy leakage. In the current chapter we consider a more general
situation. As noted in the introduction to the previous chapter, the use of biomet-
rics brings about privacy concerns, and therefore in a biometric setting the goal is to
minimize the privacy leakage for a given secret-key rate. Thus we are interested in
finding the trade-off between the secret-key rate and the privacy leakage.

In the overview paper of Jain et al. [37] it was noted that biometric secrecy sys-
tems can be subdivided into those that generate secret keys from biometric data and
those that bind secret keys to biometric data. Therefore in this chapter we consider
two types of biometric secrecy systems, i.e. systems with generated secret keys and
systems with chosen (bound) secret keys.

Privacy concerns raised by Schneier [65], Ratha et al. [56], Prabhakar et al. [54],
Linnartz and Tuyls [45], in the DSP forum [83], etc. led to the proposal of various
techniques in the last decade. Implementations of biometric secrecy systems include
methods based on various forms of Shamir’s secret sharing [67]. These methods are
used to harden passwords with biometric data, see e.g. Monrose et al. [49], [48].
The methods based on error-correcting codes, which bind uniformly distributed se-
cret keys to biometric data and which tolerate (biometric) errors in these secret keys,
were formally defined by Juels and Wattenberg [41]. Less formal approaches can be



38 Privacy Leakage in Biometric Secrecy Systems

found in Davida et al. [19], [18]. Error-correction based methods were extended to
the set difference metric developed by Juels and Sudan [40]. Some other approaches
focus on continuous biometric data and provide solutions, which rest on quantization
of biometric data as in Linnartz and Tuyls [45], Denteneer et al. [20] (with emphasis
on reliable components), Teoh et al. [74], and Buhan et al. [10]. Finally, a formal
approach for designing secure biometric systems for three metric distances (Ham-
ming, edit, and set), called fuzzy extractors, was introduced in Dodis et al. [22] and
Smith [72] and further elaborated in [23]. Fuzzy extractors were subsequently im-
plemented for different biometric modalities in Sutcu et al. [73], Draper et al. [25],
etc.

A problem of the existing practical systems is that sometimes they lack formal se-
curity proofs and rigorous security formulations. On the other hand, the systems that
do provide formal proofs actually focus on secrecy only while neglecting privacy. For
instance, Frykholm and Juels [27] only provide their analysis for the secrecy of the
keys. Similarly, Linnartz and Tuyls [45] offer information-theoretical analysis for the
secrecy leakage but no corresponding privacy leakage analysis. Dodis et al. [22], [23]
and Smith [72] were the first to address the problem of code construction for biomet-
ric secret-key generation in a systematic information-theoretical way. Although their
works provide results on the maximum secret-key rates in biometric secrecy systems,
they also focus on the corresponding privacy leakage. In a biometric setting, how-
ever, the goal is to minimize the privacy leakage and, more specifically, to minimize
the privacy leakage for a given secret-key rate. The need for quantifying the exact
information leakage on biometric data was also stated as an open question in Sutcu
et al. [73]. In the current chapter we study the fundamental trade-off between the
secret-key rate and privacy leakage in biometric secrecy systems.

Recently, Prabhakaran and Ramchandran [55], and Gündüz et al. [32] studied
source coding problems where the issue of (biometric) leakage was addressed. In
their work, though, it is not the intention of the users to produce a secret but to
communicate a (biometric) source sequence in a secure way from the first to the
second terminal.

3.1.2 Eight Models

In this chapter we consider four biometric settings. The first one is again the stan-
dard Ahlswede-Csiszár secret-generation setting that we considered in the previous
chapter. There two terminals observe two correlated biometric sequences. It is their
objective to form a common secret by interchanging a public message. This message
should contain only a negligible amount of information about the secret, but, in ad-
dition, we require here that it should leak as little information as possible about the
biometric data. For this first case the fundamental trade-off between the secret-key
rate and the privacy-leakage rate will be determined. It should be noted that this re-
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sult is in some way similar to and a special case of the SK (secret-key) part of Thm.
2.4 in Csiszár and Narayan [16].

The second setting that we consider is a biometric model with chosen keys, where
the secret key is not generated by the terminals but independently chosen at the en-
coder side and conveyed to the decoder. This model corresponds to key-binding
described in the overview paper of Jain et al. [37]. For the chosen-key setting we will
also determine the fundamental rate-leakage balance.

The other two biometric settings that we analyze correspond to biometric secrecy
systems with zero privacy leakage. Solely, biometrics may not always satisfy the
security and privacy requirements of certain systems. In this case the performance
of biometric systems can be enhanced using standard cryptographic keys. Although
this reduces user convenience, since e.g. extra cryptographic keys need to be stored
on external media or memorized, such systems may offer a higher level of secrecy
and privacy. Practical methods in this direction include attempts to harden the fuzzy
vault scheme of Juels and Sudan [40] with passwords by Nandakumar et al. [50] and
dithering techniques that were proposed by Buhan et al. [9]. In our model we assume
that only the two terminals have access to an extra independent private key, which is
observed together with the correlated biometric sequences. The private key is used to
achieve a negligible amount of privacy leakage (zero leakage). We investigate both
the secret generation model with zero-leakage and the model with chosen keys and
zero-leakage. For both models we will determine the trade-off between the private-
key rate and the resulting secret-key rate.

For the four settings outlined above, the fundamental balance will be determined
for both unconditional and conditional privacy leakage. This results in eight biomet-
ric models. Unconditional leakage corresponds to the unconditional mutual infor-
mation between the helper data and the biometric enrollment sequence, while condi-
tional leakage relates to this mutual information conditioned on the secret.

3.1.3 Chapter Outline

This chapter is organized as follows. First we start with an example that demonstrates
that time sharing does not result in an optimal trade-off between secret-key rate and
privacy leakage. Then in Section 3.2 we continue with the formal definitions of all the
eight models discussed above. In Section 3.3 we state the results that will be derived
in this chapter. We will determine the achievable regions for all the eight settings.
The following section, i.e. Section 3.4, discusses the properties of the achievable
regions that play a role here. Section 3.5 provides the proofs of our results. Finally,
in Section 3.6 we discuss the relations between the found achievable regions and in
Section 3.7 we present the conclusions.
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3.1.4 An Example

Before we turn to a more formal part of this chapter, we first discuss an example.
Consider an i.i.d. biometric binary symmetric double source {Q(x,y),x ∈ {0,1},y ∈
{0,1}} with crossover probability 0 ≤ q ≤ 1/2 such that Q(x,y) = (1− q)/2, for
y = x and Q(x,y) = q/2, for y 6= x. In this example we use q = 0.1. In the classical
Ahlswede-Csiszár [3] key-generation setting, considered in the previous chapter, the
maximum secret-key rate for this biometric source is Rs = I(X ;Y ) = 1−h(q), where
h(·) is the binary entropy function expressed in bits. The corresponding privacy-
leakage rate in this case is H(X |Y ) = h(q). Then the ratio between rate and leakage
is equal to (1−h(q))/h(q) = 1.1322.

Now suppose that we want to reduce the privacy-leakage rate to a fraction of α
of its original size. We could apply a trivial method in which we use only a fraction
α of the biometric symbols, but then the secret-key rate is also reduced to a fraction
of α of its original size, and there is no effect on the rate-leakage ratio. A question
now arises of whether it is possible to achieve a larger rate-leakage ratio at reduced
leakage.

We will demonstrate next that we can achieve this goal using the binary Golay
code as a vector quantizer. This code consists of 4096 codewords of length 23 and
has minimum Hamming distance 3, and it is perfect, i.e. all 4096 sets of sequences
having a distance of at most 3 from a codeword are disjoint and their union is the
set of all binary sequences of length 23. A decoding sphere of this code contains
exactly 2048 sequences and within a decoding sphere there are 254 sequences that
are different from the codeword at a fixed position. This perfect code is now used as
a vector quantizer for {0,1}23, hence each binary biometric enrollment sequence x23

is mapped onto the closest codeword u23 in the Golay code. Now we consider the
derived biometric source whose enrollment output is the quantized sequence U23 of
X23 and whose authentication output is the sequence Y 23.

Again we are interested in the rate-leakage ratio I(U23;Y 23)/H(U23|Y 23) for
which we can now write

I(U23;Y 23)
H(U23|Y 23)

=
H(Y 23)−H(Y 23|U23)

H(U23)+H(Y 23|U23)−H(Y 23)

=
23−H(Y 23|U23)
H(Y 23|U23)−11

. (3.1)

Although computation shows that H(Y 23|U23) = 16.4733, it is more intuitive to con-
sider the following upper bound

H(Y 23|U23) ≤
23

∑
n=1

H(Yn|Un)

= 23h(p(1−q)+(1− p)q)
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= 23h(0.1992)
= 16.5683, (3.2)

where we used that p ∆= Pr{Xn 6= Un} = 254/2048, since we apply the Golay code
as quantizer. If we substitute this upper bound into expression (3.1) we get a lower
bound for the rate-leakage ratio 1.1550, which improves upon the standard ratio of
1.1322. The exact rate-leakage ratio is equal to 1.1925 and improves more upon the
standard ratio.

This example shows that the optimal trade-off between secret-key rate and pri-
vacy-leakage rate needs not be linear. Methods based on vector quantization result
in better rate-leakage ratios than those simply using only a fraction of the symbols.
In what follows we will determine the optimal trade-off between secret-key rate and
privacy-leakage rate. It will become apparent that vector quantization is an essential
part of an optimal scheme.

3.2 Eight Cases, Definitions

3.2.1 Basic Definitions

A biometric system is based on a biometric source with distribution {Q(x,y), x ∈
X ,y ∈ Y }. This source produces an enrollment sequence xN = (x1,x2, . . . ,xN) of
N symbols from the finite alphabet X and an authentication sequence yN = (y1,y2,
. . . ,yN) of N symbols from the finite alphabet Y . The sequence pair (xN ,yN) occurs
with probability

Pr{XN = xN ,Y N = yN} =
N

∏
n=1

Q(xn,yn), (3.3)

for all xN ∈ X N and yN ∈ Y N , hence the sequence pairs (Xn,Yn), n = 1,2, . . . ,N are
i.i.d. according to Q(x,y).

The sequences xN and yN are observed by an encoder and decoder, respectively.
One of the outputs that the encoder produces is an index m ∈ {1,2, . . . , |M |}, which
is referred to as helper data. The helper data are made public and are used by the
decoder.

We subdivide systems into those where both terminals are supposed to generate a
secret key and systems in which a secret key is uniformly chosen and bound to a bio-
metric sequence, see Jain et al. [37]. The generated secret key s and the chosen secret
key k assume values in {1,2, . . . , |S |} and {1,2, . . . , |K |}, respectively. The decoder’s
estimates ŝ and k̂ of the secret keys s and k also assume values from {1,2, . . . , |S |}
and {1,2, . . . , |K |}, respectively. In systems with chosen keys the secret key K is a
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uniformly distributed index, hence

Pr{K = k} = 1/|K | for all k ∈ {1,2, . . . , |K |}. (3.4)

In addition to distinguishing between generated key and chosen key systems,
we can subdivide systems into systems in which the helper data are allowed to leak
some information about the biometric sequence XN and systems in which this leak-
age should be negligible. In the so-called zero-leakage systems both terminals have
access to a private key p. This private key is assumed to be uniformly distributed,
hence

Pr{P = p} = 1/|P | for all p ∈ {1,2, . . . , |P |}. (3.5)

We call this key private, since we assume that the only encoder and decoder can
access it.

Finally, for all four settings we consider two types of privacy leakage, (a) un-
conditional leakage and (b) conditional leakage. Unconditional leakage corresponds
to bounding the mutual information I(XN ;M), whereas conditional leakage corre-
sponds to bounding the conditional mutual information I(XN ;M|S) or I(XN ;M|K).
Designing a biometric system, we are interested in a secure system that leaks as little
information as possible about biometric data. Therefore natural constraints involve
having I(S;M) or I(K;M) close to zero and I(XN ;M) being as small as possible,
what corresponds to the unconditional case. However, since the information that the
helper data provide about a pair (XN ,S) or (XN ,K) can be larger than the information
that they provide on each entity separately, we are also interested to have I(S;M) or
I(K;M) close to zero and I(S,XN ;M) or I(K,XN ;M) to be as small as possible. These
constraints are equivalent to having I(S;M) or I(K;M) close to zero and I(XN ;M|S)
or I(XN ;M|K) being as small as possible and this corresponds to the conditional case.

Note that we indeed have to consider both unconditional and conditional privacy
leakage. Observe that I(XN ;M|S)= I(XN ,S;M)−I(S;M)= I(XN ;M)+I(S;M|XN)−
I(S;M). Thus we see that, since I(S;M|XN)≥ 0, then for negligible I(S;M) we have
that I(XN ;M|S)≥ I(XN ;M) in secret generation systems. Similarly, we can come to
the conclusion that we need to consider both unconditional and conditional privacy
leakage for systems with chosen keys.

In the next sections the four resulting combinations, i.e. (1) the biometric secret
generation model, (2) the biometric model with chosen keys, (3) the biometric secret
generation model with zero-leakage, and (4) the biometric model with chosen keys
and zero-leakage, will be proposed in detail. For each combination we consider both
unconditional and conditional privacy leakage.
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Figure 3.1: Model for a biometric secret generation system.

3.2.2 Biometric Secret Generation Model

In a biometric secret generation system, see Fig. 3.1, the encoder observes the bio-
metric enrollment sequence XN . Then from this sequence the encoder generates a
secret key S and a public helper-message M, hence

(S,M) = e(XN), (3.6)

where e(·) is the deterministic encoder mapping. The public helper-message M is
sent to the decoder. The decoder, on its turn, observes the authentication sequence
Y N and produces an estimate Ŝ of the secret S using the observed data, hence

Ŝ = d(Y N ,M), (3.7)

where d(·) is the deterministic decoder mapping.
It is the goal of the encoder and decoder to produce a common (shared) key in

such a way that the probability that the estimated secret key Ŝ is not equal to S is close
to zero. Moreover, we require the information that the helper-message reveals about
the secret to be negligible. In addition, we want the secret-key rate to be as large as
possible and the secret key to be close to uniform. Finally, the helper data should leak
as little information as possible on the biometric data. The privacy leakage can be
of two types, and therefore we give two definitions of the achievable secret-key vs.
privacy-leakage rate pairs, one corresponding to unconditional leakage and the other
one corresponding to conditional leakage.

Definition 3.1 A secret-key vs. privacy-leakage rate pair (Rs,Rl) with Rs ≥ 0 is said
to be achievable for a biometric secret generation model in the unconditional/condi-
tional case if for all δ > 0 and for all N large enough, there exist encoders and
decoders such that

Pr{Ŝ 6= S} ≤ δ,

1
N

H(S)+δ ≥ 1
N

log |S | ≥ Rs−δ,



44 Privacy Leakage in Biometric Secrecy Systems

1
N

I(S;M) ≤ δ,

(Unconditional)
1
N

I(XN ;M) ≤ Rl +δ,

(Conditional)
1
N

I(XN ;M|S) ≤ Rl +δ. (3.8)

Moreover, we define R u
sg and R c

sg to be the regions of all achievable secret-key vs.
privacy-leakage rate pairs for a biometric secret generation model in the uncondi-
tional and conditional case, respectively.

3.2.3 Biometric Model with Chosen Keys

--
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Figure 3.2: Model for a biometric system with chosen keys.

In a biometric system with chosen keys, see Fig. 3.2, a secret key K is a uniformly
distributed random variable independent of the biometric data, see (3.4). The encoder
observes this secret key K and the biometric enrollment sequence XN and produces a
public helper-message M, hence

M = e(XN ,K), (3.9)

where e(·) is the deterministic encoder mapping. This helper-message is sent to the
decoder. The decoder observes the biometric authentication sequence Y N and pro-
duces an estimate K̂ of the secret key K based on the observed data, hence

K̂ = d(Y N ,M), (3.10)

where d(·) is the deterministic decoder mapping.
Again the encoder and decoder aim at creating a system in such a way that the

estimated secret K̂ is equal to the chosen secret K with high probability. In addition,
the information that the helper-message reveals about the secret should be negligible
and the privacy leakage should be as small as possible. Just like before the secret-key
rate should be as large as possible. Again we have two definitions of achievable pairs.

Definition 3.2 For a biometric model with chosen keys in the unconditional/condi-
tional case a secret-key vs. privacy-leakage rate pair (Rk,Rl) with Rk ≥ 0 is said to
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be achievable if for all δ > 0 and for all N large enough, there exist encoders and
decoders such that

Pr{K̂ 6= K} ≤ δ,

1
N

log |K | ≥ Rk−δ,

1
N

I(K;M) ≤ δ,

(Unconditional)
1
N

I(XN ;M) ≤ Rl +δ,

(Conditional)
1
N

I(XN ;M|K) ≤ Rl +δ. (3.11)

Moreover, we define R u
ck and R c

ck to be the regions of all achievable secret-key vs.
privacy-leakage rate pairs for a biometric model with chosen keys in the uncondi-
tional and conditional case, respectively.

3.2.4 Biometric Secret Generation Model with Zero-Leakage
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Figure 3.3: Model for a zero-leakage biometric secret generation system.

In a biometric secret generation model with zero-leakage, see Fig. 3.3, a private
uniform random key P, see (3.5), is available to both the encoder and decoder. The
encoder observes this private key P and the biometric enrollment sequence XN and
generates a secret S and a public helper-message M, hence

(S,M) = e(XN ,P), (3.12)

where e(·) is the deterministic encoder mapping. The helper-message is sent to the
decoder. The decoder also observes the private key P, the biometric authentication
sequence Y N and produces an estimate Ŝ of the secret key S, hence

Ŝ = d(Y N ,P,M), (3.13)

where d(·) is the deterministic decoder mapping.
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Definition 3.3 For a biometric secret generation model with zero-leakage in the
unconditional/conditinal case a secret-key vs. private-key rate pair (Rzs,Rp) with
Rzs ≥ 0 is said to be achievable if for all δ > 0 and for all N large enough, there exist
encoders and decoders such that

Pr{Ŝ 6= S} ≤ δ,

1
N

H(S)+δ ≥ 1
N

log |S | ≥ Rzs−δ,

1
N

log |P | ≤ Rp +δ,

(Unconditional)
1
N

(I(S,M)+ I(XN ;M)) ≤ δ,

(Conditional)
1
N

I(S,XN ;M) ≤ δ. (3.14)

Moreover, we define R u
zsg and R c

zsg to be the regions of all achievable secret-key vs.
private-key rate pairs for a biometric secret generation model with zero-leakage in
the unconditional and conditional case, respectively.

3.2.5 Biometric Model with Chosen Keys and Zero-Leakage
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Figure 3.4: Model for a zero-leakage biometric system with chosen keys.

In a biometric system with chosen keys and zero-leakage, see Fig. 3.4, a private
uniform random key P, see (3.5), is again available to both the encoder and decoder.
Moreover, there is also an independent uniform secret key K, see (3.4), which is
given to the encoder. The encoder observes the private key P, the secret key K and the
biometric enrollment sequence XN and produces a public helper-message M, hence

M = e(XN ,K,P), (3.15)

where e(·) is the deterministic encoder mapping. The helper-message is sent to the
decoder. The decoder, on its turn, observes the biometric authentication sequence Y N

and the private key P and produces an estimate K̂ of the secret key K, hence

K̂ = d(Y N ,P,M), (3.16)
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where d(·) is the deterministic decoder mapping. Here again we have two definitions
of achievable pairs.

Definition 3.4 For a biometric model with chosen keys and zero-leakage in the un-
conditional/conditional case a secret-key vs. private-key rate pair (Rzk,Rp) with
Rzk ≥ 0 is said to be achievable if for all δ > 0 and for all N large enough, there
exist encoders and decoders such that

Pr{K̂ 6= K} ≤ δ,

1
N

log |K | ≥ Rzk−δ,

1
N

log |P | ≤ Rp +δ,

(Unconditional)
1
N

(I(K;M)+ I(XN ;M)) ≤ δ,

(Conditional)
1
N

I(K,XN ;M) ≤ δ. (3.17)

Moreover, we define R u
zck and R c

zck to be the regions of all achievable secret-key vs.
private-key rate pairs for a biometric model with chosen keys and zero-leakage in the
unconditional and conditional case, respectively.

3.3 Statement of Results

In this section we present our results for all the biometric models described in the
previous section. We will present eight theorems. First, however, we have to define
the regions R 1, R 2, R 3, and R 4. Note that depending on the model, the regions R 1,
R 2, R 3, and R 4 are defined for the secret-key rates Rs,Rk,Rzs, or Rzk. We only give
the definitions in terms of Rs.

R 1
∆=

{
(Rs,Rl) : 0≤ Rs ≤ I(U ;Y ),

Rl ≥ I(U ;X)− I(U ;Y ),
for P(u,x,y) = Q(x,y)P(u|x)}. (3.18)

R 2
∆=

{
(Rs,Rl) : 0≤ Rs ≤ I(U ;Y ),

Rl ≥ I(U ;X),
for P(u,x,y) = Q(x,y)P(u|x)}. (3.19)

R 3
∆=

{
(Rs,Rp) : 0≤ Rs ≤ I(U ;Y )+Rp,

Rp ≥ I(U ;X)− I(U ;Y ),
for P(u,x,y) = Q(x,y)P(u|x)}. (3.20)
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R 4
∆=

{
(Rs,Rp) : 0≤ Rs ≤ Rp

}
. (3.21)

A note on auxiliary random variable U : In order to determine an achievable
region, let say R 1, we could take a test-channel with distribution {P(u|x),u ∈U,x ∈
X }. For this test-channel we calculate an achievable secret-key rate vs. privacy-
leakage rate pair (I(U ;Y ), I(U ;X)− I(U ;Y )), and it defines a point (and a region
{(Rs,Rl) : 0 ≤ Rs ≤ I(U ;Y ),Rl ≥ I(U ;X)− I(U ;Y )}) in the region that we seek. In
this way, evaluating all possible test-channels and taking the union, we obtain the
achievable region.

Theorem 3.1 (Biometric Secret Generation, Unconditional)

R u
sg = R 1.

Theorem 3.2 (Biometric Secret Generation, Conditional)

R c
sg = R 1.

Theorem 3.3 (Biometric Model with Chosen Secret Keys, Unconditional)

R u
ck = R 1.

Theorem 3.4 (Biometric Model with Chosen Secret Keys, Conditional)

R c
ck = R 2.

Theorem 3.5 (Biometric Secret Generation with Zero-Leakage, Unconditional)

R u
zsg = R 3.

Theorem 3.6 (Biometric Secret Generation with Zero-Leakage, Conditional)

R c
zsg = R 3.

Theorem 3.7 (Model with Chosen Keys and Zero-Leakage, Unconditional)

R u
zck = R 3.

Theorem 3.8 (Model with Chosen Keys and Zero-Leakage, Conditional)

R c
zck = R 4.
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3.4 Properties of the Regions

In this section we present some properties of the achievable regions. Moreover, to get
familiar with these regions, we give an example in which we determine the regions
for a binary symmetric double biometric source.

3.4.1 Secret-Key Rates in Regions R 1, R 2 and R 3

Property 3.1 The largest possible secret-key rate in the achievable region R 1 is
equal to I(X ;Y ). This rate is achievable with Rl ≤ H(X |Y ).

Proof of Property 3.1:

From Markov condition U → X → Y, it follows that

I(U ;Y ) ≤ I(X ;Y ). (3.22)

Moreover, if we take U = X , then we have

I(U ;Y ) = I(X ;Y ), (3.23)

I(U ;X)− I(U ;Y ) = H(X)− I(X ;Y ) = H(X |Y ). (3.24)

Hence we have that (I(X ;Y ),H(X |Y )) ∈ R 1. This finalizes the proof.
¥

Property 3.2 The largest possible secret-key rate in the achievable region R 2 is
equal to I(X ;Y ). This rate is achievable with Rl ≤ H(X).

Proof of Property 3.2:

Property 3.2 follows if we apply the same arguments as in Property 3.1, but now for
the leakage rate we have that I(U ;X) = H(X).

¥

Property 3.3 If (Rs,Rl) ∈ R 2, then Rs ≤ Rl .

Proof of Property 3.3:

Follows from Markov condition U →X →Y, since now Rs ≤ I(U ;Y )≤ I(U ;X)≤Rl.

¥

Property 3.4 For the pair (Rs,Rp) = (H(X),H(X |Y )) we have that (Rs,Rp) ∈ R 3.
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Proof of Property 3.4:

Property 3.4 follows if we let U = X and fix Rp.

¥
Remark 1: Note that the results on the largest possible secret-key rates in Proper-

ties 3.1 and 3.2 are actually the Ahlswede and Csiszár [3] results discussed in Chap-
ter 2.

Remark 2: The secret-key rate achieved with private-key rate H(X |Y ) in Prop-
erty 3.4 actually corresponds to the common randomness capacity, which is achieved
with transmission rate H(X |Y ), studied in Ahlswede and Csiszár [4]. In our system
though this secret-key rate is not the capacity.

3.4.2 Bound on the Cardinality of Auxiliary Random Variable U

Note that the achievable regions that we have presented in Section 3.3 are given in
terms of auxiliary random variable U. Therefore they cannot be computed straight-
forwardly, since the range of U is not specified and can, in principle, be arbitrarily
large. In this section we bound the range of U. This makes it possible to characterize
our achievable regions.

The problem of region characterization is a typical problem studied in multiuser
information theory. It involves the support lemma of Ahlswede and Körner [5] and
the Fenchel-Eggleston strengthening of the Caratheodory lemma, as in Wyner and
Ziv [94]. The arguments that we provide below are similar to those used in Csiszár
and Körner [15], pp. 310-312, to characterize the regions for various multi-terminal
source and channel coding problems. There, however, three constraints are used.
Arguments with two constraints can be found in Tuncel [75], where the capacity vs.
storage trade-off in identification systems was studied.

To find a bound on the cardinality of the auxiliary variable U, let D be the set of
probability distributions on X and consider |X |+ 1 continuous functions of P ∈ D
defined as

φx(P) = P(x) for all but one x, (3.25)

φX(P) = HP(X), (3.26)

φY (P) = HP(Y ), (3.27)

where in the last equation we use

Pr{Y = y}= ∑
x

P(x)Q(y|x), where Q(y|x) = Q(x,y)/∑
y

Q(x,y). (3.28)

By the Fenchel-Eggleston strengthening of the Caratheodory lemma, see Wyner and
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Ziv [94], there are |X |+1 elements Pu ∈D and αu that sum to one, such that

Q(x) =
|X |+1

∑
u=1

αuφx(Pu) for all but one x, (3.29)

H(X |U) =
|X |+1

∑
u=1

αuφX(Pu), (3.30)

H(Y |U) =
|X |+1

∑
u=1

αuφY (Pu). (3.31)

Now the entire probability distribution {Q(x,y),x ∈ X ,y ∈ Y } and, consequently,
the entropies H(X) and H(Y ) are specified and therefore so are both mutual infor-
mation I(U ;X) and I(U ;Y ). It implies that cardinality |U|= |X |+1 suffices for the
achievable regions.

3.4.3 Convexity

Now we show that the achievable regions, which are equal to R 1, R 2, R 3, and R 4,
are convex.

Region R 1

We need to show that region R 1 of achievable pairs (Rs,Rl) is convex, viz. that
if (R1

s ,R
1
l ) ∈ R 1 and (R2

s ,R
2
l ) ∈ R 1, then for 0 ≤ λ ≤ 1 it holds that (λR1

s + (1−
λ)R2

s ,λR1
l +(1−λ)R2

l ) ∈ R 1.

Let (R j
s ,R

j
l ) ∈ R 1, j = 1,2 be two achievable secret-key vs. privacy-leakage rate

pairs, and U1 and U2 be two random variables such that

R j
s ≤ I(U j;Y ),

R j
l ≥ I(U j;X)− I(U j;Y ),(R j

s ,R
j
l ) ∈ R 1, j = 1,2. (3.32)

We define a random variable U = (J,UJ), such that it takes on U1 with probability λ
and U2 with probability 1−λ, and observe that

I(U ;Y ) = H(Y )−H(Y |UJ,J)
= H(Y )−λH(Y |U1)− (1−λ)H(Y |U2)−λH(Y )+λH(Y )
= λI(U1;Y )+(1−λ)I(U2;Y )
≥ λR1

s +(1−λ)R2
s , (3.33)
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and, using the result above, we also observe that

I(U ;X)− I(U ;Y ) = H(X)−H(X |UJ,J)− I(U ;Y )
= H(X)−λH(X |U1)− (1−λ)H(X |U2)−λH(X)+λH(X)−

λI(U1;Y )− (1−λ)I(U2;Y )
= λ(I(U1;X)− I(U1;Y ))+(1−λ)(I(U2;X)− I(U2;Y ))
≤ λR1

l +(1−λ)R2
l . (3.34)

Combining (3.33) and (3.34), and noting that U satisfies Markov condition U → X →
Y, we conclude that R 1 is convex.

Region R 2

In a similar way it can be shown that the region R 2 is convex.

Region R 3

Now let (R j
s ,R

j
p) ∈ R 3, j = 1,2 be two achievable secret-key vs. private-key rate

pairs, and U1 and U2 be two random variables such that

R j
s ≤ I(U j;Y )+R j

p,

R j
p ≥ I(U j;X)− I(U j;Y ), (R j

s ,R
j
p) ∈ R 3, j = 1,2, (3.35)

and U = (J,UJ) be defined as above. We can show in the same way as before that

I(U ;X)− I(U ;Y ) ≤ λR1
p +(1−λ)R2

p. (3.36)

Next observe that

λR1
s +(1−λ)R2

s ≤ λ(I(U1;Y )+R1
p)+(1−λ)(I(U2;Y )+R2

p)

= λI(U1;Y )+(1−λ)I(U2;Y )+λR1
p +(1−λ)R2

p

= I(U ;Y )+λR1
p +(1−λ)R2

p. (3.37)

Now the convexity of R 3 follows from (3.36) and(3.37). Note that U satisfies Markov
condition U → X → Y.

Regions R 4

The convexity of region R 4 follows from the fact that the boundary of this region is
a linear function.
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3.4.4 Example: Binary Symmetric Double Source

To illustrate the trade-off between the secret-key and privacy-leakage rates, and the
secret-key and private-key rates, consider a binary symmetric double source with
crossover probability q described in the introduction to this chapter. For such a source
I(U ;Y ) = 1−H(Y |U) and I(U ;X)− I(U ;Y ) = H(Y |U)−H(X |U).

Mrs. Gerber’s Lemma, see Wyner and Ziv [93], tells us that if H(X |U) = v, then
H(Y |U) ≥ h(q∗h−1(v)), where a∗b = a(1−b)+ (1−a)b and h(a) = −a log(a)−
(1− a) log(1− a) is the binary entropy function. Now if 0 ≤ p ≤ 1/2 is such that
h(p) = v, then H(X |U) = h(p) and H(Y |U)≥ h(q∗ p).
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Figure 3.5: Secret-key vs. privacy-leakage rate function R1(Rl) for three val-
ues of the crossover probability q.

First, consider region R 1. For this region we define the secret-key vs. leakage
rate function R1(Rl) as

R1(Rl)
∆= max{Rs : (Rs,Rl) ∈ R 1}. (3.38)

For binary symmetric (U,X) with crossover probability p the minimum H(Y |U) is
achieved and, consequently,

R1(Rl) = 1−h(q∗ p),
for p satisfying h(q∗ p)−h(p) = Rl. (3.39)
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We have computed the secret-key vs. leakage rate functions for crossover proba-
bilities q = 0.05,0.1, and 0.2 using (3.39). The results are plotted in Fig. 3.5. Look-
ing at the figure we conclude that for small q the secret-key rate is large compared
to the privacy-leakage rate, while for large q the secret-key rate is smaller than the
privacy-leakage rate.
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Figure 3.6: Secret-key vs. privacy-leakage rate function R2(Rl) for three val-
ues of the crossover probability q.

In a similar way, for region R 2 the corresponding secret-key vs. leakage rate
function R2(Rl) is defined as

R2(Rl)
∆= max{Rs : (Rs,Rl) ∈ R 2}, (3.40)

and then we obtain

R2(Rl) = 1−h(q∗ p),
for p satisfying 1−h(p) = Rl. (3.41)

Again we have computed the secret-key vs. leakage rate function for this case for
crossover probabilities q = 0.05,0.1, and 0.2 using (3.41). The results presented in
Fig. 3.6 confirm our statement that the secret-key rate is always smaller than or equal
to the privacy-leakage rate. Moreover, we see that compared to R1(Rl), the secret-key
vs. privacy-leakage rate trade-off undergoes dramatic degradation.
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Now consider region R 3 and define the corresponding secret-key vs. private-key
rate function R3(Rp) as

R3(Rp)
∆= max{Rs : (Rs,Rp) ∈ R 3}. (3.42)

Then for fixed private-key rates, using similar reasoning as before, it follows that

R3(Rp) = 1−h(p),
for p satisfying h(q∗ p)−h(p) = Rp. (3.43)

In Fig. 3.7 we plotted the secret-key vs. private-key rate functions for crossover
probabilities q = 0.05,0.1, and 0.2, computed using (3.43). From this figure we
observe that the private-key rate is never larger than the (chosen) secret-key rate.
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Figure 3.7: Secret-key vs. private-key rate function R3(Rl) for three values
of the crossover probability q.

Finally, we define the secret-key vs. private-key rate function R4(Rp) correspond-
ing to R 4

R4(Rp)
∆= max{Rs : (Rs,Rp) ∈ R 4}. (3.44)

Then for fixed private-key rates we get

R4(Rp) = Rp. (3.45)

The corresponding secret-key vs. private-key rate functions are shown in Fig. 3.8.
Clearly, the functions are independent of q.
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Figure 3.8: Secret-key vs. private-key rate function R4(Rl) for three values
of the crossover probability q.

3.5 Proofs of the Results

3.5.1 Modified Typical Sets

First we define a modified typical set B(N)
ε (U,X) and present its properties.

The modified typical set is formed in such a way that if an auxiliary random
sequence, which is generated at the encoder, is typical with the sequence observed by
the encoder, then also the sequence observed at the decoder should be typical with this
auxiliary random sequence. Note that the sequence that the decoder observes is the
output of the “channel” to which the sequence observed at the encoder is an input.
This set enables a property similar to the joint typicality property of the strongly
typical sets discussed in Chapter 2 and is crucial in our proof.

Definition 3.5 Let (X ,U) be a pair of discrete random variables with some joint
distribution {P(u,x),x ∈ X ,u∈U}, where P(u,x) = ∑y Q(x,y)P(u|x). Now for ε > 0

the set B(N)
ε (U,X) of ε-typical N-sequences is defined as

B(N)
ε (U,X) ∆=

{
(uN ,xN) : Pr{Y N ∈ T (N)

ε (Y |(uN ,xN))|(UN ,XN) = (uN ,xN)} ≥ 1− ε
}
, (3.46)

where Y N is the output of a “channel” Q(y|x) = Q(x,y)/Q(x) for Q(x) = ∑y Q(x,y),
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where xN is an input. Moreover, we define

B(N)
ε (U |xN) ∆= {uN : (uN ,xN) ∈ B(N)

ε (U,X)}. (3.47)

Lemma 3.1 (Property of B(N)
ε (U,X)) Let (UN,XN) be i.i.d. with respect to P(u,x)=

∑y Q(x,y)P(u|x), then for ε > 0 and N large enough

Pr{(UN ,XN) ∈ B(N)
ε (U,X)} ≥ 1− ε. (3.48)

Proof: Let (UN ,XN ,Y N) be i.i.d. with respect to P(u,x,y) = Q(x,y)P(u|x). Observe
that

Pr{(UN ,XN ,Y N) ∈ A(N)
ε (U,X ,Y )}
≤ ∑

(uN ,xN)∈B(N)
ε (U,X)

P(uN ,xN)+ ∑
(uN ,xN)/∈B(N)

ε (U,X)

P(uN ,xN)(1− ε)

= 1− ε+ εPr{(UN ,XN) ∈ B(N)
ε (U,X)}, (3.49)

then

Pr{(UN ,XN) ∈ B(N)
ε (U,X)} ≥ 1− 1

ε
(1−Pr{(UN ,XN ,Y N)∈A(N)

ε (U,X ,Y )}).(3.50)

By the weak law of large numbers Pr{(UN ,XN ,Y N) ∈ A(N)
ε (U,X ,Y )} ≥ 1−ε2 for N

large enough, and then (3.48) follows.
¥

Lemma 3.2 (Property of B(N)
ε (U,X)) If (uN ,xN) ∈ B(N)

ε (U,X) then also (uN ,xN) ∈
A(N)

ε (U,X).

Proof: Note that if (uN ,xN) ∈ B(N)
ε (U,X), then there exists at least one yN such that

(uN ,xN ,yN) ∈ A(N)
ε (U,X ,Y ) and then also (uN ,xN) ∈ A(N)

ε (U,X).
¥

Now we are ready to prove our results. The achievability proofs of the stated
theorems are based on the basic achievability proof corresponding to Thm. 3.1. On
its turn this proof is based on the weak typicality proof presented in Section 2.3 of
Chapter 2. In the current setting, however, instead of conveying X-sequences from
the encoder to decoder, auxiliary U-sequences which are typical with X-sequences,
are sent from the encoder to the decoder.



58 Privacy Leakage in Biometric Secrecy Systems

3.5.2 Proof of Thm. 3.1

Remark: It should be noted that the result of Thm. 3.1 is in some way similar to
and a special case of the SK (secret-key) part of Thm. 2.4 in Csiszár and Narayan
[16], when Y = Z. In Csiszár and Narayan [16] the secret-key capacity was de-
termined for three terminals X ,Y ,Z under the constraints that the public channel
capacity from the first to the second and third terminals is equal to R1,R1 ≥ I(U ;X)−
min{I(U ;Y )I(U,Z)}, where U → X → Y Z, and that there is no communication be-
tween the second and the third terminals.

The proof of Thm. 3.1 consists of two parts. The first part concerns the achiev-
ability, and the second part relates to the converse.

(Basic) Achievability Proof for Thm. 3.1

We start our achievability proof with fixing the auxiliary alphabet U and the condi-
tional probabilities {P(u|x),u∈U,x∈X }, and also 0 < ε < 1. Observe that {Q(x,y),
x∈X ,y∈Y} is the source distribution, and let A(N)

ε (U,X),A(N)
ε (U,Y ),A(N)

ε (U,X ,Y )
be the sets of jointly ε-typical N-sequences corresponding toP(u,x,y)= Q(x,y)P(u|x).
To prove the achievability of R 1, we use a random coding argument.

Random coding: First, we outline the coding strategy. For each index i∈{1,2, . . . ,
Mu}, we generate an auxiliary random sequence uN

i at random according to

P(u) = ∑
x,y

Q(x,y)P(u|x). (3.51)

Moreover, to each index i (and the corresponding randomly generated sequence uN
i )

we assign uniformly at random a secrecy label si ∈ {1,2, . . . , |S |} with probability

Pr{Si = si} = 1/|S | (3.52)

and a helper label mi ∈ {1,2, . . . , |M |} with probability

Pr{Mi = mi} = 1/|M |. (3.53)

Encoding: The encoder observes a sequence xN and looks for index i such that
(uN

i ,xN) ∈ B(N)
ε (U,X). If such an index is found, it produces a secrecy label si and

a helper label mi. If no such index is found, an error is declared. Moreover, the
encoder checks if there is only one index i with labels si and mi. If not, also an error
is declared. The helper label is sent to the decoder if no error occurred.

Decoding: The decoder, on its turn, having observed a sequence yN and the
helper-label m, looks for an index î such that mî = m and (uN

î
,yN) ∈ A(N)

ε (U,Y ).
If such a unique index exists, the decoder produces the secret estimate sî, otherwise
an error is declared.
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Error probability: Now consider the error probability. Let i be the index deter-
mined by the encoder. Note that the encoder produces an error if

1) There exists no i, such that (uN
i ,xN) ∈ B(N)

ε (U,X).

2) The pair of labels (si,mi) is not unique.

Moreover, an error at the decoder occurs in the following situations:

3) If uN
i is not typical with yN .

4) The decoder finds an index i′, i′ 6= i such that (uN
i′ ,y

N) ∈ A(N)
ε (U,Y ) and mi′ =

m.

Then we can write for the error probability averaged over the random code con-
struction

Pε ≤ Pr
{( Mu∩

i=1
(UN

i ,XN) /∈ B(N)
ε (U,X)

)∪ ( Mu∪
i=1
i 6=I

Mi = M∩Si = S
)∪

(UN
I ,Y N) /∈ A(N)

ε (U,Y )∪ ( Mu∪
i=1
i 6=I

(UN
i ,Y N) ∈ A(N)

ε (U,Y )∩Mi = M
)}

≤ ∑
xN∈X N

Q(xN)
Mu

∏
i=1

Pr{UN
i /∈ B(N)

ε (U |xN)}+
Mu

∑
i=1
i6=I

Pr{Mi = M} ·Pr{Si = S}+

Pr{(UN
I ,Y N) /∈ A(N)

ε (U,Y )|(UN
I ,XN) ∈ B(N)

ε (U,X)}+
Mu

∑
i=1
i6=I

Pr{(UN
i ,Y N) ∈ A(N)

ε (U,Y )} ·Pr{Mi = M}, (3.54)

where the last step follows from the union bound.
The first term of Pε can be bounded as

Pε,1 = ∑
xN∈X N

Q(xN)
Mu

∏
i=1

(1− ∑
uN∈B(N)

ε (U |xN)

P(uN))

(a)
≤ ∑

xN∈X N

Q(xN)
(

1−2−N(I(U ;X)+3ε) · ∑
uN∈B(N)

ε (U |xN)

P(uN |xN)
)Mu

(b)
≤ ∑

xN∈X N

Q(xN)
(

1− ∑
uN∈B(N)

ε (U |xN)

P(uN |xN)+ e−Mu2−N(I(U ;X)+3ε)
)

= ∑
(uN ,xN)/∈B(N)

ε (U,X)

P(uN ,xN)+ ∑
xN∈X N

Q(xN)e−Mu2−N(I(U ;X)+3ε)

≤ 2ε, (3.55)
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if we take logMu = N(I(U ;X)+4ε), for N large enough. Here step (a) follows from
Lem. 3.2 and from the fact that for (uN ,xN) ∈ A(N)

ε (U,X)

P(uN) = P(uN |xN)
Q(xN)P(uN)

P(uN ,xN)

≥ P(uN |xN)
2−N(H(X)+ε)2−N(H(U)+ε)

2−N(H(U,X)−ε) = P(uN |xN)2−N(I(U ;X)+3ε),

and step (b) follows from (1−αβ)K ≤ 1−α+e−Kβ, see e.g. Cover and Thomas [13],
p. 353.

For the second term of Pε we obtain

Pε,2 ≤
Mu

∑
i=1
i 6=I

1
|M | ·

1
|S |

≤ 1
|M | ·

1
|S | ·Mu

= 2−N( 1
N log |M |+ 1

N log |S |− 1
N logMu)

≤ ε, (3.56)

if we take log |M |+ log |S |− logMu = Nε, for N large enough. Here the first inequal-
ity follows from random binning.

For the third term of Pε we obtain that

Pε,3 ≤ max
(uN ,xN)∈B(N)

ε (U,X)
Pr

{
Y N /∈ T (N)

ε (Y |(uN ,xN))|(UN ,XN) = (uN ,xN)
}

≤ ε, (3.57)

where the first inequality follows from the definition of B(N)
ε (U,X).

Finally, for the fourth term of Pε we get

Pε,4
(a)
≤

Mu

∑
i=1
i 6=I

max
yN

Pr{UN
i ∈ T (N)

ε (U |yN)} · 1
|M |

≤
Mu

∑
i=1
i 6=I

∑
uN∈T (N)

ε (U |yN)

P(uN) · 1
|M |

(b)
≤ 1

|M |
Mu

∑
i=1
i 6=I

2−N(H(U)−ε) · |T (N)
ε (U |yN)|

(c)
≤ 1

|M | ·2
−N(H(U)−ε) ·2N(H(U |Y )+2ε) ·Mu
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= 2−N( 1
N log |M |+I(U ;Y )−3ε− 1

N logMu)

≤ ε, (3.58)

for N large enough if we take log |M | = logMu−NI(U ;Y )+ 4Nε. Step (a) follows
from random binning, (b) from typicality, and (c) follows from (2.9).

Thus we see that, since Pε = Pε,1 +Pε,2 +Pε,3 +Pε,4 ≤ 5ε for N large enough, there
exists at least one encoder and decoder with Pe ≤ 5ε and we focus on the resulting
code. Note that, combining all equations obtained while bounding all terms of the
error probability, we have for this code

Pr{S 6= Ŝ} ≤ 5ε, (3.59)

H(S) ≤ log |S |= N(I(U ;Y )−3ε), (3.60)

H(M) ≤ log |M |= N(I(U ;X)− I(U ;Y )+8ε), (3.61)

H(U) ≤ logMu = N(I(U ;X)+4ε). (3.62)

Secrecy: First, note that if no error occurs then (uN ,xN)∈A(N)
ε (U,X), and I uniquely

defines Û =U. Moreover, if an error occurs, then Û is some sequence from UN . Note
also that |T (N)

ε (X |uN)| ≤ 2N(H(X |U)+2ε), then

NH(X) = H(XN)
≤ H(XN ,UN)
= H(UN)+H(XN |UN)
≤ H(UN)+Pe log |X |N +(1−Pe) log2N(H(X |U)+2ε)

≤ H(UN)+5Nε log |X |+NH(X |U)+2Nε, (3.63)

and therefore

H(UN) ≥ N(I(U ;X)−5ε log |X |−2ε). (3.64)

Next consider

H(S,M) = H(UN ,S,M)−H(UN |S,M)
(a)
≥ H(UN)−H(UN |S,M,ÛN)
≥ H(UN)−H(UN |ÛN)
(b)
≥ H(UN)−Pe logMu−1
(c)
≥ NI(U ;X)−5Nε log |X |−2Nε−5εN(I(U ;X)+4ε)−1
(d)
≥ NI(U ;X)−10Nε log |X |−2Nε−20Nε2−1, (3.65)



62 Privacy Leakage in Biometric Secrecy Systems

where in step (a) we used the fact that for a unique label pair (S,M) there is a unique
index I, which defines Û , in (b) Fano’s inequality, in (c) we used (3.62) and (3.64),
and in (d) the fact that I(U ;X)≤ H(X)≤ log |X |.

Now consider the secrecy. Then using (3.60), (3.61) and (3.65) we obtain

I(S;M) = H(S)+H(M)−H(S,M)
≤ NI(U ;Y )−3Nε+NI(U ;X)−NI(U ;Y )+8Nε−NI(U ;X)+

10Nε log |X |+2Nε+20Nε2 +1

≤ N(7ε+10ε log |X |+20ε2 +
1
N

). (3.66)

Uniformity of the secret: For the entropy of the secret, using (3.65) and (3.61), we
obtain that

H(S) = H(S,M)−H(M|S)
≥ H(S,M)−H(M)
≥ NI(U ;X)−10Nε log |X |−2Nε−20Nε2−1−

NI(U ;X)+NI(U ;Y )−8Nε
≥ NI(U ;Y )−10Nε log |X |−10Nε−20Nε2−1

= N(
1
N

log |S |−10ε log |X |−7ε−20ε2− 1
N

). (3.67)

The privacy leakage: Finally, we consider the privacy leakage, and using (3.61) we
get

I(XN ;M)≤ H(M)≤ N(I(U ;X)− I(U ;Y )+8ε). (3.68)

Then letting ε ↓ 0 and N → ∞, we obtain the achievability from (3.59), from the
equality in (3.60) and from (3.66)-(3.68).

Converse for Thm. 3.1

Assume that the secret-key vs. privacy-leakage rate pair (Rs,Rl) is achievable. First,
observe that we can bound the entropy of the secret key as follows.

H(S) = I(S;M,Y N)+H(S|M,Y N)
(a)
≤ I(S;M,Y N)+H(S|Ŝ)
(b)
≤ I(S;M)+ I(S;Y N |M)+δ log |S |+1
(c)
≤ Nδ+H(Y N |M)−H(Y N |M,S)+Nδ log |X |+1
(d)
≤ NH(Y )−H(Y N |M,S)+Nδ log |X |+Nδ+1, (3.69)
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where step (a) holds, since Ŝ is a function of Y N and M and since conditioning does
not increase entropy, (b) follows from Fano’s inequality and the fact that Pr{Ŝ 6=
S} ≤ δ for achievable pairs (Rs,Rl), (c) holds, since for achievable pairs (Rs,Rl) we
have that I(S;M) ≤ Nδ and, since the encoder mapping is deterministic and then
|S | ≤ |X N | holds (possibly) after renumbering, and step (d) follows from the facts
that conditioning does not increase entropy and that Y N is an i.i.d. sequence.

Now consider H(Y N |M,S).

H(Y N |M,S) =
N

∑
i=1

H(Yi|S,M,Y i−1)

≥
N

∑
i=1

H(Yi|S,M,Y i−1,X i−1)

(a)
=

N

∑
i=1

H(Yi|S,M,X i−1)

= NH(YI|UI, I)
= NH(Y |U), (3.70)

where I is a random variable uniformly distributed on {1,2, . . . ,N} and independent
of (XN ,Y N), and for I = i we define Ui = MSX i−1, U = (Ui, i), X = Xi, and Y = Yi.
Here step (a) follows from the fact that Y i−1 →MSX i−1 → Yi. We verify Markovity,
bearing in mind that XN and Y N are i.i.d. sequences and M,S are functions of only
XN , and then

Pr{M = m,S = s,X i−1 = xi−1,Y i−1 = yi−1,Yi = yi}
= ∑

xi∈X
∑

xN
i+1∈X N−i

Pr{X i−1 = xi−1} ·Pr{Xi = xi} ·Pr{XN
i+1 = xN

i+1} ·

Pr{Y i−1 = yi−1|X i−1 = xi−1} ·Pr{M = m,S = s,Yi = yi|XN = xN}
= Pr{X i−1 = xi−1} ·Pr{Y i−1 = yi−1|X i−1 = xi−1} ·

∑
xi∈X

∑
xN

i+1∈X N−i

Pr{Xi = xi} ·Pr{XN
i+1 = xN

i+1} ·Pr{M = m,S = s,Yi = yi|XN = xN}

= Pr{X i−1 = xi−1} ·Pr{Y i−1 = yi−1|X i−1 = xi−1} ·
Pr{M = m,S = s,Yi = yi|X i−1 = xi−1},

thus Y i−1 → X i−1 →MSYi, which implies that Y i−1 →MSX i−1 → Yi.
Note also that Ui = MSX i−1 satisfies Markov condition Ui → Xi → Yi. Indeed,

Pr{M = m,S = s,X i−1 = xi−1,Xi = xi,Yi = yi}
(a)
= ∑

xN
i+1∈X N−i

Pr{X i−1 = xi−1} ·Pr{Xi = xi} ·Pr{XN
i+1 = xN

i+1} ·Pr{Yi = yi|Xi = xi} ·
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Pr{M = m,S = s|XN = xN ,Yi = yi}
(b)
= Pr{Xi = xi} ·Pr{Yi = yi|Xi = xi} ·Pr{X i−1 = xi−1} ·

∑
xN

i+1∈X N−i

Pr{XN
i+1 = xN

i+1} ·Pr{M = m,S = s|XN = xN}

= Pr{Xi = xi} ·Pr{Yi = yi|Xi = xi} ·Pr{M = m,S = s,X i−1 = xi−1|Xi = xi}, (3.71)

where step (a) follows from the fact that XN and Y N are i.i.d. sequences, and (b)
follows from the fact that M and S depend only on XN . This implies that U → X →Y
holds. Indeed, if now I = i with Pr{I = i} = 1/N independent of (XN ,Y N) and we
define U = (Ui, i), X = Xi, and Y = Yi for I = i, then we have

Pr{U = (ui, i),X = x,Y = y}
= Pr{I = i} ·Pr{X = x|I = i} ·Pr{Y = y|X = x, I = i} ·

Pr{Ui = ui|X = x,Y = y, I = i}
= Pr{X = x} ·Pr{Y = y|X = x} ·Pr{I = i} ·Pr{Ui = ui|X = x, I = i}
= Pr{X = x} ·Pr{Y = y|X = x} ·Pr{U = (ui, i)|X = x}. (3.72)

Now combining (3.70) with (3.69) and dividing both parts of the resulting in-
equality by N, we obtain for achievable pairs (Rs,Rl) that

Rs−δ≤ 1
N

H(S)≤ I(U ;Y )+δ(log |X |+1)+
1
N

, (3.73)

for some P(u,x,y) = Q(x,y)P(u|x).
Next observe that

I(XN ;M,S) =
N

∑
i=1

I(Xi;M,S|X i−1)

= NI(XI;M,S|X I−1, I)
(a)
= NI(XI;S,M,X I−1, I)
(b)
= NI(U ;X), (3.74)

where just as before U = MSX I−1I. Here step (a) follows from the fact that XN is an
i.i.d. sequence, and (b) holds if we set U = (MSX i−1, i) and X = Xi for I = i.

Then, using (3.70) and (3.74), we obtain

I(XN ;M) = H(M) ≥ H(M|Y N)
= H(M,Y N)−H(Y N)
= H(M,S,Y N)−H(S|M,Y N)−H(Y N)
≥ H(M,S)+H(Y N |M,S)−H(S|Ŝ)−H(Y N)
≥ I(XN ;M,S)− I(M,S;Y N)−δ log |S |−1

≥ NI(U ;X)−NI(U ;Y )−Nδ log |X |−1, (3.75)
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and, dividing both parts of the above expression by N, we obtain for achievable pairs
(Rs,Rl) that

Rl +δ≥ 1
N

I(XN ;M)≥ I(U ;X)− I(U ;Y )−δ log |X |− 1
N

, (3.76)

where P(u,x,y) = Q(x,y)P(u|x) is the same as above.
Finally, letting δ ↓ 0 and N → ∞, we obtain the converse from (3.73) and (3.76).

3.5.3 Proof of Thm. 3.2

We prove this theorem by showing that R c
sg = R u

sg. Assume that we have a code for
the unconditional case that satisfies the conditions in Def. 3.1. Then for such a code
we have

I(XN ;M|S) = H(M|S)−H(M|S,XN)
(a)
≤ H(M)−H(M|XN)
= I(XN ;M)
≤ N(Rl +δ), (3.77)

hence R u
sg ⊆ R c

sg. Here step (a) holds, since conditioning does not increase entropy
and since S is a function of XN .

Next assume that we have a code for the conditional case and observe that

I(XN ;M) = I(XN ,S;M)− I(S;M|XN)
(a)
= I(S;M)+ I(XN ;M|S)
(b)
≤ Nδ+N(Rl +δ)
= N(Rl +2δ), (3.78)

hence R c
sg ⊆ R u

sg. Therefore R c
sg = R u

sg. Here step (a) holds, since S and M are
functions of XN , and (b) holds, since for this code I(S;M)≤ Nδ.

3.5.4 Proof of Thm. 3.3

Achievability Proof for Thm. 3.3

The achievability proof of this theorem is based on the achievability proof of Thm. 3.1.
Here, however, we additionally use a so-called masking layer, see Fig. 3.9, on top of
the biometric secret generation model. In this layer the encoder uses the generated
secret key S to conceal the chosen secret key K in a one-time pad system, see Ver-
nam [82]. This system was also applied in Ahlswede and Csiszár [3]. We denote
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Figure 3.9: Masking layer.

addition and substraction modulo |S | by ⊕ and ª, respectively. Then the encoder
produces extra helper data (K⊕S), which are also sent to the decoder. The decoder
produces the estimate of K as K̂ = (K⊕S)ª Ŝ.

We take |K | = |S | and, keeping in mind that the chosen key is uniform, we first
consider the secrecy. Note that the helper data for this system are the helper data of
the secret generation model and the additional helper data of the masking layer, i.e.
(M,K⊕S).

I(K;M,K⊕S) = H(M,K⊕S)−H(M,K⊕S|K)
= H(M)+H(K⊕S|M)−H(M|K)−H(K⊕S|M,K)
(a)
≤ H(M)+H(K⊕S)−H(M)−H(S|M,K)
≤ log |S |−H(S|M)
= log |S |−H(S)+ I(S;M)
(b)
≤ H(S)+Nδ−H(S)+Nδ
= 2Nδ, (3.79)

here step (a) follows from the fact that M and K are independent, and (b) follows
from Thm. 3.1, since S is the secret corresponding to the biometric secret generation
model, and then log |S | ≤ N(H(S)+δ) and I(M;S)≤ Nδ hold.

Observe also that K̂ = K, only if Ŝ = S. Therefore from Thm. 3.1 it follows that
Pr{K̂ 6= K} ≤ δ.

Next observe that

0≤ I(XN ;K⊕S|M) = H(K⊕S|M)−H(K⊕S|XN ,M)
(a)
≤ log |S |−H(K|XN ,M)
(b)
= log |S |−H(K)
(c)
= 0, (3.80)

where step (a) follows from the fact that S is a function of XN , (b) holds, since K is
independent of XN and also of M, and (c) holds, since K is uniform.
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Now we use the result of (3.80) in the following expression

I(XN ;K⊕S,M) = I(XN ;M)+ I(XN ;K⊕S|M)
= I(XN ;M), (3.81)

hence the privacy leakage here is the same as in the biometric secret generation
model.

Finally, combining all the obtained results together, we see that for the achievable
pairs of the first layer (Rs,Rl), it holds that

1
N

log |K |= 1
N

log |S | ≥ Rs−δ,

1
N

I(K;M,K⊕S) ≤ 2δ,

Pr{K̂ 6= K} ≤ δ,

1
N

I(XN ;K⊕S,M) ≤ Rl +δ. (3.82)

Now, taking into account that for the pairs (Rs,Rl) Thm. 3.1 holds, we conclude that
secret-key vs. privacy-leakage rate pairs that are achievable for the biometric secret
generation system are also achievable for the system with chosen keys.

Converse for Thm. 3.3

Assume now that the pair (Rk,Rl) is achievable. Consider first the entropy of the
secret key

log |K |= H(K) = I(K;M,Y N)+H(K|M,Y N)
= H(M,Y N)−H(M,Y N |K)+H(K|M,Y N)
(a)
≤ H(Y N)+H(M|Y N)−H(M|K)−H(Y N |K,M)+H(K|K̂)
(b)
≤ NH(Y )−H(Y N |K,M)+Nδ+δ log |K |+1
(c)
≤ NI(U ;Y )+Nδ+δ log |K |+1, (3.83)

where U = KMX I−1I, and I is a uniform random variable, which assumes values
in {1,2, . . . ,N} and is independent of (XN ,Y N). Here step (a) follows from the fact
that K̂ is a function of Y N and M, (b) holds, since conditioning does not increase
entropy, since Y N is an i.i.d sequence, since for achievable pairs (Rk,Rl) we have
that I(K;M) ≤ Nδ and Pr{K̂ 6= K} ≤ δ and due to Fano’s inequality, and step (c)
follows if we apply similar reasoning as those used to show (3.70), here however
Y i−1 → X i−1 →MKYi holds, which implies that Y i−1 →MKX i−1 →Yi. Indeed, since
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XN and Y N are i.i.d. sequences, and M is a function of K and XN only, and K is
independent of XN and Y N , we have

Pr{M = m,K = k,X i−1 = xi−1,Y i−1 = yi−1,Yi = yi}
= ∑

xi∈X
∑

xN
i+1∈X N−i

Pr{X i−1 = xi−1} ·Pr{Xi = xi} ·Pr{XN
i+1 = xN

i+1} ·

Pr{Y i−1 = yi−1|X i−1 = xi−1} ·Pr{M = m,K = k,Yi = yi|XN = xN}
= Pr{X i−1 = xi−1} ·Pr{Y i−1 = yi−1|X i−1 = xi−1} ·

∑
xi∈X

∑
xN

i+1∈X N−i

Pr{Xi = xi} ·Pr{XN
i+1 = xN

i+1} ·Pr{M = m,K = k,Yi = yi|XN = xN}

= Pr{X i−1 = xi−1} ·Pr{Y i−1 = yi−1|X i−1 = xi−1} ·
Pr{M = m,K = k,Yi = yi|X i−1 = xi−1},

Note that Ui = KMX i−1 satisfies Markov condition Ui → Xi → Yi, and, conse-
quently, U → X → Y holds. Indeed, verify that

Pr{M = m,K = k,X i−1 = xi−1,Xi = xi,Yi = yi}
(a)
= ∑

xN
i+1∈X N−i

Pr{X i−1 = xi−1} ·Pr{Xi = xi} ·Pr{XN
i+1 = xN

i+1} ·Pr{Yi = yi|Xi = xi} ·

Pr{M = m,K = k|XN = xN ,Yi = yi}
(b)
= Pr{Xi = xi} ·Pr{Yi = yi|Xi = xi} ·Pr{X i−1 = xi−1} ·

∑
xN

i+1∈X N−i

Pr{XN
i+1 = xN

i+1} ·Pr{M = m,K = k|XN = xN}

= Pr{Xi = xi} ·Pr{Yi = yi|Xi = xi} ·Pr{M = m,K = k,X i−1 = xi−1|Xi = xi}, (3.84)

where step (a) follows from the fact that XN and Y N are i.i.d. sequences, and (b)
holds, since M depends only on XN and K and K is independent of Y N .

Now, dividing both parts of (3.83) by N, we obtain for achievable pairs (Rk,Rl)
that

Rk−δ≤ 1
N

log |K | ≤ 1
1−δ

(I(U ;Y )+δ+
1
N

), (3.85)

for some P(u,x,y) = Q(x,y)P(u|x).
Next consider the privacy leakage.

I(XN ;M) = H(K,M)−H(K|M)−H(M|XN)
≥ H(K,M)−H(K)−H(K,M|XN)
= I(K,M;XN)− log |K |
≥ N(I(U ;X)− 1

1−δ
(I(U ;Y )+δ+

1
N

)), (3.86)
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where U is defined as above, and the last step follows from similar reasoning that
were used to derive (3.74).

Then, for achievable pairs (Rk,Rl), we get

Rl +δ≥ 1
N

I(XN ;M)≥ I(U ;X)− 1
1−δ

(I(U ;Y )+δ+
1
N

), (3.87)

for the same P(u,x,y) = Q(x,y)P(u|x) as above.
Thus, combining the results in (3.85) and (3.87) and letting δ ↓ 0 and N →∞, we

obtain

Rk ≤ I(U ;Y ), (3.88)

Rl ≥ I(U ;X)− I(U ;Y ), (3.89)

which finalizes the converse.

3.5.5 Proof of Thm. 3.4

The proof of this theorem repeats the proof of Thm. 3.3. The difference is that we
consider now the privacy leakage defined for the conditional case. We only provide
the differences here.

Achievability Proof for Thm. 3.4

Here we again use a masking layer on top of the biometric secret generation model,
as in Thm. 3.3. Then the helper data for this system become (M,K⊕ S), where M
are the helper data from the secret generation model and (K⊕S) are the helper data
from the masking layer. Consider now the privacy leakage in the conditional case.

I(XN ;K⊕S,M|K) = H(K⊕S,M|K)−H(K⊕S,M|K,XN)
= H(S,M|K)−H(S,M|K,XN)
(a)
≤ H(S)+H(M)
(b)
≤ N(I(U ;X)− I(U ;Y )+8ε+ I(U ;Y )−3ε)
= N(I(U ;X)+5ε), (3.90)

which allows us to conclude that the privacy leakage I(U ;X) is achievable. Here
step (a) holds, since S and M are independent of K, since conditioning does not
increase entropy and since S,M are functions of XN , and step (b) follows from the
achievability proof of Thm. 3.1, i.e. from (3.60) and (3.61).
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Converse for Thm. 3.4

Assume now that the pair (Rk,Rl) is achievable, then

I(XN ;M|K) = H(XN |K)−H(XN |K,M)
(a)
= I(K,M;XN)
(b)
≥ NI(U ;X), (3.91)

for some U, such that P(u,x,y) = Q(x,y)P(u|x), defined in the converse proof of
Thm. 3.3. Here step (a) holds, since K and XN are independent, and (b) follows from
the same reasoning used to derive (3.74).

Then for achievable pairs (Rk,Rl) we get

Rl +δ≥ 1
N

I(XN ;M|K)≥ I(U ;X). (3.92)

Letting δ ↓ 0 and N → ∞, we obtain the converse.

3.5.6 Proof of Thm. 3.5

Achievability Proof for Thm. 3.5

Later, in the achievability proof corresponding to Thm. 3.6, where we consider the
conditional case, we will prove that the achievable region R c

zsg is equal R 3. Given
this result, the achievability part of this theorem is proven by showing that R u

zsg ⊇
R c

zsg. Assume that we have a code for the conditional case that satisfies the condi-
tions of Def. 3.3. Then observe that

I(XN ;M)+ I(S;M) = I(XN ,S;M)− I(S;M|XN)+ I(S;M)
≤ Nδ+Nδ
= 2Nδ. (3.93)

Hence from (3.93) we may conclude that R u
zsg ⊇ R c

zsg.

Converse for Thm. 3.5

Assume that the secret-key vs. private-key rate pair (Rzs,Rp) is achievable. Consider
first the entropy of the secret.

H(S) = I(S;P,M,Y N)+H(S|P,M,Y N)
(a)
≤ I(S;M)+ I(S;P|M)+ I(S;Y N |M,P)+H(S|Ŝ)
(b)
≤ Nδ+H(P)+H(Y N |M,P)−H(Y N |M,P,S)+δ log |S |+1
(c)
≤ N(1+δ)Rp +NH(Y )−H(Y N |M,P,S)+2Nδ+Nδ log |X |+Nδ2 +1,(3.94)
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where step (a) holds, since Ŝ is a function of Y N ,P and M, (b) follows from the fact
that, for achievable pairs (Rzs,Rp), we have that I(S;M) ≤ Nδ and Pr{Ŝ 6= S} ≤ δ,
from the fact that conditioning does not increase entropy, and from Fano’s inequality,
and (c) follows from the facts that conditioning does not increase entropy and that Y N

is an i.i.d. sequence, since |S | ≤ |X |N · |P | (possibly) after renumbering and from the
definition of achievable pairs (Rzs,Rp).

Now consider H(Y N |M,S,P).

H(Y N |M,S,P) =
N

∑
i=1

H(Yi|M,S,P,Y i−1)

≥
N

∑
i=1

H(Yi|M,S,P,Y i−1,X i−1)

(a)
=

N

∑
i=1

H(Yi|M,S,P,X i−1)

= NH(Y |U), (3.95)

where I is a random variable uniformly distributed on {1,2, . . . ,N} and independent
of (XN ,Y N), and we define U = MSPX I−1I. Here step (a) follows from the fact that
Y i−1 → X i−1 → MSPYi, which implies that Y i−1 → MSPX i−1 → Yi. Note also that
Ui = MSPX i−1 satisfies Markov condition Ui → Xi → Yi, and, consequently, U →
X → Y holds. Markovity can be verified in the same way as before.

Now, combining (3.94) and (3.95), we obtain for achievable pairs (Rzs,Rp)

Rzs−2δ≤ 1
N

log |S |−δ≤ 1
N

H(S) ≤

I(U ;Y )+(1+δ)Rp +2δ+δ log |X |+δ2 +
1
N

, (3.96)

for some P(u,x,y) = Q(x,y)P(u|x).
Next observe that

I(XN ;M,S,P) =
N

∑
i=1

I(Xi;M,S,P|X i−1)

= NI(XI;M,S,P|X I−1, I)
(a)
= NI(XI;S,M,P,X I−1, I)
(b)
= NI(U ;X), (3.97)

where as before U = MSPX I−1I. Here step (a) holds, since XN is an i.i.d. sequence,
and (b) holds if we set U = (SMPX i−1, i) and X = Xi for I = i.
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Now we can write

Nδ ≥ I(XN ;M)+ I(S;M)
≥ I(XN ;M)
= I(XN ,P,S;M)− I(P,S;M|XN)
= H(M)−H(M|XN ,P,S)−H(P|XN)−H(S|P,XN)+H(P,S|XN ,M)
(a)
≥ H(M)−H(P)
≥ H(M|Y N)−H(P)
= H(M,Y N)−H(Y N)−H(P)
= H(S,P,M,Y N)−H(S,P|M,Y N)−H(Y N)−H(P)
= H(S,M)+H(P,Y N |S,M)−H(P|M,Y N)−H(S|P,M,Y N)−H(Y N)−H(P)
= I(S,M;XN ,P)+H(P|S,M)+H(Y N |S,M,P)−H(P|M,Y N)−

H(S|P,M,Y N)−H(Y N)−H(P)
(b)
≥ I(S,M;XN |P)+ I(S,M;P)+H(P|S,M)+NH(Y |U)−H(P|M,Y N)−

H(S|Ŝ)−NH(Y )−H(P)
(c)
≥ I(S,M,P;XN)−NI(U ;Y )−δ log |S |−1−H(P)
(d)
≥ N(I(U ;X)− I(U ;Y )− (1+δ)Rp−δ−δ log |X |−δ2− 1

N
), (3.98)

where as before U = MSPX I−1I. Here step (a) holds, since P is independent of XN

and since S and M are functions of XN and P, (b) follows from (3.95), from the facts
that conditioning does not increase entropy, that Y N is an i.i.d. sequence and that
Ŝ is function of M,P and Y N , (c) holds, since XN and P are independent, since for
achievable pairs (Rzs,Rp) it holds that Pr{S 6= Ŝ} ≤ δ, and due to Fano’s inequality,
and (d) follows from (3.97), from the fact that |S | ≤ |X |N · |P | holds (possibly) after
renumbering, and from the definition of achievable pairs (Rzs,Rp).

Then, rearranging and dividing both parts of (3.98) by N and recalling (3.96), we
obtain for δ ↓ 0 and N → ∞ that

Rzs ≤ I(U ;Y )+Rp, (3.99)

Rp ≥ I(U ;X)− I(U ;Y ), (3.100)

for the same P(u,x,y) = Q(x,y)P(u|x) as before. This yields the converse.

3.5.7 Proof of Thm. 3.6

We only need the achievability proof here, the converse for this theorem is the same
as for Thm. 3.5.
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Achievability Proof for Thm. 3.6
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Figure 3.10: Helper data masking interlayer.

The achievability proof of Thm. 3.6 is an adapted version of the basic achievabil-
ity proof. The difference is that now the secret is the index of uN . Then the secret-key
rate Rzs becomes equal to I(U ;X) and the corresponding helper-label rate (as before)
is equal to I(U ;X)− I(U ;Y ). Note that the index uniquely defines uN and then uN is
uniform and so the secret is. Moreover, to make the helper data completely uninfor-
mative, we use a private key P to mask the helper data in a one-time pad way, see
Fig. 3.10. Thus the helper data become M⊕P, where⊕ denotes addition modulo |P |.
Observe that the private-key rate I(U ;X)− I(U ;Y ) suffices. Indeed,

I(XN ;M⊕P) = H(M⊕P)−H(M⊕P|XN)
(a)
≤ log |M |−H(P|XN)
(b)
= N(I(U ;X)− I(U ;Y )+8ε)−H(P)
= N(I(U ;X)− I(U ;Y )+8ε)− log |P |
= 0, (3.101)

if we take I(U ;X)− I(U ;Y )+8ε = 1
N log |P | for N large enough. Here step (a) holds

since M is a function of XN , and (b) follows from the basic achievability proof and
from the fact that P is independent of XN .

Observe also that this system has zero-leakage (note that in this setting we have
strong secrecy, i.e. the leakage is exactly equal to zero)

I(XN ,S;M⊕P) = H(M⊕P)−H(M⊕P|XN ,S)
(a)
≤ log |P |−H(P|XN ,S,M)
(b)
= 0, (3.102)

where step (a) holds, since M is a function of XN , and (b) holds, since P is indepen-
dent of XN and S, and uniform.

Note that for the private-key rate Rp = I(U ;X)− I(U ;Y ), we can write Rzs =
I(U ;X) = I(U ;Y ) + Rp. Then we conclude that the pair (I(U ;Y ) + Rp, I(U ;X)−
I(U ;Y )) is achievable for ε ↓ 0 and N → ∞.
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Observe next that if (I(U ;Y )+Rp, I(U ;X)− I(U ;Y ) is achievable, then also pairs
(I(U ;Y )+ Rp + α, I(U ;X)− I(U ;Y )+ α),α > 0 are. Indeed, if we take the private
key of rate I(U ;X)− I(U ;Y ) + α, then the part of the private key, which has rate
I(U ;X)− I(U ;Y ), suffices to conceal the helper data, and we can use the other part
of the private key, which has rate α, as a secret key. Thus we increase the secret-key
rate by α, which results in Rzs = I(U ;Y )+Rp +α.

3.5.8 Proof of Thm. 3.7

Achievability Proof for Thm. 3.7

The achievability proof is based on Thm. 3.5. The difference is that here, as in
Thm. 3.3, we additionally use a masking layer to conceal a chosen secret key K
with the generated secret key S. The addition and substraction in this masking layer
are modulo |S |. The chosen key is uniform and we take |K | = |S |. The helper data
for this system become (M⊕P,K⊕S), where M⊕P are the masked helper data as in
Thm. 3.5 and (K⊕S) are the helper data from the masking layer. Now for the secrecy
we obtain

I(K;S⊕K,M⊕P) = I(K;M⊕P)+ I(K;S⊕K|M⊕P)
(a)
= H(S⊕K|M⊕P)−H(S⊕K|M⊕P,K)
≤ log |S |−H(S|M⊕P,K)
(b)
≤ H(S)+Nδ−H(S|M⊕P)
= I(S;M⊕P)+Nδ, (3.103)

here step (a) follows from the fact that K is independent of M and P, (b) holds, since S
is the generated secret key for which Thm. 3.5 holds, and hence log |S | ≤H(S)+Nδ,
and since S is independent of K.

Now for the privacy leakage we write

I(XN ;S⊕K,M⊕P) = I(XN ;M⊕P)+ I(XN ;S⊕K|M⊕P)
= I(XN ;M⊕P)+H(S⊕K|M⊕P)−H(S⊕K|M⊕P,XN)
(a)
≤ I(XN ;M⊕P)+H(S⊕K)−H(K|P,XN)
(b)
≤ I(XN ;M⊕P)+ log |S |−H(K)
(c)
= I(XN ;M⊕P), (3.104)

where step (a) follows from the fact that M and S are functions of XN , (b) holds, K is
independent of XN and P, and (c) holds, since K is uniform.
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Note also that K = K̂ only if S = Ŝ, and then due to Thm. 3.5, Pr{K 6= K̂} ≤ δ.

Finally, combining all the results together, we see that for the achievable pairs of
the first layer (Rzs,Rp) it holds that

1
N

log |K |= 1
N

log |S | ≥ Rzs−δ,

1
N

I(K;S⊕K,M⊕P) ≤ 2δ,

1
N

I(XN ;S⊕K,M⊕P) ≤ δ,

Pr{K̂ 6= K} ≤ δ,

log |P | ≤ Rp +δ. (3.105)

Then taking into account that for the pairs (Rzs,Rp) Thm. 3.5 holds and letting δ ↓ 0
and N →∞, we may conclude that secret-key vs. private-key rate pairs achievable for
the biometric secret generation model with zero-leakage in the unconditional case are
also achievable for models with chosen keys and zero-leakage in the unconditional
case.

Converse for Thm. 3.7

Now assume that the secret-key vs. private-key rate pair (Rzk,Rp) is achievable. We
start with the entropy of the secret key.

log |K |= H(K) = I(K;P,M,Y N)+H(K|P,M,Y N)
(a)
≤ I(K;M)+ I(K;P|M)+ I(K;Y N |M,P)+H(K|K̂)
(b)
≤ Nδ+H(P)+H(Y N |M,P)−H(Y N |M,P,K)+δ log |K |+1
(c)
≤ Nδ+NRp +Nδ+NH(Y )−H(Y N |M,P,K)+δ log |K |+1
(d)
≤ NI(U ;Y )+NRp +2Nδ+δ log |K|+1, (3.106)

where U = MKPX I−1I and I is a random variable uniformly distributed on {1,2, . . . ,
N} and independent of (XN ,Y N). Here step (a) holds, since K̂ is a function of Y N ,P
and M, (b) holds, since for achievable pairs (Rzk,Rp) we have that I(K;M)≤ Nδ and
also Pr{K̂ 6= K} ≤ δ, since conditioning does not increase entropy and due to Fano’s
inequality, (c) follows from the definition of achievable pairs (Rzk,Rp), from the facts
that conditioning does not increase entropy and that Y N is an i.i.d. sequence, and in
step (d) we used the fact that Y i−1 →MKPX i−1 →Yi , and set U = (MKPX i−1, i) and
Y = Yi for I = i. Note that Markovity can be verified as before.
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Now for achievable pairs (Rzk,Rp) we have

Rzk−δ≤ 1
N

log |K | ≤ 1
1−δ

(I(U ;Y )+Rp +2δ+
1
N

), (3.107)

for some P(u,x,y) = Q(x,y)P(u|x).
For the privacy leakage we can write

Nδ≥ I(XN ;M) = I(K,M,P;XN)− I(K,P;XN |M)
(a)
= NI(U ;X)−H(K,P|M)+H(K,P|M,XN)
≥ NI(U ;X)−H(P|M)−H(K|P,M)
≥ NI(U ;X)−H(P)−H(K,Y N |P,M)+H(Y N |P,M,K)
(b)
≥ NI(U ;X)−NRp−Nδ−H(Y N |P,M)−H(K|P,M,Y N)+

H(Y N |P,M,K)
(c)
≥ NI(U ;X)−NRp−Nδ−NH(Y )−H(K|K̂)+NH(Y |U)
(d)
≥ NI(U ;X)−NI(U ;Y )−NRp−Nδ−δ log |K |−1, (3.108)

here step (a) holds, since I(K,M,P;XN) = NI(U ;X) holds for an i.i.d. sequence
XN and for U, defined as before, which can be shown in a similar way as (3.97), (b)
follows from the definition of achievable pairs (Rzk,Rp), (c) holds, since conditioning
does not increase entropy, since Y N is an i.i.d. sequence, since K̂ is a function of P,M
and Y N , since Y i−1→MKPX i−1 →Yi holds, and we set U = (MKPX i−1, i) and Y =Yi

for I = i, and (d) holds, since for achievable pairs (Rzk,Rp) we have Pr{K 6= K̂} ≤ δ,
and due to Fano’s inequality.

Then from (3.108) and (3.107), letting δ ↓ 0 and N → ∞, we obtain

Rzk ≤ I(U ;Y )+Rp, (3.109)

Rp ≥ I(U ;X)− I(U ;Y ), (3.110)

for the same P(u,x,y) = Q(x,y)P(u|x) as before.
Finally, note that Ui = MKPX i−1 satisfies Markov condition Ui → Xi → Yi, and,

consequently, U → X → Y holds. This finalizes the converse.

3.5.9 Proof of Thm. 3.8

Achievability Proof for Thm. 3.8

The achievability follows from using the private key P to mask the secret key K in
a one-time pad way. Then the helper data become K⊕P, where addition is modulo
|P |. Clearly the scheme is secure for Rzk ≤ Rp and leaks no privacy, as there are no
biometric data involved.
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Converse for Thm. 3.8

Assume that the secret-key vs. private-key rate pair (Rzk,Rp) is achievable. Consider
the entropy of the secret. Then we have

log |K |= H(K) = I(K;P,M,Y N)+H(K|P,M,Y N)
(a)
≤ I(K;Y N)+ I(K;M|Y N)+ I(K;P|Y N ,M)+H(K|K̂)
(b)
≤ H(M|Y N)−H(M|Y N ,K)+H(P)+δ log |K |+1
(c)
≤ I(M;Y N ,K)+NRp +Nδ+δ log |K |+1
(d)
≤ I(M;XN ,K)+NRp +Nδ+δ log |K |+1
(e)
≤ NRp +2Nδ+δ log |K |+1, (3.111)

where step (a) follows from the fact that K̂ is a function of P,M and Y N , (b) holds,
since K is independent of Y N , since for achievable pairs (Rzk,Rp) we have that
Pr{K̂ 6= K} ≤ δ and due to Fano’s inequality, (c) from the fact that conditioning
does not increase entropy, and from the definition of achievable pairs (Rzk,Rp), (d)
holds due to M → KXN → Y N . Indeed, since M is a function of XN ,K and P only,
and K is independent of XN and Y N , we have

Pr{M = m,K = k,XN = xN ,Y N = yN}
= Pr{Y N = yN} ·Pr{XN = xN |Y N = yN} ·Pr{K = k} ·

Pr{M = m|K = k,XN = xN ,Y N = yN}
= Pr{Y N = yN} ·Pr{XN = xN ,K = k|Y N = yN} ·Pr{M = m|K = k,XN = xN}.

Step (e) holds, since for achievable pairs (Rzk,Rp) we have that I(M;XN ,K)≤ Nδ.
Rearranging and dividing both parts of the above expression by N, we obtain for

achievable pairs (Rzk,Rp) that

Rzk−δ≤ 1
N

log |K | ≤ 1
1−δ

(Rp +2δ+
1
N

). (3.112)

Finally, letting δ ↓ 0 and N → ∞, we obtain the converse.

3.6 Relations Between Regions

3.6.1 Overview

In Fig. 3.11 we summarize our results on the achievable regions obtained for all
eight considered settings. We cannot compare the regions for models with leakage
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with regions for models with zero-leakage. Therefore in the figure we show pairs
of achievable regions for models with leakage and models with zero-leakage. The
region pairs are given for models with generated keys and models with chosen keys
for unconditional and conditional privacy leakage.

keys

leakage

leakage

keys
Generated

Conditional

Chosen

Unconditional R 1/R 3 R 1/R 3

R 1/R 3 R 2/R 4

Figure 3.11: Region overview. By slash (/) we separate the regions for mod-
els with leakage and models with zero-leakage.

Looking at the figure we can see that for all models but one the pairs of achievable
regions are the same, i.e. R 1/R 3. However, when chosen keys are used in the
conditional leakage setting, we obtain a different pair of regions. In this case we get
regions R 2/R 4.

Consider first the models with privacy leakage. It is clear that the secret-generation
system can be transformed into the chosen-key system (one-time pad makes it possi-
ble). Therefore the amount of secret information that can be conveyed with biometric
data from one terminal to another should be at least the same as the amount of com-
mon secret key that can be extracted from biometric data by two terminals. Our theo-
rems show that they are the same. On the other hand, if we look at the leakage, then in
secret-generation models for the conditional case we get that I(S,XN ;M) = I(XN ;M),
since S is a function of XN . Thus the regions for the conditional and unconditional
cases for secret-generation models are the same. In chosen-key models, K is in-
dependent of XN , and therefore information that a pair (K,XN) contains is larger
than the information that a pair (S,XN) does. Moreover, to reliably convey K, M
should contain some information about both K and XN . Now if we consider uncon-
ditional privacy leakage I(XN ;M), then, since we convey the same amount of secret
information that was extracted in the secret-generation setting, we need at most the
same amount of information from biometric data to conceal the key (think about
one-time pad again). Hence the helper data of the chosen-key setting should pro-
vide at most the same amount of information on the XN as in the secret-generation
setting and, consequently, leaks at most the same amount of information on XN .
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Therefore the achievable region in this case could be again the same as in the secret-
generation setting. Our theorems confirm this. However, when conditional notion
of privacy leakage is used, then, since we require our model to be secure while
I(XN ;M)≤ I(K,XN ;M) = I(K;M)+ I(XN ;M|K), all the leakage “load” goes on bio-
metrics. Thus we have larger privacy leakage and smaller achievable region. Now,
since models with zero-leakage are the extension of models with privacy leakage
when we additionally use private key, also three of four corresponding achievable
regions are the same.

Note that the reasoning above shows that the regions for the secret-generation
models in both the unconditional and conditional case are smaller than or equal to the
region for chosen-key systems in unconditional case. We do not have the intuition
why these regions are exactly the same. It remains to be an open question.

3.6.2 Comparison of R 1 and R 2

Comparing R 1 and R 2, we see from (3.18) and (3.19) that for some fixed U with
P(u,x,y) = Q(x,y)P(u|x) we have that R 2 ⊆ R 1.

Observe that for each point (R,L) ∈ R 2, there exits an auxiliary random variable
U with P(u,x,y) = Q(x,y)P(u|x), such that

R ≤ I(U ;Y ),
L ≥ I(U ;X) (3.113)

holds. Then also the following inequalities hold

R ≤ I(U ;Y ),
R−L ≥ I(U ;X)− I(U ;Y ). (3.114)

Therefore we may conclude that (R,R−L) ∈ R 1.
Let ∂R 1 denote the boundary of R 1. Then let (R∗,L∗) ∈ ∂R 1. We look at all

auxiliary random variables U such that

I(U ;Y ) = R∗.

Moreover, among these random variables U we take the one such that the leakage
rate is minimum, i.e.

I(U ;X)− I(U ;Y ) = L∗.

Note that if this leakage rate I(U ;X)− I(U ;Y ) is minimum, then also I(U ;X) is
minimum with which R∗ is achieved. Therefore (R∗,R∗+ L∗) ∈ ∂R 2. Thus given a
boundary of R 1 we can construct the boundary of R 2. Using similar arguments, it
can also be shown that boundary of R 1 can be constructed from the boundary of R 2.
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3.6.3 R 3. Relation to R 1

Note that R 3 can be constructed as an extension of R 1. Indeed, observe that for each
(R,L)∈R 1 there exits an auxiliary random variable U with P(u,x,y)= Q(x,y)P(u|x),
such that

R ≤ I(U ;Y ),
L ≥ I(U ;X)− I(U ;Y ). (3.115)

From these inequalities it also follows that

R+L ≤ I(U ;Y )+L,

L ≥ I(U ;X)− I(U ;Y ). (3.116)

Therefore we may conclude that (R + L,L) ∈ R 3. Similarly, for each (R,L) ∈ R 3
there exits an auxiliary random variable U with P(u,x,y) = Q(x,y)P(u|x) for which
it holds that

R ≤ I(U ;Y )+L,

L ≥ I(U ;X)− I(U ;Y ), (3.117)

and then for R−L≥ 0 it holds that

R−L ≤ I(U ;Y ),
L ≥ I(U ;X)− I(U ;Y ). (3.118)

This allows us to conclude that (R−L,L) ∈ R 1.
Note also that for any α≥ 0, if (R,L)∈R 1 and U is same as before, we have that

L+α ≥ L ≥ I(U ;X)− I(U ;Y ),
R+L+α ≤ I(U ;Y )+L+α, (3.119)

and then also (R+α,L+α) ∈ R 3, for any α≥ 0.
Observe that for R 3 we can rewrite the bound for the secret-key rate as

0≤ Rs ≤ I(U ;X)+(Rp− (I(U ;X)− I(U ;Y ))). (3.120)

In this way secret keys in models with achievable region R 3 can be seen as a combi-
nation of common randomness, see Ahlswede and Csiszár [4], and a part of a crypto-
graphic (private) key that remains after masking the leakage. We may also conclude
that biometrics can be used to increase cryptographic key size if both cryptographic
and biometric keys are used in secrecy systems. Moreover, in this setting a biomet-
ric key would guarantee the authenticity of a user, while a cryptographic key would
guarantee zero-privacy leakage.
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3.6.4 R 4

Note that the form of R 4 implies that biometrics is actually useless in the setting
where both a chosen key and a private key are involved in a secrecy system. Note,
that just as for R 3, we can see the bound for the secret-key rate as

0≤ Rs ≤ I(U ;X)+(Rp− I(U ;X)). (3.121)

Then secret keys in models with achievable region R 4 can be seen again as a com-
bination of common randomness and a part of a cryptographic (private) key that re-
mains after masking the leakage (in R 2). In this case, however, we observe that using
biometrics we do not gain anything.

3.7 Conclusions and Remarks

In this chapter we have investigated privacy leakage in biometric systems which
are based on i.i.d. discrete biometric sources. We distinguished between secret-
generation systems and chosen-secret systems. Moreover, we have focused not only
on systems in which we require the privacy leakage to be as small as possible, but
also on systems in which a private key is used to remove all privacy leakage. For
the resulting four settings we considered both conditional and unconditional leakage.
This led to eight fundamental balances and the corresponding secret-key vs. privacy-
leakage rate regions and secret-key vs. private-key rate regions.

Summarizing, we conclude that for systems without a private key, the achievable
region is equal to R 1, except for the chosen-key case with conditional leakage where
the achievable region is in principle smaller and only equal to R 2. When R 1 is the
achievable region the rate can be either larger or smaller than the leakage depending
on the source quality, however when R 2 is the achievable region the rate cannot be
larger than the leakage.

Similarly we may conclude that for zero-leakage systems, the achievable region
is equal to R 3, except for the chosen-key case with conditional leakage where the
achievable region is only equal to R 4. It is important to observe that in this last
case the biometrics are actually useless. In zero-leakage systems the secret-key rate
cannot be smaller than the private-key rate.

Regarding the achievable regions, we may finally conclude that the a secret-key
vs. privacy-leakage rate region is never larger than the corresponding secret-key vs.
private-key rate region. This is intuitively clear if we realize that a model is optimal
if the private key is used to mask the helper data (privacy leakage), and remaining
private-key bits are transformed into extra secret-key bits.

Recall the rate-leakage ratio, discussed in the example of the introduction to the
current chapter. This ratio characterizes the slope of the boundary of the achiev-
able regions found here. The higher the slope is the better the trade-off between
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the secret-key rate and the privacy-leakage rate is. It is not difficult to see that the
slope corresponding to the Ahlswede-Csiszár [3] result is the smallest slope achiev-
able in secret-generation systems, see also Fig. 3.5. On the other hand, if we look
at the slope corresponding to the key-rate vs. the zero privacy-leakage rate we de-
rive a characterization for biometric data quality. Indeed, the higher this slope is, the
larger the achievable region is and the better the “channel” between enrollment and
authentication biometric sources is.

The achievability proofs that we have presented in this chapter can serve as guide-
lines for designing codes that achieve near-optimal performance. They suggest that
optimal codes should incorporate both vector quantization methods and Slepian-Wolf
techniques. In the linear case Slepian-Wolf coding is equivalent to transmitting the
syndrome of the quantized sequence.

The fundamental trade-offs found in this chapter can be used to assess the opti-
mality of practical biometric systems. We will see it in the next chapter, when we
analyze a particular realization of the biometric model with chosen keys. Moreover,
the trade-offs that we have found can be used to determine whether a certain biomet-
ric modality satisfies the requirements of an application. Furthermore, as we could
see, zero-leakage biometric systems can be used to combine traditional cryptographic
secret keys with biometric data. It gives us the opportunity to get the best of the two
worlds: the biometric part would guarantee the authenticity of a user and increase
the secret key size, while the cryptographic part provides strong secrecy and prevents
privacy leakage.

We have only looked at systems here based on a single biometric modality. Fur-
ther investigations are needed to find how the trade-offs behave in cases with multiple
modalities.

In practice, biometric features are often represented by continuous vectors, and
therefore the fundamental results for biometric systems based on continuous Gaus-
sian biometric data would be an interesting next step to consider.

At the end of this chapter, we would like to mention that the results that we have
proved here were presented at Allerton conference [35]. At the same conference
the recent results of Lai et al. also on the privacy-secrecy trade-off in biometric
systems were reported [44]. Although there are some overlapping results (the two
basic theorems), our investigations expand in the direction of extra private keys and
conditional leakage, while Lai et al. extended their basic results by considering side
information models.
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Chapter 4

Leakage in Fuzzy Commitment Schemes

To live effectively is to live with adequate information (Norbert Wiener).

4.1 Introduction

Fuzzy commitment, introduced by Juels and Wattenberg [41], is a particular realiza-
tion of a binary biometric secrecy system with chosen secret keys considered in the
previous chapter of this thesis. In the fuzzy commitment scheme, the helper data are
constructed as a codeword from a selected error-correcting code, used to encode a
chosen secret, masked with the biometric sequence that has been observed during en-
rollment. The scheme is primarily designed for biometric data represented by binary
uniform memoryless sequences, and it is provably secure for this case.

The scheme became a popular technique for designing biometric secrecy systems,
since it is convenient and easy to implement using standard error-correcting codes.
The implementation of fuzzy commitment for different biometric modalities can be
found in Kevenaar et al. [42] (faces), Hao et al. [33] (irises), Campisi et al. [11]
(signatures), Yang and Verbauwhede [95] (irises), etc. In practice, however, biometric
data are rarely uniform. Biometric data used in fuzzy commitment based systems,
e.g. in the literature mentioned above, do not satisfy the criteria of being uniform
and memoryless. Nevertheless, it is assumed that these systems are secure. Also the
privacy properties of these systems are hardly investigated. In Smith [72], though,
it was already observed that in fuzzy commitment the helper data leak information
on the secret if the biometric data are non-uniform, and that they must also leak
some information about the biometric data. The privacy leakage corresponding to
the maximum secret-key rate for the original uniform memoryless setting was also
determined by Tuyls and Goseling [79].

In this chapter we will investigate the properties of the fuzzy commitment scheme
when the biometric data statistic is memoryless and totally-symmetric, memoryless
and input-symmetric, memoryless, and stationary ergodic. We will use the funda-
mental secret-key vs. privacy-leakage rate trade-offs found in Chapter 3 to assess
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the optimality of fuzzy commitment. We will show that the fuzzy commitment
scheme is only optimal for the totally-symmetric memoryless case and only if the
scheme operates at the maximum secret-key rate. Moreover, we will show that for
the general memoryless and stationary ergodic cases the scheme reveals information
on both the secret and biometric data. We will not be able to determine the achievable
rate-leakage regions for these two cases and will only provide outer bounds on the
corresponding achievable rate-leakage regions. These bounds will be sharpened for
systematic parity-check codes.

4.2 The Fuzzy Commitment Scheme

4.2.1 Description

We start with description of biometric sources. A fuzzy commitment scheme pro-
cesses a binary biometric enrollment sequence xN = {x1,x2, . . . ,xN} with symbols
xn ∈ {0,1} for n = 1,2, . . . ,N and a binary biometric authentication sequence yN =
{y1,y2, . . . ,yN} with symbols yn ∈ {0,1} for n = 1,2, . . . ,N. These sequences are
generated by a biometric source according to some distribution {Q(xN ,yN),xN ∈
{0,1}N ,yN ∈ {0,1}N}. We distinguish between the following four cases, i.e. the
totally-symmetric memoryless case, the input-symmetric memoryless case, the mem-
oryless case, and the stationary ergodic case.

1. The Totally-Symmetric Memoryless Case. We assume that

Pr{XN = xN ,Y N = yN} =
N

∏
n=1

Q(xn,yn), (4.1)

for some joint probability distribution {Q(x,y),x ∈ {0,1},y ∈ {0,1}}, satisfy-
ing

Q(0,0) = Q(1,1) = (1−q)/2, (4.2)

Q(0,1) = Q(1,0) = q/2, (4.3)

where 0≤ q≤ 1/2. Here the parameter q is called crossover probability.

2. The Input-Symmetric Memoryless Case. We assume that (4.1) holds for some
joint probability distribution {Q(x,y),x ∈ {0,1},y ∈ {0,1}} that satisfies

Q(1,0)+Q(1,1) = 1/2. (4.4)

The crossover probability is defined as

q ∆= Q(0,1)+Q(1,0). (4.5)
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3. The Memoryless Case. Now we assume that (4.1) holds for an arbitrary joint
probability distribution {Q(x,y),x ∈ {0,1},y ∈ {0,1}}. Again, the crossover
probability is defined as

q ∆= Q(0,1)+Q(1,0). (4.6)

Now also the probability that X is equal to 1 becomes an important parameter,
and we define

ρ ∆= Q(1,0)+Q(1,1). (4.7)

4. The Stationary Ergodic Case. We assume that the process {. . . ,(X−1,Y−1),
(X0,Y0),(X1,Y1), . . .} is stationary and ergodic. Then the sequences of random
variables XN = (X1,X2, . . . ,XN) and Y N = (Y1,Y2, . . . ,YN) correspond to our
biometric enrollment and authentication sequences, respectively.
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Figure 4.1: A fuzzy commitment scheme.

Now consider the fuzzy commitment scheme presented in Fig. 4.1. In this
scheme a secret key k from alphabet {1,2, . . . , |K |} is chosen uniformly at random
independently of biometric data, hence

Pr{K = k} = 1/|K | for all k ∈ {1,2, . . . , |K |}. (4.8)

The chosen secret key k is observed at the enrollment side together with a biometric
enrollment sequence xN . The secret key k is encoded into a binary codeword cN =
(c1,c2, . . . ,cN) with cn ∈ {0,1} for n = 1,2, . . . ,N. We write cN = e(k), where e(·) is
the encoding function. Then the biometric enrollment sequence is added modulo 2 to
the codeword. This results in the sequence zN = (z1,z2, . . . ,zN) with zn ∈ {0,1} for
n = 1,2, . . . ,N, hence

zN = cN ⊕ xN = e(k)⊕ xN . (4.9)

This sequence is referred to as helper data and is public. The helper data are released
to the authentication side.
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During authentication, a biometric authentication sequence yN is observed and
added modulo 2 to the received helper data zN , resulting in a binary sum

rN = zN ⊕ yN = e(k)⊕ xN ⊕ yN . (4.10)

This sum rN = {r1,r2, . . . ,rN} with rn ∈ {0,1} for n = 1,2, . . . ,N can be seen as the
codeword cN to which a noise sequence xN ⊕ yN is added. This codeword rN is then
decoded, hence the estimate k̂ of the secret key k is determined as

k̂ = d(rN) = d(e(k)⊕ (xN ⊕ yN)), (4.11)

where d(·) is the decoding function.
We are interested in a number of quantities. We require the scheme to be such that

the error probability Pr{K̂ 6= K} is as small as possible, while the number of secret
keys |K | should be as large as possible. Moreover, we want the amount of informa-
tion that the helper data leak about the secret I(K;ZN) and about the biometric data
I(XN ;ZN) to be as small as possible. Now we give a formal definition of achievable
triples.

Definition 4.1 For a fuzzy commitment scheme a rate - leakage triple (Rk,Rlk,Rlb)
with Rk ≥ 0 is achievable if for all δ > 0 and for all N large enough, there exist
encoders e(·) and decoders d(·) such that

Pr{K̂ 6= K} ≤ δ,

Rk +δ ≥ 1
N

log |K | ≥ Rk−δ,

1
N

I(K;ZN) ≤ Rlk +δ,

1
N

I(XN ;ZN) ≤ Rlb +δ. (4.12)

Moreover, we define R fc to be the region of all achievable rate - leakage triples for a
fuzzy commitment scheme. Furthermore, we define the secret-key vs. privacy-leakage
rate region

R fc|Rlk = 0
∆= {(Rk,Rlb) : (Rk,0,Rlb) ∈ R fc}, (4.13)

for the zero secrecy-leakage case.

In the next sections we will investigate the properties of the region of achievable
rate-leakage triples for each of the four biometric statistics cases described above.
First, however, we start with some general remarks.



4.3 The Totally-Symmetric Memoryless Case 87

4.2.2 Preliminary Analysis of Information Leakage

It is our goal to investigate the information-leakage properties of the fuzzy com-
mitment scheme. Note that in Def. 4.1 we define the privacy leakage as uncondi-
tional mutual information between biometric enrollment sequence and helper data
I(XN ;ZN) although a stronger definition of the privacy leakage is possible, i.e. the
conditional one I(XN ;ZN |K), as in Def. 3.2 of Chapter 3. However, for the condi-
tional definition of privacy leakage we obtain

I(XN ;ZN |K) = H(ZN |K)−H(ZN |XN ,K)
= H(XN ⊕CN |K)−H(XN ⊕CN |XN ,K)
= H(XN |K)
= H(XN), (4.14)

where the last two equalities follow from the facts that CN is a function of K and that
XN and K are independent. This demonstrates that the helper data ZN leak (contain)
the entire biometric sequence XN if the secret key is known. We conclude that the
fuzzy commitment scheme is not private in the conditional privacy-leakage sense.
Therefore in the rest of the chapter we only concentrate on the unconditional privacy
leakage.

The unconditional mutual information for the secrecy and privacy leakage can be
rewritten as

I(K;ZN) = H(ZN)−H(ZN |K)
= H(ZN)−H(CN ⊕XN |K)
= H(ZN)−H(XN), (4.15)

and

I(XN ;ZN) = H(ZN)−H(ZN |XN)
= H(ZN)−H(XN ⊕CN |XN)
= H(ZN)−H(CN). (4.16)

4.3 The Totally-Symmetric Memoryless Case

4.3.1 Statement of Results, Discussion

We have a complete result for the totally-symmetric memoryless case. The result is
stated in the following theorem. A special case of this result, when the secret-key
rate is maximal, is also presented in Smith [72] and in Tuyls and Goseling [79]. The
proof of this theorem will be provided in the next subsection.
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Theorem 4.1 For fuzzy commitment in the totally-symmetric memoryless case with
crossover probability q the achievable region R fc is given by

R fc =
{
(Rk,Rlk,Rlb) : 0≤ Rk ≤ 1−h(q),

Rlk ≥ 0,

Rlb ≥ 1−Rk
}
. (4.17)

Here h(a) =−a log(a)− (1−a) log(1−a) is the binary entropy function.
Moreover, if we restrict ourselves to the secrecy leakage Rlk = 0 in Thm. 4.1,

then the corresponding secret-key vs. privacy-leakage rate region is given by

R fc|Rlk = 0 =
{
(Rk,Rlb) : 0≤ Rk ≤ 1−h(q),

Rlb ≥ 1−Rk
}
. (4.18)

This result for the totally-symmetric memoryless case can be compared to the corre-
sponding secret-key vs. privacy-leakage rate region R u

ck, for the case of unconditional
privacy leakage in a biometric model with chosen keys, where we do not restrict our-
selves to fuzzy commitment. Note that although the achievable regions R fc|Rlk = 0
and R u

ck are defined slightly differently, the general region R u
ck also provides the cor-

responding minimum privacy leakage for a given secret-key rate. Therefore we can
compare regions R fc|Rlk = 0 and R u

ck for given secret-key rates.
Region R u

ck was determined in Chapter 3 in Thm. 3.3, and can be stated for the
totally-symmetric memoryless case as

R u
ck =

{
(Rk,Rl) : 0≤ Rk ≤ 1−h(q∗ p),

Rl ≥ h(q∗ p)−h(p),
for some 0≤ p≤ 1/2

}
, (4.19)

where p∗q ∆= p(1−q)+(1− p)q.
Now it follows that for the privacy leakage of fuzzy commitment we obtain

Rlb ≥ 1−Rk

= h(q)
≥ h(q∗ p)−h(p). (4.20)

The last inequality follows from the observation that h(q ∗ p)− h(p) = H(U |Y )−
H(U |X) = I(U ;X |Y )≤H(X |Y ) = h(q), where Markov condition U → X →Y holds
and the “channel” between X and U is binary symmetric with crossover probability
p. Note that equality in (4.20) can only be established if Rk = 1− h(q). Therefore
for rates strictly smaller than 1−h(q) the privacy leakage of the fuzzy commitment
scheme is strictly larger than necessary. The coding methods proposed in Chapter 3
achieve smaller privacy leakage.
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Proposition 4.1 In the totally-symmetric memoryless case fuzzy commitment is only
optimal for secret-key rates 1−h(q). For secret-key rates below 1−h(q) fuzzy com-
mitment has the privacy leakage strictly larger than necessary.
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Figure 4.2: Secret-key vs. privacy-leakage rate regions for two values of
the crossover probability q. Marked with “o” and “2” are
the boundaries of the optimal region R u

ck, marked with “*”
and “×” are the boundaries of the fuzzy-commitment region
R fc|Rlk = 0.

In Fig. 4.2 we have depicted (marked with “o” and “2”) the boundary of the
optimal rate-leakage region R u

ck for two values of the crossover probability, i.e. for
q = 0.05 and q = 0.15. Moreover, we have plotted in both figures the boundary of
the fuzzy-commitment region R fc|Rlk = 0 (marked with “*” and “×”). From Fig.
4.2 it is clear that the privacy leakage of the fuzzy commitment scheme, even in the
totally-symmetric memoryless case, is much larger than necessary for the secret-key
rates smaller than the maximum rate 1− h(q). This is the main conclusion of this
section.
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4.3.2 Proof of the Results
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Proof of Thm. 4.1

Achievability proof: In the memoryless case we can write for the transition probabil-
ities of the “channel” from CN to RN that

Pr{RN = rN |CN = cN} =
N

∏
n=1

Pr{Rn = rn|Cn = cn}, (4.21)

where for all n = 1,2, . . . ,N

Pr{Rn 6= cn|Cn = cn}= 1−Pr{Rn = cn|Cn = cn} = Pr{Xn 6= Yn}
= Q(1,0)+Q(0,1). (4.22)

Therefore, see Fig. 4.3, the channel between CN and RN is a binary symmetric chan-
nel (BSC) with crossover probability Q(1,0)+Q(0,1). By definition, for all memo-
ryless cases we have for the crossover probability

Q(1,0)+Q(0,1) = q. (4.23)

It is well-known, see e.g. Gallager [29], p. 146, that the capacity of BSC with
crossover probability q is 1−h(q). In other words, for 0≤ Rk ≤ 1−h(q), for all ε > 0
and all N large enough, there exist encoders e(·) and decoders d(·) such that

Rk + ε ≥ 1
N

log |K | ≥ Rk− ε, (4.24)

Pr{K 6= K̂} ≤ ε. (4.25)

We may assume, for small ε at least, that this code does not contain two identical
codewords, since any code with 2M− 1 codewords and average error probability
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ε/2 < 1/4 has a subcode of size M and maximum error probability at most ε < 1/2.
This follows from an expurgation argument, see e.g. Gallager [29], p. 151. Since the
code does not contain two identical codewords, we can assume that H(CN) = log |K |.

Now we concentrate on such codes and consider the secrecy leakage first. From
(4.15) we obtain that

I(K;ZN) = H(CN ⊕XN)−H(XN)
= 0

≤ ε. (4.26)

Next, for the privacy leakage we write

I(XN ;ZN)
(a)
= H(CN ⊕XN)−H(CN)
(b)
= N− log |K |
(c)
≤ N(1−Rk + ε), (4.27)

where step (a) follows from (4.16), step (b) holds, since the code does not contain
identical codewords, and (c) follows from (4.24).

Then, dividing both sides of (4.27) by N, and letting N → ∞ and ε ↓ 0, we con-
clude from (4.24)-(4.27), that the triple (Rk,0,1− Rk) is achievable for 0 ≤ Rk ≤
1−h(q).
Converse: Assume that for the fuzzy commitment scheme the triple (Rk,Rlk,Rlb) is
achievable. Consider first the entropy of the secret,

log |K |= H(K) = I(K;RN)+H(K|RN)
(a)
= I(K;CN ⊕XN ⊕Y N)+H(K|RN , K̂)
≤ H(CN ⊕XN ⊕Y N)−H(CN ⊕XN ⊕Y N |K)+H(K|K̂)
(b)
≤ N−H(XN ⊕Y N)+δ log |K |+1
(c)
≤ N−Nh(q)+δ log |K |+1, (4.28)

where step (a) follows from the fact that K̂ is a function of RN , step (b) holds, since CN

is a function of K, (XN ,Y N) are independent of K, for achievable triples (Rk,Rlk,Rlb)
we have that Pr{K 6= K̂} ≤ δ, and due to Fano’s inequality, and (c) follows from the
fact that XN ⊕Y N is a sequence of i.i.d. pairs with crossover probability q.

Dividing both parts of the above expression by N and rearranging the terms, we
obtain for achievable triples (Rk,Rlk,Rlb) that

Rk−δ≤ 1
N

log |K | ≤ 1
1−δ

(1−h(q)+
1
N

). (4.29)
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Next we consider the secrecy leakage and, using (4.15), we get

Rlk +δ≥ 1
N

I(K;ZN) =
1
N

(H(CN ⊕XN)−H(XN))

=
1
N

(N−N)

= 0. (4.30)

For the privacy leakage we obtain using (4.16) that

Rlb +δ≥ 1
N

I(XN ;ZN) =
1
N

(H(CN ⊕XN)−H(CN))

(a)
≥ 1

N
(N− log |K |)

(b)
≥ 1−Rk−δ, (4.31)

where step (a) follows from the fact that H(CN) ≤ log |K |, and (b) holds, since for
achievable triples (Rk,Rlk,Rlb) we have that log |K | ≤ N(Rk +δ).

Now, letting N → ∞ and δ ↓ 0, we obtain the converse from (4.29)-(4.31).
¥

4.4 The Input-Symmetric Memoryless Case

4.4.1 Statement of Results, Discussion

We start this section with the result that we have obtained for the input-symmetric
memoryless case. The proof of this result is identical to the proof of Thm. 4.1 and
therefore is omitted.

Theorem 4.2 For a fuzzy commitment scheme in the input-symmetric memoryless
case with crossover probability q the achievable region R fc is given by

R fc =
{
(Rk,Rlk,Rlb) : 0≤ Rk ≤ 1−h(q),

Rlk ≥ 0,

Rlb ≥ 1−Rk
}
. (4.32)

¥
Now if we again restrict the secrecy leakage to be Rlk = 0 in Thm. 4.2, then the

corresponding secret-key vs. privacy-leakage rate region is given by

R fc|Rlk = 0 =
{
(Rk,Rlb) : 0≤ Rk ≤ 1−h(q),

Rlb ≥ 1−Rk
}
. (4.33)
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As before, we can compare the resulting zero secrecy-leakage region R fc|Rlk = 0
to the region R u

ck for the input-symmetric case when we do not restrict ourselves
to fuzzy commitment. In Chapter 3, Thm. 3.3, it was shown that the region of
achievable secret-key vs. privacy-leakage rate pairs is given by

R u
ck =

{
(Rk,Rl) : 0≤ Rk ≤ I(U ;Y ),

Rl ≥ I(U ;X)− I(U ;Y ),
for some P(u,x,y) = Q(x,y)P(u|x)}. (4.34)

The maximum secret-key rate that is achievable in the optimal case is I(X ;Y ), if
we take U ≡ X , see Property 3.1 and also Ahlswede-Csiszár [3]. Note that

I(X ;Y ) = H(X)−H(X |Y )
= 1−H(X⊕Y |Y )
≥ 1−H(X⊕Y )
= 1−h(q), (4.35)

where 1− h(q) is the maximum secret-key rate achievable with fuzzy commitment.
Therefore we can conclude that fuzzy commitment is suboptimal if X ⊕Y is not
independent of Y .

A simple derivation shows that independence can only occur for I(X ;Y ) > 0 if,
in addition to being input-symmetric, the source is totally-symmetric.1 Conclusion
is that in the input-symmetric case, when the source is not totally-symmetric, with
fuzzy commitment we cannot achieve a positive maximum rate I(X ;Y ).

1Indeed, consider a memoryless statistics, which is input-symmetric. Define β ∆= Pr{Y = 1} and
note that Pr{X⊕Y = 1}= q. If we assume that X ⊕Y and Y are independent, then

Q(1,0) = Pr{X⊕Y = 1,Y = 0}= Pr{X ⊕Y = 1}Pr{Y = 0}= q(1−β),

Q(1,1) = Pr{X⊕Y = 0,Y = 1}= Pr{X⊕Y = 0}Pr{Y = 1}= (1−q)β. (4.36)

Input-symmetry implies that

Q(1,0)+Q(1,1) = q(1−β)+(1−q)β = 1/2. (4.37)

For q 6= 1/2 equation (4.37) has solution β = 1/2, and then the statistics is totally-symmetric.
For q = 1/2 the independence results in

Q(0,0) = Pr{X⊕Y = 0}Pr{Y = 0}= (1−β)/2,

Q(0,1) = Pr{X⊕Y = 1}Pr{Y = 1}= β/2,

Q(1,0) = Pr{X⊕Y = 1}Pr{Y = 0}= (1−β)/2,

Q(1,1) = Pr{X⊕Y = 0}Pr{Y = 1}= β/2, (4.38)

which implies that I(X ;Y ) = 0. Hence we may conclude that in the input-symmetric case, when
I(X ;Y ) > 0, the independence of X ⊕Y and Y implies total symmetry.
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Looking at the privacy leakage of fuzzy commitment we can say that

Rlb ≥ 1−Rk

≥ h(q)
= H(X⊕Y )
≥ H(X |Y )
≥ I(U ;X)− I(U ;Y ), (4.39)

for all U → X → Y. Again for I(X ;Y ) > 0, equality in the above expression is only
possible if the biometric source is totally-symmetric and if, in addition, Rk = 1−h(q).
Thus we may conclude that in the input-symmetric case, when I(X ;Y ) > 0 and the
source is not totally-symmetric, with fuzzy commitment we cannot achieve privacy
leakage, which is optimal in the sense of results presented in Chapter 3.

Proposition 4.2 In the input-symmetric memoryless case, when the source is not
totally-symmetric, fuzzy commitment is suboptimal with respect to both achievable
secret-key rate and privacy leakage.

4.5 The Memoryless Case

4.5.1 Statement of Results, Discussion

We do not have a complete result for the memoryless case in general. What we do
have is an outer bound on the achievable region.

First, before stating our results, we define the inverse of the binary entropy func-
tion h(·) for 0≤ α≤ 1 as

h−1(α) ∆= a, (4.40)

if 0≤ a≤ 1/2 and h(a) = α.

Theorem 4.3 For fuzzy commitment in the memoryless case with crossover proba-
bility q and probability Pr{X = 1}= ρ we obtain for the achievable region R fc

R fc ⊆
{
(Rk,Rlk,Rlb) : 0≤ Rk ≤ 1−h(q),

Rlk ≥ h[ρ∗h−1(Rk)]−h(ρ),
Rlb ≥ h[ρ∗h−1(Rk)]−Rk

}
. (4.41)

Moreover, there exist codes with rates up to 1−h(q).
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Note that the maximum achievable rate 1− h(q) for fuzzy commitment can be
either smaller, equal, or larger than I(X ;Y ). In the previous section, where we in-
vestigated the input-symmetric case, we have observed that for the general input-
symmetric case I(X ;Y ) > 1− h(q), see (4.35). On the other hand, for the general
memoryless case for which X⊕Y is independent of Y, we obtain

I(X ;Y ) = H(X)−H(X |Y )
= H(X)−H(X⊕Y |Y )
≤ 1−H(X⊕Y )
= 1−h(q), (4.42)

and therefore also I(X ;Y ) < 1−h(q) is possible. However, Thm. 3.3 and Property 3.1
imply that for rates larger than I(X ;Y ) it is not possible to achieve non-zero secrecy
leakage. More precisely, using the fact that for achievable rates Pr{K 6= K̂} ≤ δ and
Fano’s inequality, we obtain

H(K) = I(K;RN)+H(K|RN)
≤ I(K;ZN ,RN)+H(K|K̂)
≤ I(K;ZN)+ I(K;RN |ZN)+δ log |K |+1

= I(K;ZN)+H(RN ,Y N |ZN)−H(RN ,Y N |ZN ,K,CN)+δ log |K |+1

= I(K;ZN)+H(Y N |ZN)−H(Y N |ZN ,K,XN)+δ log |K |+1

≤ I(K;ZN)+H(Y N)−H(Y N |XN)+δ log |K |+1

= I(K;ZN)+NI(X ;Y )+δ log |K |+1, (4.43)

hence

Rk−δ≤ 1
N

H(K)≤ 1
1−δ

(
1
N

I(K;ZN)+ I(X ;Y )+
1
N

). (4.44)

This demonstrates that a secret-key rate, which is ∆ larger than I(X ;Y ), results in a
secrecy leakage of at least ∆.

Moreover, observe that Thm. 4.3 implies that zero secrecy leakage is only possi-
ble if Rk = 0 or ρ = 1/2, and zero privacy leakage is only possible if ρ = 0 or Rk = 1.
These cases are of no interest, though.

Observe also that for non-trivial cases for I(X ;Y )≥ 1−h(q) the privacy leakage
in fuzzy commitment is larger than necessary. Indeed, if Rk > 0, then

h[ρ∗h−1(Rk)]−Rk > h(ρ)−Rk

≥ h(ρ)− (1−h(q))
≥ H(X)− I(X ;Y )
= H(X |Y )
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≥ I(U ;X |Y )
= I(U ;X)− I(U ;Y ), (4.45)

where I(U ;X)− I(U ;Y ) is the privacy leakage achieved in the optimal setting. Note
that for the general memoryless case we have strict inequality here.

Proposition 4.3 In the memoryless case, when the source is not totally-symmetric,
fuzzy commitment results in both secrecy and privacy leakage larger than necessary.

4.5.2 Proof of the Results

We will use Mrs. Gerber’s lemma of Wyner and Ziv [93] to investigate the properties
of fuzzy commitment. Therefore we restate it here for convenience.

Lemma 4.1 (Mrs. Gerber’s Lemma, [93]) Let CN be a binary random sequence
with entropy H(CN) ≥ Nν ≥ 0, and XN be a binary i.i.d. sequence with entropy
H(XN) = Nh(ρ), then

H(CN ⊕XN) ≥ Nh[ρ∗h−1(ν)]. (4.46)

¥

Proof of Thm. 4.3

The statement that there exist codes with rates up to 1− h(q) follows directly from
the capacity theorem for the BSC. Therefore we continue with the converse part.

Assume that the rate-leakage triple (Rk,Rlk,Rlb) is achievable. Then in the same
way as (4.29), we obtain for achievable triples (Rk,Rlk,Rlb) that

Rk−δ≤ 1
N

log |K | ≤ 1
1−δ

(1−h(q)+
1
N

). (4.47)

Next we consider the secrecy and privacy leakage. As an intermediate step, we first
show that

log |K |= H(K) = I(K;RN)+H(K|RN , K̂)
(a)
≤ I(CN ;RN)+δ log |K |+1

≤ H(CN)+δ log |K |+1, (4.48)

where step (a) follows from the data-processing inequality, see e.g. Cover and Thomas
[13], p. 32, from the fact that for achievable triples (Rk,Rlk,Rlb) we have that Pr{K̂ 6=
K} ≤ δ and from Fano’s inequality.
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Now using (4.48), we may conclude that for achievable triples (Rk,Rlk,Rlb), it
holds that

1
N

H(CN)≥ 1
N

((1−δ) log |K |−1)≥ Rk−δ−δRk− 1
N

. (4.49)

For the secrecy leakage we can write, using Mrs. Gerber’s lemma and (4.15), that

Rlk +δ≥ 1
N

I(K;ZN) =
1
N

(H(CN ⊕XN)−H(XN))

≥ h[ρ∗h−1(Rk−δ−δRk− 1
N

)]−h(ρ). (4.50)

In a similar manner, we find for the privacy leakage that

Rlb +δ≥ 1
N

I(XN ;ZN)
(a)
≥ 1

N
(H(CN ⊕XN)− log |K |)

≥ h[ρ∗h−1(Rk−δ−δRk− 1
N

)]− 1
N

log |K |
(b)
≥ h[ρ∗h−1(Rk−δ−δRk− 1

N
)]−Rk−δ. (4.51)

where step (a) follows from (4.16) and the fact that H(CN)≤ log |K |, and (b) follows
from the definition of achievable rates, since then log |K | ≤ N(Rk +δ).

Now Thm. 4.3 follows from (4.47), (4.50) and (4.51), if we let δ ↓ 0 and N → ∞.
Note that the continuity of the binary entropy function is essential in this proof.

¥

4.6 The Stationary Ergodic Case

4.6.1 Statement of Results, Discussion

Let XN and Y N be stationary ergodic sequences. Now we define H∞(X⊕Y ) to be

H∞(X⊕Y ) ∆= lim
N→∞

1
N

H(X1⊕Y1,X2⊕Y2, . . . ,XN ⊕YN). (4.52)

For the stationary ergodic case we have the following result.

Theorem 4.4 For fuzzy commitment in the stationary ergodic case we obtain for the
achievable region R fc that

R fc ⊆
{
(Rk,Rlk,Rlb) : 0≤ Rk ≤ 1−H∞(X⊕Y ),

Rlk ≥ h[h−1(H∞(X))∗h−1(Rk)]−H∞(X),
Rlb ≥ h[h−1(H∞(X))∗h−1(Rk)]−Rk

}
. (4.53)

Moreover, reliable codes with rates up to 1−H∞(X⊕Y ) exist.
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The result of Thm. 4.4 demonstrates that zero secrecy leakage is only possi-
ble if H∞(X) = 1, which implies that the X-process is independent and uniformly
distributed, or if the secret-key rate Rk = 0. Moreover, we may conclude that zero
privacy leakage implies that H∞(X) = 0 or that the secret-key rate Rk = 1. These cases
are again of no interest.

Note that for the stationary ergodic case we do not have an analog of Thm.
3.3. Nevertheless, we can compare the fuzzy commitment scheme to the two-layer
scheme, which is built as a biometric secret generation system, considered in Thm.
2.2, with a masking layer on top of it. In this layer chosen secret key K is masked
with generated key S in a one-time pad way.

It can be shown using Thm. 2.2, if the masking layer is used on top of the secret
generation model considered there, and using similar reasoning as that used in the
achievability proof of Thm. 3.3, that for the two-layer scheme the largest achievable
secret-key rate Rk is equal to I∞(X ;Y ). Moreover, that this rate is achievable with
privacy leakage H∞(X |Y ).

Now as in the memoryless case the maximum achievable rate 1−H∞(X⊕Y ) for
fuzzy commitment can be smaller, equal or larger than I∞(X ;Y ). However, for rates
larger than I∞(X ;Y ) it is not possible to achieve zero secrecy leakage. Indeed, we can
write for all small ε > 0 and all N large enough, using similar series of steps as those
used to derive (4.44), that

Rk−δ≤ 1
N

H(K)≤ 1
1−δ

(
1
N

I(K;ZN)+ I∞(X ;Y )+ ε+
1
N

). (4.54)

Hence, if the maximum secret-key rate in fuzzy commitment is ∆ larger than I∞(X ;Y ),
then the secrecy leakage of the scheme is at least ∆.

Now consider non-trivial cases when 1−H∞(X ⊕Y ) ≤ I∞(X ;Y ). We obtain for
the privacy leakage in the fuzzy commitment scheme when Rk > 0 that

h[h−1(H∞(X))∗h−1(Rk)]−Rk > H∞(X)−Rk

≥ H∞(X)− (1−H∞(X⊕Y ))
≥ H∞(X)− I∞(X ;Y )
= H∞(X |Y ), (4.55)

which demonstrates that with the two-layer scheme we obtain smaller privacy leakage
than with fuzzy commitment.

Proposition 4.4 In the stationary ergodic case fuzzy commitment is not optimal with
respect to both secrecy and privacy leakage.
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4.6.2 Proof of the Results

Before proving the results for fuzzy commitment in the stationary ergodic case, we
need an auxiliary result.

Binary Analog to the Entropy-Power Inequality

The entropy-power inequality, see Shannon [68], is a useful lower bound for the
differential entropy of a sum of two independent real-valued stationary random se-
quences. We are interested in a similar bound for stationary binary sequences. The
binary analog to the entropy-power inequality was derived in Shamai and Wyner [66].
For our purposes, we need an adapted version of this binary analog to the entropy-
power inequality.

Assume that a biometric sequence XN is a stationary binary sequence with en-
tropy

H∞(X) = lim
N→∞

1
N

H(X1,X2, . . . ,XN) = lim
N→∞

H(XN |X1,X2, . . . ,XN−1). (4.56)

Moreover,now for the binary entropy function h(·) for 0≤α≤ 1, its inverse h−1(α)=
a, defined as in the previous section, corresponds to the probability a in a binary i.i.d.
sequence with entropy α.

Lemma 4.2 For the random binary independent sequences XN and CN , if XN is sta-
tionary with entropy H∞(X) and H(CN)≥ Nν, the following statement holds

1
N

H(ZN) ≥ h[h−1(H∞(X))∗h−1(ν)], (4.57)

where ZN = (Z1,Z2, . . . ,ZN) = (X1⊕C1,X2⊕C2, . . . ,XN ⊕CN). This is an adapted
version of the binary analog to the entropy-power inequality (Shamai and Wyner
[66]).

Proof of Lem. 4.2: We denote Xn−1 = (X1,X2, . . . ,Xn−1) for n = 1,2, . . . ,N, and also
Cn−1 and Zn−1 in the same way.

Now, from Shamai and Wyner [66], the last but one equation, and from the facts
that H∞(X)≤ H(Xn|Xn−1) and 0≤ h−1(·)≤ 1

2 , it follows that

H(Zn|Zn−1) ≥ h[h−1(H(Xn|Xn−1))∗h−1(H(Cn|Cn−1))]
≥ h[h−1(H∞(X))∗h−1(H(Cn|Cn−1))]. (4.58)
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Next we find that

1
N

H(ZN) =
1
N

N

∑
n=1

H(Zn|Zn−1)

≥ 1
N

N

∑
n=1

h[h−1(H∞(X))∗h−1(H(Cn|Cn−1))]

(a)
≥ h[h−1(H∞(X))∗h−1(

1
N

N

∑
n=1

H(Cn|Cn−1))]

= h[h−1(H∞(X))∗h−1(ν)], (4.59)

where (a) follows from convexity of h(β ∗ h−1(u)) in u, since its second derivative
is positive, for the details see Wyner and Ziv [93], and Jensen’s inequality, see e.g.
Cover and Thomas [13], p. 25.

¥

Proof of Thm. 4.4

The fact that reliable codes with rates up to 1−H∞(X⊕Y ) exist for stationary ergodic
X ⊕Y -processes follows from Verdu and Han [81], p. 1156. It is essential that the
noise process is ergodic here.

Next assume that for the fuzzy commitment scheme the triple (Rk,Rlk,Rlb) is
achievable. Then we obtain for the entropy of the secret that

log |K |= H(K)≤ N−H(XN ⊕Y N)+δ log |K |+1, (4.60)

where the inequality in the above expression holds if we apply the same series of
steps as in (4.28) and use the fact that for achievable triples (Rk,Rlk,Rlb) we have that
Pr{K̂ 6= K} ≤ δ.

Dividing both parts of the above expression by N and rearranging the terms, we
obtain for achievable triples (Rk,Rlk,Rlb) that

Rk−δ≤ 1
N

log |K | ≤ 1
1−δ

(1− 1
N

H(XN ⊕Y N)+
1
N

). (4.61)

Next, note that H(CN) ≥ N(Rk − δ− δRk − 1/N), since (4.49) also holds here.
Using Lem. 4.2 and (4.15), we obtain that

Rlk +δ≥ 1
N

I(K;ZN) =
1
N

(H(CN ⊕XN)−H(XN))

≥ h[H∞(X)∗h−1(Rk−δ−δRk− 1
N

)]− 1
N

H(XN). (4.62)
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In a similar manner, we find for the privacy leakage that

Rlb +δ ≥ 1
N

I(XN ;ZN)

(a)
≥ 1

N
(H(XN ⊕CN)− log |K |)

≥ h[h−1(H∞(X))∗h−1(Rk−δ−δRk− 1
N

)]− 1
N

log |K |
(b)
≥ h[h−1(H∞(X))∗h−1(Rk−δ−δRk− 1

N
)]−Rk−δ. (4.63)

where step (a) follows from (4.16) and the fact that H(CN)≤ log |K |, and (b) holds,
since for achievable triples (Rk,Rlk,Rlb) we have that log |K | ≤ N(Rk +δ).

Now Thm. 4.4 follows from (4.60), (4.62) and (4.63) if we let δ ↓ 0 and N → ∞.
¥

4.7 Tighter Bounds with Systematic Parity-Check Codes

4.7.1 Tighter Bounds for the Stationary Ergodic Case

Better lower bounds on the leakages can be obtained if we use binary systematic
parity-check codes. We assume that the information symbols are followed by the
parity symbols. First, we need the following result, though.

Lemma 4.3 Let CN be the sequence of random variables corresponding to a binary
linear code where the first log |K | information symbols (the systematic part) are fol-
lowed by N− log |K | parity symbols. In this way H(Cn|Cn−1) = 1 for n ≤ log |K |
and H(Cn|Cn−1) = 0 for n > log |K |, where we also assume that |K | is a power of 2,
and hence log |K | is integer. Then for the independent sequences of binary variables
XN and CN , if XN is stationary with entropy H∞(X) and H(CN)≥ Nν, the following
statement holds

1
N

H(CN ⊕XN) ≥ H∞(X)+ν(1−H∞(X)). (4.64)

Proof of Lem. 4.3: Using (4.59) from the proof of Lem. 4.2, we can write

1
N

H(ZN) =
1
N

N

∑
n=1

H(Zn|Zn−1)

≥ 1
N

( log |K |
∑
n=1

h[h−1(H∞(X))∗h−1(1)]+
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N

∑
n=log |K |+1

h[h−1(H∞(X))∗h−1(0)]
)

=
1
N

(log |K |+(N− log |K |)H∞(X))

≥ H∞(X)+
1
N

log |K |(1−H∞(X))

≥ H∞(X)+ν(1−H∞(X)), (4.65)

where the last inequality follows from log |K | ≥ H(CN)≥ Nν.
¥

Theorem 4.5 For fuzzy commitment in the stationary ergodic case, if systematic
parity-check codes are applied, we obtain for the achievable region R fc that

R fc ⊆
{
(Rk,Rlk,Rlb) : 0≤ Rk ≤ 1−H∞(X⊕Y ),

Rlk ≥ Rk(1−H∞(X)),
Rlb ≥ H∞(X)(1−Rk)

}
. (4.66)

From this theorem we may conclude that in the stationary ergodic case, when
systematic parity-check codes are used in fuzzy commitment, the secrecy leakage
can only be zero if the secret-key rate Rk = 0 or if the entropy H∞(X) = 1. On the
other hand, zero privacy leakage implies that either the rate Rk = 1 or H∞(X) = 0.
However, these cases are not interesting.

Proof of Thm. 4.5: Assume that the triple (Rk,Rlk,Rlb) is achievable. Just as in Thm.
4.4 we obtain that

Rk−δ≤ 1
N

log |K | ≤ 1
1−δ

(1− 1
N

H(XN ⊕Y N)+
1
N

). (4.67)

Moreover, we have that H(CN)≥ N(Rk−δ−δRk−1/N), since (4.49) also holds
here. Then using Lem. 4.3 and (4.15), we can write for the secrecy leakage that

Rlk +δ ≥ 1
N

I(K;ZN)

=
1
N

(H(CN ⊕XN)−H(XN))

≥ (1−H∞(X))(Rk−δ−δRk− 1
N

)+H∞(X)− 1
N

H(XN). (4.68)
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In a similar way, we obtain for the privacy leakage that

Rlb +δ≥ 1
N

I(XN ;ZN)
(a)
≥ 1

N
(H(XN ⊕CN)− log |K |)

≥ H∞(X)+(Rk−δ−δRk− 1
N

)(1−H∞(X))− 1
N

log |K |
(b)
≥ H∞(X)(1−Rk +δRk +

1
N

)−2δ−δRk− 1
N

. (4.69)

where step (a) follows from (4.16) and the fact that H(CN)≤ log |K |, and (b) holds,
since for achievable triples (Rk,Rlk,Rlb) we have that log |K | ≤ N(Rk +δ).

Now from (4.67), (4.68) and (4.69), letting δ ↓ 0 and N →∞, we obtain the proof.
¥

The fact that the leakage bounds in Thm. 4.5 are indeed stronger than the bounds
obtained in Thm. 4.4 follows from convexity. Let U be 1 with probability Rk and 0
with probability 1−Rk. Then from convexity of h(β∗h−1(u)) in u, we obtain

h[h−1(H∞(X))∗h−1(Rk)]
≤ Rk h[h−1(H∞(X))∗h−1(1)]+(1−Rk)h[h−1(H∞(X))∗h−1(0)]
= Rk +H∞(X)−RkH∞(X). (4.70)

Therefore it follows that

h[h−1(H∞(X))∗h−1(Rk)]−H∞(X) ≤ Rk +H∞(X)−RkH∞(X)−H∞(X)
= Rk(1−H∞(X)) (4.71)

h[h−1(H∞(X))∗h−1(Rk)]−Rk ≤ Rk +H∞(X)−RkH∞(X)−Rk

= H∞(X)(1−Rk). (4.72)

4.7.2 Tighter Bounds for the Memoryless Case

Note that Lem. 4.3 also holds in the memoryless case, when XN is i.i.d. with Pr{X=
1}= ρ. Then (4.64) takes the following form

1
N

H(CN ⊕XN) ≥ h(ρ)+ν(1−h(ρ)). (4.73)

Now the tighter bounds on the achievable region for the general memoryless case,
when systematic parity-check codes are used, are given by the following theorem.
The proof of this theorem is identical to the proof of Thm. 4.5 and is therefore
omitted.
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Theorem 4.6 For fuzzy commitment in the memoryless case with crossover proba-
bility q and probability Pr{X = 1}= ρ if systematic parity-check codes are applied,
we obtain for the achievable region R fc that

R fc ⊆
{
(Rk,Rlk,Rlb) : 0≤ Rk ≤ 1−h(q),

Rlk ≥ Rk(1−h(ρ)),
Rlb ≥ h(ρ)(1−Rk)

}
. (4.74)

¥

Remark: It should be noted that for the totally-symmetric memoryless case and
input-symmetric memoryless case the bounds given in the above theorem reduces to
the regions given in Thm. 4.1 and Thm. 4.2, respectively.

4.8 Conclusions

In this chapter we have considered fuzzy commitment and investigated its secrecy
and privacy leakage properties. It turns out that fuzzy commitment is not private in
the conditional privacy-leakage sense.

Next we have concentrated on unconditional privacy leakage. Our analysis has
shown that fuzzy commitment is only optimal for the totally-symmetric memoryless
case if it operates at the maximum secret-key rate. For secret-key rates which are be-
low the capacity, the scheme is not optimal with respect to privacy leakage. However,
it is still optimal with respect to secret-key rates and secrecy leakage.

For the input-symmetric memoryless case, we have concluded that fuzzy com-
mitment is suboptimal with respect to both achievable secret-key rate and privacy-
leakage rate. However, it still enjoys zero secrecy leakage.

In the general memoryless and stationary ergodic cases we could only determine
outer bounds on the achievable regions. Moreover, we could sharpen these bounds
for the case when systematic parity-check codes are used in fuzzy-commitment based
biometric systems.

The results for the memoryless case have revealed that fuzzy commitment leads
to both secrecy and privacy leakage that are larger than necessary. One may argue
that for the memoryless case with fuzzy comminute we can achieve larger secret-key
rates than with the optimal scheme. However, we have shown that this increase may
only come at the expense of secrecy leakage.

The results for the stationary ergodic case have also demonstrated that fuzzy com-
mitment has non-zero secrecy and privacy leakage in non-trivial cases. We cannot
assess its optimality, though, as we do not have an analog of Thm. 3.3 for the sta-
tionary ergodic case. Therefore we have compared the fuzzy commitment scheme to
a two-layer scheme (which is based on a biometric secret generation model with a
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masking layer on top of it) for stationary ergodic biometric sources. It turns out that
the two-layer scheme enjoys better properties.
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Chapter 5

Context Weighting And Maximizing
Using Ratio Representation

Everything should be as simple as it is, but not simpler (Albert Ein-
stein).

5.1 Introduction

In the next chapter we will study a problem that has to be addressed before any prac-
tical biometric secrecy system is built, viz. how much secret information (secret
randomness) can be extracted or conveyed with a certain biometric modality. There-
fore we will need to estimate the mutual information I(X ;Y ) between the biometric
enrollment and authentication sequences. In principle it is possible to find a model of
the source and based on this model to estimate the required mutual information. For
instance, in Škorić [71] the secret-key rate for optical PUFs is estimated based on the
physical model that is developed there. We will however take a different approach
and will estimate this mutual information using observed biometric sequences. We
will focus on stationary ergodic biometrics.

The formula for mutual information between two biometric sequences can be
expanded in one of three ways, i.e. I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) =
H(X) + H(Y )−H(X ,Y ). Thus we can focus on the estimation of entropies. Our
approach is based on the context-tree weighting (CTW) method, which is a universal
source coding method introduced by Willems, Shtarkov, and Tjalkens [88]. The CTW
method is a sequential procedure that finds a good coding distribution for an observed
(biometric) source sequence. This coding distribution can be used to compress the
observed sequence, using arithmetic coding techniques. The resulting codeword has
a small redundancy and thus its length, divided by the length of the source sequence,
gives a good estimate of the entropy.

Now suppose that we use the expression I(X ;Y ) = H(X)−H(X |Y ) to estimate
the mutual information. In the CTW method the distribution that a tree source uses
to generate the next symbol xt depends on a finite number of preceding symbols, see
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Fig. 5.1(a). These previous symbols are called context. The most recent symbol
is assumed to be the most important, the second most recent symbol is the second
most important symbol, etc. In this manner the ordering of the context is defined.
When we need to estimate the conditional entropy H(X |Y ), the context of xt consists
of a finite number of preceding symbols of xt in the X-sequence, a finite number of
preceding and future symbols in the Y -sequence, and the current symbol, see Fig.
5.1(b). In this case the dependencies between xt and the context symbols are not that
obvious, and it is not easy to come up with the same natural context ordering as in
the case when the context only consists of X-symbols. Therefore we would like to
have more freedom in choosing the context order. This freedom is provided by the so-
called class III weighting method, described in Willems, Shtarkov, and Tjalkens [90].
Using the class III weighting method we hope to get better estimates of the entropy
and, consequently, better estimates of the mutual information.

HH©© HH©©

yt+1, . . .yt

xt−1

yt−1

. . . ,xt−2

. . . ,yt−2Y
X

(b) for H(X |Y )(a) for H(X)

xt−1. . . ,xt−2X

Figure 5.1: Contexts for xt . Position of the symbol is denoted by × .

Another problem that has to be addressed while designing a biometric secrecy
system is code construction. In order to design codes for biometric secrecy systems
that achieve near-optimal performance, we need to know the statistics of the biomet-
ric source. The statistics of the source is determined by the model of the source and
the parameters of the model. The model defines the structure of the source and the
parameters give the probabilities which the source uses to generates symbols.

Suppose that our source is binary. Given a model of the source and an observed
biometric sequence produced by this source, we can partition the observed sequence
into subsequences according to the model. For each subsequence the fraction of ones
is a good estimate of the probability that corresponds to this subsequence. These
probabilities are the parameters of the model. Then the remaining problem is to find
the model of the source. Therefore in this chapter we will study the problem of
how to efficiently find the best (maximum a posteriori) model for a given biometric
sequence.

In order to find the maximum a posteriori model for a given biometric sequence,
we could use the context-tree maximizing method proposed by Volf and Willems
[84]. Note that in Willems and Tjalkens [91] an efficient implementation of the CTW
method based on betas (ratios of block probabilities) was proposed. This implemen-
tation results in complexity reduction of the method. Moreover, later, using betas, a
simple procedure for determining the a posteriori model probabilities was derived by
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Willems at al. [87]. Therefore we are also interested in the procedure for finding the
maximum a posteriori model using betas.

In the current chapter in Section 5.2 we will first describe the CTW method intro-
duced in [88]. Then in Section 5.3 we will discuss an efficient implementation of the
CTW method proposed in [91], which is based on ratios of block probabilities. Next
we will turn to the context-tree maximizing procedure. In Section 5.4 we outline the
original procedure proposed by Volf and Willems [84]. Then we will concentrate on
context-maximizing using the ratio representation (betas). The beta-based procedure,
proposed in Willems et al. [87] and described in Section 5.5.1, determines a posteri-
ori probabilities for a specified model for a given source sequence. Inspired by this
idea, in Section 5.5.2 we derive a new method for finding the MAP-model for a given
(biometric) sequence using betas. Moreover, in Section 5.6 we will extend these
procedures to determine the a posteriori model probabilities and the MAP-model for
class III. In these procedures we will again use ratios of block probabilities.1

5.2 Context-Tree Weighting Methods

5.2.1 Arithmetic Coding

Denote the binary sequence (x1,x2, . . . ,xT ) by xT
1 . Given a coding distribution Pc(xT

1 )
over all binary sequences of length T , the Elias algorithm, see e.g. Jelinek [38],
generates codewords that satisfy the prefix condition, see e.g. Cover and Thomas [13]
pp. 81-82, with lengths

L(xT
1 ) = d 1

Pc(xT
1 )
e+1 < log

1
Pc(xT

1 )
+2. (5.1)

Implementations of this method are called arithmetic coding methods, see e.g. Ris-
sanen [61] and Pasco [53]. The codeword length that we obtain in this way is at
most two binary digits longer than the length of the ideal codeword, i.e. − logPc(xT

1 ).
We say that the individual coding redundancy is smaller than 2. Therefore universal
source coding is mainly concerned with finding good coding distributions.

5.2.2 The Krichevski-Trofimov Estimator

The actual probability Pr{X t
1 = xt

1} of a source sequence xt
1, for t = 1,2, . . . ,T is

denoted by Pa(xt
1). For an i.i.d. binary source with an unknown parameter θ = Pa(1)

1In this chapter we will use somewhat different notations than in other chapters of this thesis. Here
we will denote a sequence (x1,x2, . . . ,xT ) by xT

1 instead of by xT . This definition is stipulated by the
fact that sometimes we need to specify the range of symbols in the sequence. Also s, p,S , and P here
have different meaning than in the previous chapters.
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we should use

Pe(a,b) =
(a− 1

2)(a− 3
2) · . . . · 1

2(b− 1
2)(b− 3

2) · . . . · 1
2

(a+b)(a+b−1) · . . . ·1 (5.2)

as coding probability for a sequence containing a zeroes and b ones. This estimate
for the actual probability is called the Krichevsky-Trofimov [43] estimate.

Consider a sequence xT
1 with a zeroes and b ones, then from (5.1) we may con-

clude that

L(xT
1 ) < log

1
Pe(a,b)

+2. (5.3)

Define the individual redundancy for sequence xT
1 as

ρ(xT
1 ) ∆= L(xT

1 )− log
1

Pa(xT
1 )

, (5.4)

then this redundancy for a sequence xT
1 with a zeroes and b ones satisfies

ρ(xT
1 ) < log

1
Pe(a,b)

+2− log
1

(1−θ)aθb

= log
(1−θ)aθb

Pe(a,b)
+2

≤ 1
2

logT +3, (5.5)

where we applied Lem. 1 of Willems, Shtarkov, and Tjalkens [88] to upper bound
the log(Pa/Pe)-term. This term, called the parameter redundancy, is never larger
than 1

2 log(a+b)+1. Hence the individual redundancy is not larger than 1
2 logT +3

for all xT
1 and all θ ∈ [0,1]. Therefore this estimator is asymptotically optimal, see

Rissanen [60].

5.2.3 Tree Sources

Consider Fig. 5.2. For a tree source the probability Pa(Xt = 1| . . . ,xt−2,xt−1) is de-
termined by starting in the root λ of the tree and moving along the path xt−1,xt−2, . . .
until a leaf of the tree is reached. In this leaf s we find the desired probability (pa-
rameter) θs. The suffix set or tree S , containing the paths to all leaves, is called the
model of the source.

In the example shown in Fig. 5.2 the source has the suffix set S = {00,10,1}with
parameter vector ΘS = {θ00,θ10,θ1}. For this source the actual (conditional) prob-
ability of the source generating the sequence 01101 given the past symbols . . .010
is

Pa(01101| . . .010) = (1−θ10)θ00θ1(1−θ1)θ10

= 0.00945. (5.6)
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Figure 5.2: Model (suffix set) and parameters.

5.2.4 Unknown Parameters, Known Model

The source model (tree) S partitions the source sequence in i.i.d. subsequences, one
for each leaf s ∈ S . If the parameters of the source are unknown we can use the
Krichevski-Trofimov estimator for each of these subsequences. For instance, for
S = {00,10,1} we get

Pe(xT
1 |S) = Pe(a00,b00) ·Pe(a10,b10) ·Pe(a1,b1), (5.7)

where as is the number of zeroes in the subsequence of xT
1 corresponding to leaf s, and

bs is the number of ones in this subsequence. In general, we obtain for the estimated
probabilities for tree-model S that

Pe(xT
1 |S) = ∏

s∈S
Pe(as,bs). (5.8)

If we use this probability estimate as a coding probability, we obtain for the (pa-
rameter plus coding) redundancy

ρ(xT
1 ) < log

1
Pe(xT

1 |S)
+2− log

1
Pa(xT

1 )

≤
( |S |

2
log

T
|S | + |S |

)
+2, (5.9)

for T ≥ |S |. Note that the second inequality follows from convexity of the log(·).
Moreover, ρ(xT

1 )≤ T +2, for T < |S |.
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5.2.5 Weighting

Consider two sources. For the first source we should use coding distribution P1
c (xT

1 ) to
obtain a small redundancy. For the second source we should use distribution P2

c (xT
1 ).

If we need a single code that is good for both sources then

Pw(xT
1 ) =

P1
c (xT

1 )+P2
c (xT

1 )
2

(5.10)

would be a good coding distribution. It leads to codeword length

Lw(xT
1 ) < log

2
P1

c (xT
1 )+P2

c (xT
1 )

+2

≤ log
1

Pi
c(xT

1 )
+3, for i = 1,2, (5.11)

and we lose at most one binary digit with this weighting technique!

5.2.6 Unknown Model

Suppose that the actual source model S is unknown, but its depth is not larger than
D. A context is a string of binary symbols. Note that to each context s, there cor-
responds a substring of (x1,x2, . . . ,xT ) of symbols that are produced by the source
following this context s. Let as be the number of zeroes in this subsequence and bs be
the number of ones. The structure containing a node for all contexts s having depth
not larger than D is called a context-tree TD. A good estimator for the subsequence
corresponding to a context (node) s at depth D is Ps

w = Pe(as,bs). Now let the depth d
of some node s be smaller than D and assume that we already have good probability
estimates for sequences corresponding to nodes 0s and 1s at depth d + 1. Denote
these probability estimates by P0s

w and P1s
w , respectively. Then for the subsequence

corresponding to s we have two alternatives. We can use the Krichevski-Trofimov
estimate Pe(as,bs) for the entire subsequence corresponding to s or we can split up
this subsequence into two sub-subsequences and use the product P0s

w P1s
w of the prob-

abilities P0s
w and P1s

w as estimate. If we weight these two alternatives we obtain the
weighted probability

Ps
w =

{ 1
2 Pe(as,bs)+ 1

2 P0s
w P1s

w , if depth(s) < D
Pe(as,bs), otherwise

. (5.12)

The weighted probability Pλ
w in the root of the context-tree can now be used as coding

probability for the entire sequence xT
1 . The method is called the context-tree weight-

ing (CTW) method. What is important is that the weighted probability realized by
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CTW satisfies

Pλ
w = ∑

S
2−ΓD(S) ·∏

s∈S
Pe(as,bs)

≥ 2−ΓD(Sa) · ∏
s∈Sa

Pe(as,bs), (5.13)

where the summation is over all tree models that fit in the context-tree TD, see Lem.
2 in Willems, Shtarkov, and Tjalkens [88], the cost of model S is defined as

ΓD(S) ∆= 2|S |−1−|{s ∈ S ,depth(s) = D}|, (5.14)

and Sa is the actual model.

5.2.7 Performance

The individual redundancy ρ(xT
1 ) relative to the actual source for sequence xT

1 can be
upper bounded by

ρ(xT
1 ) = Lw(xT

1 )− log
1

Pa(xT
1 )

< ΓD(Sa)+
|Sa|
2

log
T
|Sa| + |Sa|+2, (5.15)

for T ≥ |Sa|. Moreover, ρ(xT
1 )≤ ΓD(Sa)+T +2, for T < |Sa|.

The three terms in bound (5.15) are the cost of specifying the model, i.e. ΓD(Sa),
the cost of specifying the parameters, which is |Sa|

2 log T
|Sa| + |Sa|, and the loss of 2

binary digits due to arithmetic coding.
Observe that bound (5.15) holds for the redundancy relative to any other tree

source model S with depth ≤ D.

5.3 Ratios of Probabilities

The CTW method makes use of the context-tree concept, which requires every inter-
nal node to store counts as,bs, estimated block probabilities Ps

e and weighted block
probabilities Ps

w. In Willems and Tjalkens [91] it was shown that storage complexity
reduction can be achieved if the ratio of these probabilities is stored in a node instead
of the two probabilities themselves. Storage complexity reduction is also achieved,
since ratios of the two block probabilities need not be as accurate as those block
probabilities.
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Consider an internal node s ∈ TD. Suppose that 0s (and not 1s) is a suffix of
the context x0

1−D,xt−1
1 of xt . Then we can write for the corresponding conditional

weighted probability Ps
w(Xt = 1|x0

1−D,xt−1
1 ) that

Ps
w(Xt = 1|xt−1

1 )

=
Ps

w(xt−1
1 ,Xt = 1)

Ps
w(xt−1

1 )

(a)
=

Ps
e(x

t−1
1 ,Xt = 1)+P0s

w (xt−1
1 ,Xt = 1)P1s

w (xt−1
1 ,Xt = 1)

Ps
e(x

t−1
1 )+P0s

w (xt−1
1 )P1s

w (xt−1
1 )

(b)
=

Ps
e(x

t−1
1 )Ps

e(Xt = 1|xt−1
1 )+P0s

w (xt−1
1 )P0s

w (Xt = 1|xt−1
1 )P1s

w (xt−1
1 )

Ps
e(x

t−1
1 )+P0s

w (xt−1
1 )P1s

w (xt−1
1 )

=
βs(xt−1

1 )Ps
e(Xt = 1|xt−1

1 )+P0s
w (Xt = 1|xt−1

1 )
βs(xt−1

1 )+1
, (5.16)

where βs(xt−1
1 ) is the ratio of the block probabilities defined as

βs(xt−1
1 ) ∆=

Ps
e(x

t−1
1 )

P0s
w (xt−1

1 )P1s
w (xt−1

1 )
. (5.17)

Here step (a) follows from the main CTW definition (5.12), and step (b) follows from
the fact that 1s is not suffix of xt−1

1 and therefore P1s
w (xt−1

1 ,Xt = 1) = P1s
w (xt−1

1 ). In
this expression (and the rest of this section), for simplicity, we omitted x0

1−D in all
conditions.

Assuming that in node s the counts as(xt−1
1 ) and bs(xt−1

1 ) are stored as well as the
ratio βs(xt−1

1 ), we have the following sequence of operations:

1. We assume that node 0s delivers the conditional weighted probability P0s
w (Xt =

1|xt−1
1 ) to node s.

2. The conditional estimated probability is determined as suggested by Krichevsky
and Trofimov [43], i.e.

Ps
e(Xt = 0|xt−1

1 ) =
as(xt−1

1 )+ 1
2

as(xt−1
1 )+bs(xt−1

1 )+1
,

Ps
e(Xt = 1|xt−1

1 ) =
bs(xt−1

1 )+ 1
2

as(xt−1
1 )+bs(xt−1

1 )+1
. (5.18)

3. The outgoing conditional weighted probabilities are determined as

Ps
w(Xt = 0|xt−1

1 ) =
βs(xt−1

1 )Ps
e(Xt = 0|xt−1

1 )+P0s
w (Xt = 0|xt−1

1 )
βs(xt−1

1 )+1
,

Ps
w(Xt = 1|xt−1

1 ) =
βs(xt−1

1 )Ps
e(Xt = 1|xt−1

1 )+P0s
w (Xt = 1|xt−1

1 )
βs(xt−1

1 )+1
. (5.19)
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4. The ratio βs(·) is updated with new xt as

βs(xt−1
1 ,xt) =

{
βs(xt−1

1 ,xt) ·Ps
e(Xt = 0|xt−1

1 )/P0s
w (Xt = 0|xt−1

1 ), if xt = 0
βs(xt−1

1 ,xt) ·Ps
e(Xt = 1|xt−1

1 )/P0s
w (Xt = 1|xt−1

1 ), if xt = 1
.(5.20)

5. Finally, the counts are incremented

(
as(xt−1

1 ,xt),bs(xt−1
1 ,xt)

)
=

{
(as(xt−1

1 ,xt)+1,bs(xt−1
1 ,xt)), if xt = 0

(as(xt−1
1 ,xt),bs(xt−1

1 ,xt)+1), if xt = 1
. (5.21)

4
We see that inside the node s there is a switch that controls the mixture between

the incoming conditional weighted probability P0s
w (Xt = 1|xt−1

1 ) and the (internal)
one Ps

e(Xt = 1|xt−1
1 ). The mixture is determined by βs(xt−1

1 ). For large βs(xt−1
1 ) the

outgoing conditional probability is approximately equal to Ps
e(Xt = 1|xt−1

1 ), for small
βs(xt−1

1 ) it is approximately equal to P0s
w (Xt = 1|xt−1

1 ). If s is a leaf of TD the outgoing
conditional weighted probability is simply Ps

e(Xt = 1|xt−1
1 ), i.e. the internal one.

Storage complexity reduction is obtained, since estimated and weighted block
probabilities decrease as the sequence length T increases, while the ratio βs corre-
sponds to two different coding alternatives for the subsequence in the node s and is
therefore closer to one. Observe also that (5.19) shows that in practice the perfor-
mance does not depend on how large and how small β’s really can become as long as
they are large or small enough.

5.4 Context-Tree Maximizing

5.4.1 Two-Pass Methods

The CTW-method is a one-pass algorithm. The source sequence xT
1 is processed in a

sequential way, i.e. the first source symbol x1 is observed, some first code symbols are
produced or not, the second symbol x2 is observed, more code symbols are produced
or not, etc. In a two-pass system the entire source sequence xT

1 is observed first. Only
after that a codeword is constructed. Consider the following two-pass method.

1. After observing xT
1 , determine the “best model” Ŝ matching to xT

1 .

2. Encode this model Ŝ .

3. Encode the sequence xT
1 given this model Ŝ .

To specify such an algorithm we have to specify the parts of which it consists. Some
questions that arise now are: What is the best model Ŝ? How can it be determined
efficiently?
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5.4.2 The Context-Tree Maximizing Algorithm

When the source produces sequence xT
1 and model S is chosen as the best model, the

resulting coding probability2 for the two-pass case is

2−ΓD(S) ·∏
s∈S

Pe(as,bs). (5.22)

Here the first factor is the number of bits needed to specify the model S in a recursive
way (i.e. the natural code mentioned in [88]) and the second factor is the coding
probability of the sequence xT

1 given the model S , see (5.8).
The context-tree maximizing method, see e.g. Volf and Willems [84] but also

Nohre [51], finds the model, maximizing (5.22) recursively, using a context-tree, by
taking

Ps
m =

{
max[1

2 Pe(as,bs), 1
2 P0s

m P1s
m ], if depth(s) < D

Pe(as,bs), otherwise
. (5.23)

It is assumed that the entire sequence xT
1 was processed into the context-tree. Finally,

we can find the best model S by tracking the maximization procedure, starting in the
root λ of the context-tree. If in a node s in the context-tree Pe(as,bs)≥ P0s

m P1s
m then s

is a leaf of the best tree Ŝ and we do not have to investigate the sub-tree rooted in s
any further. Otherwise s is an internal node of the best model and we have to check
the nodes 0s and 1s. Note that

Pλ
m = max

S
2−ΓD(S) ·∏

s∈S
Pe(as,bs), (5.24)

and the model maximizing this expression is our best model, denoted by Ŝ .
Note that the context-tree maximizing method yields the maximum a posteriori

(MAP) tree model given the observed sequence xT
1 . This observation can be found in

Willems et al. [87].

5.4.3 Performance

The coding probability for context-tree maximizing satisfies

Pλ
m = 2−ΓD(Ŝ) ·∏

s∈Ŝ
Pe(as,bs)≥ 2−ΓD(Sa) · ∏

s∈Sa

Pe(as,bs), (5.25)

just like Pλ
w, see (5.13). Therefore maximizing, just like weighting, leads to the re-

dundancy bound (5.15). Observe that this bound holds for any model, not only for
Sa.

2It satisfies ∑xT
1

Pλ
m(xT

1 ) < 1, however.
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5.5 Context-Tree Maximizing Using Ratio Representation

In this section we introduce the procedure for determining the MAP-model for tree
sources based on ratios of block probabilities.

5.5.1 Computing A Posteriori Model Probabilities

The procedure for computing a posteriori model probabilities based on ratios was
introduced in Willems et al. [87]. Consider a sub-model Ss (a proper and complete
set of strings all having a common suffix s) rooted in the node s of TD, such that it fits
in the context-tree TD. Then the “conditional” probability of the sub-tree Ss given xT

1
is defined as

Qs
w(Ss)

∆=
2−ΓD(Ss) ∏s′∈Ss Pe(as′ ,bs′)

Ps
w

, (5.26)

where the cost of sub-model Ss is defined as

ΓD(Ss)
∆= 2|Ss|−1−|{s′ ∈ Ss,depth(s′) = D}|. (5.27)

It is reasonable to call this probability a conditional probability, since the denominator
in (5.26) can be expressed as

Ps
w = ∑

Ss

2−ΓD(Ss) ∏
s′∈Ss

Pe(as′ ,bs′), (5.28)

and

∑
Ss

2−ΓD(Ss) = 1, (5.29)

where the summations are over all sub-models rooted in s having no leaves deeper
than D−depth(s), see Lem. 2 in Willems, Shtarkov, and Tjalkens [88].

Now if |Ss| > 1 and the node is not at level D (since if it is at D, it can not be
split), we can split up the sub-model Ss into sub-models S0s and S1s and rewrite the
conditional probability as

Qs
w(Ss) =

2−ΓD(S0s) ∏s′∈S0s Pe(as′ ,bs′)
P0s

w

·2
−ΓD(S1s) ∏s′∈S1s Pe(as′ ,bs′)

P1s
w

· P0s
w P1s

w

Pe(as,bs)+P0s
w P1s

w

= Q0s
w (S0s)Q1s

w (S1s)
1

βs +1
, (5.30)



118 Context Weighting And Maximizing Using Ratio Representation

for nodes s ∈ TD with depth < D, where the ratios are defined as in Section 5.3, i.e.

βs
∆=

Pe(as,bs)
P0s

w P1s
w

. (5.31)

When the sub-model Ss contains only one leaf s, not at depth D, then

Qs
w(Ss) =

Pe(as,bs)
Pe(as,bs)+P0s

w P1s
w

=
βs

βs +1
. (5.32)

Finally, if the sub-model Ss consists only of a single leaf-node s at level D, then

Qs
w(Ss) = 1. (5.33)

Summarizing the three considered cases, we can write

Qs
w(Ss) =





Q0s
w (S0s)Q1s

w (S1s) ·1/(βs +1), if |Ss|> 1
βs/(βs +1), if |Ss|= 1, depth(s) < D
1, if |Ss|= 1, depth(s) = D

.(5.34)

Now we take

P(S) ∆= 2−ΓD(S) (5.35)

as the a priori probability of model S , then we can write for the a posteriori proba-
bility of model S , after having observed the source sequence xT

1 , that

Pw(S |xT
1 ) =

2−ΓD(S) ∏s∈S Pe(as,bs)
Pλ

w
= Qλ

w(S), (5.36)

where the last equality follows from (5.26). Recursive expression (5.34) can now be
used to determine the a posteriori probability Qλ

w(S) of a model S from the β’s in the
context-tree. We just have to form a product which consists of a factor 1/(βs′ +1) for
each internal node s′ of the model S and a factor βs′′/(βs′′ +1) for each leaf s′′ of the
model S not at level D.

5.5.2 Finding the Maximum A Posteriori Model

In the original paper of Willems et al. [87] for computing a posteriori model proba-
bilities based on ratios of block probabilities, it was observed that context-tree max-
imizing, i.e. (5.23), yields the MAP tree model given the observed sequence xT

1 . We
observe that, on the one hand, a posteriori model probabilities can be computed from
the β’s in a context-tree, while on the other hand, to determine the MAP-model, we
need the context-tree maximizing method. Therefore in this section we develop a
method that determines the MAP-model based on the ratios in the context-tree.
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First, consider a problem of finding the MAP sub-model corresponding to a node
s at depth < D. For such a node we can write

max
Ss

Qs
w(Ss) = max

{ 1
βs +1

max
S0s

Q0s
w (S0s)max

S1s
Q1s

w (S1s),
βs

βs +1

}
. (5.37)

In this expression the last term corresponds to the sub-model that has only a single
leaf-node at s. The first term corresponds to all larger sub-models.

For a node at depth D only the one-leaf sub-model plays a role and therefore

max
Ss

Qs
w(Ss) = 1. (5.38)

Now defining for all nodes s ∈ TD the MAP sub-model probability

Qs
mw

∆= max
Ss

Qs
w(Ss), (5.39)

we can combine the above expressions and define the recursive equation and proce-
dure for finding the MAP-model.

Procedure 5.1 (The Maximum A Posteriori Model Procedure)

1. Compute the MAP model probabilities as

Qs
mw =

{
max

{
Q0s

mwQ1s
mw ·1/(βs +1),βs/(βs +1)

}
, if depth(s) < D

1, if depth(s) = D
. (5.40)

2. In the root λ of the context-tree find the maximum a posteriori model probabil-
ity Qλ

mw.

3. Track the procedure starting in the root of the context-tree. This yields the
MAP-model.

5.6 Context Maximizing Using Ratio Representation: Class
III

Now we extend the techniques for computing a posteriori model probabilities and
finding the MAP-model described in Section 5.5 to techniques for a more general
model class than the tree source class, i.e. for class III of finite context sources.
These sources were described in Willems, Shtarkov, and Tjalkens [90].
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5.6.1 General Finite Context Sources: Class III

Consider a bounded memory source with memory not larger than D. Hence the dis-
tribution that the source uses to generate the next symbol Xt , t = 1,2, . . . , T is deter-
mined by its context (ut(1),ut(2), . . . ,ut(D)). In the CTW method, the context of xt

was formed by the most recent symbols, thus ut(d) = xt−d for d = 1,2, . . . ,D. How-
ever, more general definitions are possible, the only requirement is that the context
should be available to the encoder at encoding time of xt and to the decoder at decod-
ing time of xt . In [90] weighting methods were considered for four classes of general
finite context sources. In the current section we will concentrate on class III.

Consider first the tree sources. Recall that in the CTW algorithm the context sym-
bols are examined in a fixed order, i.e. from the most recent to the least recent symbol.
There the context-tree is a full binary tree with a depth D, and each node splits ac-
cording to the next context symbol, see Fig. 5.3(a). In every node of the context-tree
the algorithm weights two alternatives: the probability that a subsequence associated
with the node is memoryless, and the probability that it has to be split further, see
(5.12).

@
@

@
@

@
@

@@

ε0

Q
Q

QQ

´
´

´́

Q
Q

QQ

´
´

´́

¡
¡

¡
¡

¡

@
@

@
@

@

S
S

S
S

S
A

A
A

A
A

A
A

A
AA

S
S

S
S

S ¢
¢

¢
¢

¢
¢

¢
¢

¢¢

¢
¢

¢
¢

¢
¢

¢
¢

¢¢
1ε

PPPPPPPP

³³³³³³³³
¡

¡
¡

¡
¡

¡
¡¡p = 1

p = 2

p = 2

p = 2

p = 1

p = 1

p = 2

p = 2

λ

10

01

0

1

00

11

λ

p = 1

00

01

10

11

0ε

ε1

¤£ ¡¢ ¤£ ¡¢

(b) Class III(a) Contex-tree

Figure 5.3: Examples of tree and class III models , for D = 2, p indicates a
position of the split, ε indicates ‘don’t care’ symbol

In the class III weighting algorithm all possible orders of the context symbols
are considered. There a node can be split correspondingly to an arbitrary context
position. Therefore the node splits on each context position into two subsets, each
corresponding to the value of the context digit on this position. An example of such
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a context structure is shown in Fig. 5.3(b). In each node of the context structure the
algorithm weights alternatives: the probability that a subsequence associated with
the node is memoryless and the probabilities that it has to be split further on some
context position.

Let S be a subset of the set of all contexts {0,1}D. In class III model, a subset
is determined by the set of context positions P and the sequence of values at these
positions ∏d∈P vd, hence

SP,∏d∈P vd

∆= {u1,u2, . . . ,uD|ud = vd ,d ∈ P}. (5.41)

The recursive weighting for arbitrary position splitting is defined as

Pw(SP,∏d∈P vd )

=

Pe(SP,∏d∈P vd )+ ∑
p∈{1,2,...,D},p/∈P

Pw(SP∪{p},(∏d∈P vd)×0) ·Pw(SP∪{p},(∏d∈P vd)×1)

D−|P |+1
, (5.42)

where P 6= {1,2, . . . ,D}. Thus the algorithm weights the following alternatives. The
first alternative is that the subset SP,∏d∈P vd has a single context. And the other alter-
natives are that the subset has to be split further on some remaining positions p into
nodes with contexts that contain 0 and 1 on position p. Note that if the subset has a
single context, then the Krichevsky-Trofimov estimator is used, i.e.

Pe(SP,∏d∈P vd )
∆= Pe(aSP,∏d∈P vd

,bSP,∏d∈P vd
), (5.43)

where aSP,∏d∈P vd
and bSP,∏d∈P vd

are the number of instants t for which (ut(1),ut(2), . . . ,
ut(D)) ∈ SP,∏d∈P vd and xt = 0 and xt = 1, respectively.

For subsets for which all positions are specified (thus they contain a single con-
text) we have that

Pw(S{1,2,...,D},v1,v2,...,vD) = Pe(S{1,2,...,D},v1,v2,...,vD) = Pe({v1,v2, . . . ,vD}). (5.44)

The weighted probability Pw(S{φ},λ) = Pw({0,1}D) can be used for sequential encod-
ing and decoding. Here {φ} is an empty set.

The storage complexity of these methods is specified by maximum 3D number
of nodes in the structure. Its computational complexity is proportional to 2D, since
2D nodes are to be updated for each symbol xt . Observe that the class III method has
higher complexity than CTW. Indeed, the CTW method needs maximum 2D+1− 1
number of nodes in the structure and only D + 1 records to update for each symbol
xt .
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5.6.2 Computing A Posteriori Model Probabilities

Consider a sub-model Ss, rooted in the node s = SP,∏d∈P vd that corresponds to all split-
tings with context SP,∏d∈P vd = {u1,u2, . . . ,uD|ud = vd,d ∈ P}. Moreover, let l(Ss) be
a set of leaves of the sub-model Ss. The conditional probability of the sub-model Ss

given xT
1 is defined as

Qs
w(Ss)

∆=
P(Ss)∏s′∈l(Ss) Pe(as′ ,bs′)

Ps
w

. (5.45)

where P(Ss) is a priori probability of the sub-model Ss recursively defined as

P(Ss)
∆=

1
|Ps|+1

P(S{0p}s)P(S{1p}s), (5.46)

for |Ss| > 1, and P(Ss) = 1, for |Ss| = 1. Here S{0p}s and S{1p}s are the sub-models
into which the sub-model Ss splits. These sub-models correspond to splittings with
contexts SP∪{p},(∏d∈P vd)×0 and SP∪{p},(∏d∈P vd)×1, respectively. Position p ∈ Ps spec-
ifies the context position on which the node s is split further on and Ps = {p : p ∈
{1,2, . . . ,D}, p /∈ P} is the set of all position on which the split is still possible from
node s.

Now consider the case when |Ss| > 1 and the node s is not at level D. The sub-
model Ss can be split up into two sub-models S{0p}s and S{1p}s We can rewrite the
conditional probability as

Qs
w(Ss) =

P(S{0p}s)∏s′∈l(S{0p}s) Pe(as′ ,bs′)

P{0p}s
w

·
P(S{1p}s)∏s′∈l(S{1p}s) Pe(as′ ,bs′)

P{1p}s
w

· P{0p}s
w P{1p}s

w

Pe(as,bs)+∑p′∈Ps P{0p′}s
w P{1p′}s

w

= Q{0p}s
w (S{0p}s)Q

{1p}s
w (S{1p}s)

1/βps

1+∑p′∈Ps 1/βp′s
, (5.47)

where

βps
∆=

Pe(as,bs)

P{0p}s
w P{1p}s

w

, (5.48)

for nodes s with depth less than D. Note that the ratios βsp(·) defined here are analogs
of the internal ratios considered in Section 5.3. Observe also that there are |Ps| of such
ratios.
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If the sub-model contains only one context s not at depth D, then

Qs
w(Ss) =

Pe(as,bs)

Pe(as,bs)+∑p′∈Ps P{0p′}s
w P{1p′}s

w

=
1

1+∑p′∈Ps 1/βp′s
. (5.49)

Finally, if the sub-model Ss consists only of a single context s at level D, then

Qs
w(Ss) = 1. (5.50)

Summarizing the equations above, we can write

Qs
w(Ss) =





Q{0p}s
w (S{0p}s)Q

{1p}s
w (S{1p}s) · (1/βps)/(1+∑p′∈Ps 1/βp′s),|Ss|> 1

1/(1+∑p′∈Ps 1/βp′s), |Ss|= 1, |P |< D.
1, |Ss|= 1, |P |= D

(5.51)

Now if we define P(S) to be the probability of the complete model S , then using
(5.45), we can write for the a posteriori probability of a given model S after having
observed a source sequence xT

1 that

Pw(S |xT
1 ) =

P(S)∏s∈l(S) Pe(as,bs)
Pλ

w
= Qλ

w(S). (5.52)

Therefore, similarly to the procedure for tree sources, in order to compute the a pos-
teriori probability corresponding to a model S we have to form a product that consists
of a factor (1/βps′)/(1+∑p′∈Ps′ 1/βp′s′) for each internal node s′ of the model S and
a factor 1/(1+∑p′∈Ps′′ 1/βp′s′′) for each leaf s′′ of the model S not at level D.

Remark: Note that for class III it would be more natural to define the betas as

βps =
P{0p}s

w P{1p}s
w

Pe(as,bs)
. (5.53)

However, for consistency with the first part of the chapter, we use the definition as in
(5.48).

5.6.3 Finding the Maximum A Posteriori Model

Now we can formulate the method to find the MAP-model based on β’s in the context-
structure of class III given an observed sequence xT

1 . Again consider, first, the max-
imum a posteriori probability for a sub-model Ss at node s at depth < D. For such a
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node we can write

max
Ss

Qs
w(Ss)

= max
{

max
p∈Ps

{max
S{0p}s

Q{0p}s
w max

S{1p}s

Q{1p}s
w

1/βps

1+∑p′∈Ps 1/βp′s
}, 1

1+∑p′∈Ps 1/βp′s

}
,(5.54)

where the first term corresponds to all larger sub-models resulting from all (possible
at this level) context splits, and the last term corresponds to the sub-model that has a
single context, i.e. to a leaf-node.

For a note at depth D only one-leaf sub-models play a role and therefore

max
Ss

Qs
w(Ss) = 1. (5.55)

Now we define for all nodes s the MAP sub-model probability

Qs
mw

∆= max
Ss

Qs
w(Ss). (5.56)

The recursive equation for computing the MAP-model probability is summarized
as follows.

Procedure 5.2 (The Maximum A Posteriori Model Procedure for Class III)

1. Compute the MAP model probabilities as

Qs
mw =





max
{

max
p∈Ps

{Q{0p}s
mw Q{1p}s

mw
1/βps

1+∑p′∈Ps 1/βp′s
}, 1

1+∑p′∈Ps 1/βp′s

}
, |P |< D

1, |P |= D
. (5.57)

2. In the root λ of the context-structure find the MAP-model probability Qλ
mw.

3. To obtain the MAP-model, track the maximizing procedure starting in the root
of the context-structure. More precisely, check whether in the node s of the
context-structure

max
p∈Ps

{Q{0p}s
mw Q{1p}s

mw
1/βps

1+∑p′∈Ps 1/βp′s
} ≤ 1

1+∑p′∈Ps 1/βp′s
, (5.58)

if so, then s is the leaf of the best model. Otherwise, s is an internal node and
we have to investigate the sub-models with {0p}s and {1p}s, where

p = argmax
p∈Ps

{Q{0p}s
mw Q{1p}s

mw
1/βps

1+∑p′∈Ps 1/βp′s
}. (5.59)
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5.7 Conclusions

In this chapter context-weighting methods based on ratios of block probabilities have
been considered. Since in Willems et al. [87] a method for computing a posteriori
model probabilities based on ratios was proposed, there a posteriori model proba-
bilities can be computed from the ratios in a context-tree, while, on the other hand,
to determine the MAP tree-model the context-tree maximizing method of Volf and
Willems [84] was needed. Therefore in this chapter we have developed a method that
determines the MAP-model based on the ratios in the weighted context-tree.

We have extended the methods for determining the a posteriori probability of a
specified model and for finding the MAP-model from basic CTW to class III models.
It would be interesting to extend the results that we have obtained in the current
chapter to class I and class II methods for general finite context sources described
in [90], but we leave it for the future research work.

As a concluding remark, it should be mentioned that, although the methods pre-
sented in this chapter are described for binary sources, they can be straightforwardly
generalized to larger alphabets.
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Chapter 6

Secret-Key Rate Estimation Based on
Context Weighting Methods

No amount of experimentation can ever prove me right; a single ex-
periment can prove me wrong (Albert Einstein).

6.1 Introduction

In Chapters 2, 3, and 4 of this thesis we have considered biometric secret generation
models and biometric models with chosen secret keys. In these settings one termi-
nal is allowed to transmit a message to a second one. We have required that the
message reveals negligible information about the secret key and as little as possible
information about the biometric data. It is well-known that the maximum secret-key
rate produced by two terminals or conveyed by one terminal to another is equal to
the mutual information between the two observed biometric data sequences. These
results hold when the biometric sequences are produced by i.i.d. sources. This is the
Ahlswede and Csiszár [3] result, see also Thm. 2.1. Moreover, these results are also
valid for stationary ergodic sources, as shown by Csiszár and Narayan [17], see also
Thm.2.2 and the discussion part of Section 4.6.1.

Before designing any practical biometric secrecy system, it is important to eval-
uate theoretical limits that can be achieved with biometric data on which the system
will operate. Hence, given a biometric modality, first of all it is necessary to estimate
the amount of secrecy that can be produced or conveyed with this modality. Note also
that biometric data such as iris codes, fingerprint minutiae maps, face patterns, PUFs,
etc. are often modeled as realizations of two-dimensional processes, see e.g. Jain et
al. [36] and Wayman et al. [85]. Therefore we are particularly interested in estimates
of mutual information and, correspondingly, of entropy for two-dimensional sources.

In this chapter we will study the estimation of maximum secret-key rates for
biometric sources using the CTW method. This method was introduced by Willems,
Shtarkov, and Tjalkens [88] and we discussed it in the previous chapter. First we will
show that the entropy of a stationary two-dimensional source is a limit of a series



128 Secret-Key Rate Estimation Based on Context Weighting Methods

of conditional entropies. A similar result was obtained by Anastassiou and Sakrison
[6]. We will extend this result to the conditional entropy of one two-dimensional
source given another one. Furthermore, we will show that the basic CTW method also
approaches the source entropy in the two-dimensional stationary ergodic case. This
result carries over to conditional entropies and joint entropies in the two-dimensional
stationary ergodic case.

Finally, we will use these results to estimate the maximum secret-key rate of
speckle patterns from optical Physical Unclonable Functions (PUFs). PUFs are a
particular case of biometrics that come from inanimate objects. PUFs were first pro-
posed by Pappu [52] and further studied in Gassend et al. [30], Tuyls and Batina [78],
and Škorić et al. [70]. A good overview of PUF related technologies can be found in
Tuyls et al. [77].

6.2 On the Entropy of Two-Dimensional Stationary Pro-
cesses

In this section we discuss the relation between entropies of two-dimensional pro-
cesses and conditional entropies.

6.2.1 On the Entropy of a Two-Dimensional Stationary Process

Consider the two-dimensional process {Xv,h : (v,h) ∈ Z2}, also called random field,
and assume that it is stationary (homogeneous), i.e.

Pr{XT = xT } = Pr{XT +(sv,sh) = xT }, (6.1)

for any template T , any shift (sv,sh), and any observation xT . A template is a set of
coordinate pairs, i.e. T ⊂ Z2. Moreover, T +(sv,sh) denotes the set of coordinate
pairs resulting from a coordinate pair from T , to which the integer shift pair (sv,sh)
is added. We assume that all symbols take values from the finite alphabet X .

First, for positive integers L we define

HL(X) ∆=
1
L2 H




X1,1 . . . X1,L
...

. . .
...

XL,1 . . . XL,L


 , (6.2)

then the entropy of a two-dimensional stationary process can be defined as

H∞(X) ∆= lim
L→∞

HL(X). (6.3)

Now we can formulate the following lemma.



6.2 On the Entropy of Two-Dimensional Stationary Processes 129

Lemma 6.1 The limit defined in (6.3) exists.

Proof: From the stationarity of the stochastic process X , the chain rule for entropies,
and the fact that conditioning can only decrease entropy, it follows that

NH




X1,1 . . . X1,N+1
...

. . .
...

XM,1 . . . XM,N+1


− (N +1)H




X1,1 . . . X1,N
...

. . .
...

XM,1 . . . XM,N




= NH




X1,N+1 X1,1 . . . X1,N
...

...
. . .

...
XM,N+1 XM,1 . . . XM,N


−H




X1,1 . . . X1,N
...

. . .
...

XM,1 . . . XM,N




≤ 0. (6.4)

Using inequality (6.4) for (M,N) = (L,L), we obtain

H




X1,1 . . . X1,L+1
...

. . .
...

XL,1 . . . XL,L+1


 ≤ L+1

L
H




X1,1 . . . X1,L
...

. . .
...

XL,1 . . . XL,L


 , (6.5)

subsequently, using a transposed version of inequality (6.4) for (M,N) = (L,L + 1),
we get

L
L+1

H




X1,1 . . . XL+1,1
...

. . .
...

X1,L+1 . . . XL+1,L+1


 ≤ H




X1,1 . . . XL,1
...

. . .
...

X1,L+1 . . . XL,L+1


 . (6.6)

Combining (6.5) and (6.6), it follows that

HL+1(X)−HL(X) ≤ 0. (6.7)

Hence the sequence HL(X) is a non-increasing non-negative sequence in L. This
finalizes the proof.

¥
The definition of entropy in (6.3) focuses on block-entropies. We will show next

that the entropy of a stationary two-dimensional process can also be expressed as a
limit of conditional entropies. To this end we define the conditional entropy

GL(X) ∆= H(XL,L|X1,1, . . . ,X1,2L−1, . . . ,XL,1, . . . ,XL,L−1). (6.8)

A visualization of this definition is presented in Fig. 6.1.
Remark: The choice of the conditioning template here is governed by the nature

of the CTW method, see Chapter 5, since the CTW method is a coding algorithm
that sequentially encodes symbols generated by a source after observing the past
subsequence of symbols.



130 Secret-Key Rate Estimation Based on Context Weighting Methods
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L−1
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1 L 2L−1. . . . . .

...

Figure 6.1: The symbol XL,L and the symbols on which it is conditioned in
(6.8).

Lemma 6.2 The limit

G∞(X) ∆= lim
L→∞

GL(X) (6.9)

exists.

Proof: From stationarity and the fact that conditioning never increases entropy, it
follows that the sequence GL(X) is non-increasing in L. Since the entropy is non-
negative, so GL(X)≥ 0, and the proof follows.

¥
Now we are ready to formulate the main theorem of this section.

Theorem 6.1 The limits H∞(X) and G∞(X) are equal, i.e.

G∞(X) = H∞(X). (6.10)

Proof: In order to demonstrate that the limits (6.3) and (6.9) are equal, we first
observe, using chain rule, stationarity, and the fact that conditioning never increases
entropy, that

HL(X) =
1
L2

L

∑
v=1

L

∑
h=1

H(Xv,h|X1,1, . . . ,X1,L, . . . ,Xv,1, . . . ,Xv,h−1)

≥ GL(X). (6.11)

On the other hand, it follows (using similar arguments) that

H j+2L−2(X) ≤ H(u)+ j( j +L−1)GL(X)
( j +2L−2)2 , (6.12)

where H(u) corresponds to all symbols in the horseshoe region, see Fig. 6.2.
Applying limit to both sides of the above inequality yields that

H∞(X) = lim
j→∞

H j+2L−2(X)≤ GL(X). (6.13)
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j +L−1

L−1jL−1

L−1

Figure 6.2: Horseshoe region in a square of size ( j +2L−2)2.

The proof follows from (6.11) and (6.13).
¥

Our arguments are a generalization of the arguments for (one-dimensional) sta-
tionary sources that can be found in Gallager [29], pp. 56-58. Moreover, they
are only slightly different from those given by Anastassiou and Sakrison [6], who
first showed that in the two-dimensional case the block-entropy limit equals the
conditional-entropy limit.

We conclude that the entropy of a two-dimensional stationary process can be
computed by considering the conditional entropy of a single symbol given more and
more neighboring symbols.

6.2.2 On the Conditional Entropy of a Two-Dimensional Stationary Pro-
cess Given a Second One

Next we consider the two-dimensional joint process {XYv,h : (v,h) ∈ Z2}. We assume
that it is stationary, i.e.

Pr{XYT = xyT } = Pr{XYT +(sv,sh) = xyT }, (6.14)

for any template T any shift (sv,sh), and any observation xyT . Again we assume that
X-symbols and Y -symbols take values from the finite alphabets X and Y , respec-
tively.

We may consider the joint entropy H∞(XY ) of a joint process XY and then ob-
viously Thm. 6.1 holds. Then we can compute conditional entropies by considering
this joint entropy and entropies of processes X and Y.

It also makes sense to look at the conditional entropy H∞(X |Y ) and find out
whether a theorem similar in style to Thm. 6.1 can be proved for this situation. This
turns out to be possible if we define for positive integers L

HL(X |Y ) ∆=
1
L2 H




X1,1 . . . X1,L
...

. . .
...

XL,1 . . . XL,L

∣∣∣∣∣∣∣

Y1,1 . . . Y1,L
...

. . .
...

YL,1 . . . YL,L


 , (6.15)
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and define the conditional entropy of a two-dimensional joint stationary process XY
as

H∞(X |Y ) ∆= lim
L→∞

HL(X |Y ). (6.16)

Then the following lemma holds.

Lemma 6.3 The limit in (6.16) exists.

Proof: First, we observe that, since conditioning never increases entropy, the follow-
ing inequality holds

H




X1,1 . . . X1,L
...

. . .
...

XL,1 . . . XL,L

∣∣∣∣∣∣∣

Y1,1 . . . Y1,L+1
...

. . .
...

YL+1,1 . . . YL+1,L+1




≤ H




X1,1 . . . X1,L
...

. . .
...

XL,1 . . . XL,L

∣∣∣∣∣∣∣

Y1,1 . . . Y1,L
...

. . .
...

YL,1 . . . YL,L


. (6.17)

Then, using the arguments similar to the ones used to show that HL(X) is non-
increasing (see proof of Lem. 6.1) and inequality (6.17), the proof that the se-
quence HL(X |Y ) is non-increasing in L follows. Finally, since HL(X) is a positive
non-increasing sequence, we conclude that the limit in (6.16) exists.

¥
In order to demonstrate that the conditional entropy H∞(X |Y ) can be expressed

as a limit of entropies of a single symbol conditioned on surrounding X-symbols and
Y -symbols, we define

GL(X |Y ) ∆= H(XL,L|X1,1, . . . ,X1,2L−1, . . . ,XL,1, . . . ,XL,L−1,

. . . ,Y1,1, . . . ,Y2L−1,2L−1). (6.18)

For a visualization we refer to Fig. 6.3.

Lemma 6.4 The limit

G∞(X |Y ) ∆= lim
L→∞

GL(X |Y ) (6.19)

exists.

Proof: It is easy to see that GL+1(X |Y ) ≤ GL(X |Y ) using arguments as in the proof
of Lem. 6.2, from which and from non-negativity of GL(X |Y ) the proof follows.

¥
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Figure 6.3: The symbol XL,L and its conditioning symbols. Note that the X-
symbols are drawn on top of a square with the Y -symbols.

Theorem 6.2 The limits defined in (6.16) and (6.19) are equal, i.e.

G∞(X |Y ) = H∞(X |Y ). (6.20)

Proof: In order to demonstrate that the limits (6.16) and (6.19) are equal, we observe
that (according to the same arguments as used for (6.11) and (6.12))

HL(X |Y ) ≥ GL(X |Y ), (6.21)

H j+2L−2(X |Y ) ≤ H(2)+ j2GL(X |Y )
( j +2L−2)2 , (6.22)

where H(2) corresponds to the X-symbols in the edge region, see Fig. 6.4. Hence
we obtain

H∞(X |Y ) = lim j→∞ H j+2L−2(X |Y ) ≤ GL(X |Y ). (6.23)

The proof follows from (6.21) and (6.23).

L−1jL−1

L−1

L−1

j

Figure 6.4: Edge region in a square of size ( j +2L−2)2.

¥
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We conclude that, in the stationary case, the conditional entropy of a one two-
dimensional process X given a second two-dimensional process Y can also be com-
puted by considering the conditional entropy of a single X-symbol given more and
more “causal” neighboring X-symbols, and more and more “non-causal”1 neighbor-
ing Y -symbols.

6.3 Mutual Information Estimation

6.3.1 Convergence

Now we turn to the estimation of the mutual information for two-dimensional sta-
tionary ergodic sources. We can estimate mutual information I∞(X ;Y ) either by es-
timating H∞(X), H∞(Y ), and H∞(XY ), or by estimating H∞(X) and H∞(X |Y ) (or
equivalently H∞(Y ) and H∞(Y |X)) using the CTW methods discussed in Chapter 5.
It was proven in Willems [92] that the CTW method approaches entropy in the one-
dimensional ergodic case. The following theorem applies to the two-dimensional
case.

Theorem 6.3 For joint processes XY , the general CTW method achieves entropy
H∞(XY ), as well as H∞(X) and H∞(Y ), and conditional entropies H∞(X |Y ) and
H∞(Y |X) in the two-dimensional ergodic case.

Proof: From Thm. 6.1 and Thm. 6.2 we conclude that we can focus on conditional
entropies of a single symbol (or pair of symbols). These are entropies that the CTW
method achieves when the observed image gets larger and larger and more and more
context symbols become relevant. It is important to use the right ordering of the
context symbols though. Therefore the symbols for L = 2 should be included first,
then those for L = 3, etc. The rest of the proof is similar to the proof of Thm. 3
in [92].

¥

6.3.2 Using Context Weighting Methods

In order to estimate the mutual information between biometric sequences we are
going to use context weighting methods. Note that these methods are sequential and
at each step they use only the past and the present symbols.

In the basic CTW method for one-dimensional case the context is defined by a
set of most recent symbols in a sequence. In a two-dimensional case the probabilities

1If we define the order in which symbols are processed in the image (e.g. from left to the right, and
from top to bottom), then “causal” symbols are past symbols, while “non-causal” symbols might be
both future and past symbols with respect to a certain symbol.
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of the next symbol generated by source is determined by the local two-dimensional
regions. For our purposes we need more flexibility in choosing the context symbols,
however. This flexibility is provided by the weighting methods for general finite
context sources that were proposed in Willems, Shtarkov, and Tjalkens [90]. Here
we consider the two simplest classes, i.e. class IV and class III. These methods were
described in the previous chapter.

Consider a source that has produced a sequence (. . . ,xt−2,xt−1) so far. Then, at
time t, this source generates a new symbol xt . The context for this symbol xt consists
of D symbols denoted by (zt1,zt2, . . . ,ztD). Observe that each of these symbols could
be any symbol available to both the encoder and decoder while encoding/decoding
xt . On the other hand, if there is a “side-information” sequence yN available, then
we could take ztd = yt+d−1, but combinations of both past x-symbols and past and/or
future y-symbols are also possible.
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Figure 6.5: Example of class IV and class III models.

Consider a simple example. In a class IV method it is assumed that the actual
probability of the next symbol xt being 1 is based on the first d context symbols
(zt1,zt2, . . .ztd), where d depends on the context (zt1,zt2, . . .ztD) that has occurred. For
instance, if the source model corresponds to the tree in Fig. 6.5(a), and the context
(zt1,zt2, . . .ztD) at time t is (011ε . . .ε), the probability θ011 of the next symbol xt

being 1 can be found in the leaf 011. We have denoted a “don’t care” context-symbol
by ε here. The subscript 011 refers to the values 0, 1, and 1 of the context symbols
zt1, zt2, and zt3, respectively.

Class III models can also be described using a tree. However, the ordering of
the context symbols is not fixed as in class IV. For a source model corresponding to
the tree in Fig. 6.5(b), when the context (zt1,zt2, . . .ztD) at time t is (ε001ε . . .ε), the
probability θ243

010 of the next symbol xt being 1 can be found in leaf 010. Note that
the superscript 243 denotes the context ordering, i.e. first zt2 is used, then zt4, and,
finally, zt3. The subscript 010 now refers to the values 0, 1, and 0 of these context
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symbols zt2, zt4, and zt3, respectively.
For both model classes the context weighting encoder (implicitly) specifies the

context structure and corresponding parameters to a decoder. This results in the
model and parameter redundancies, respectively, and thus in an increased codeword
length. It will be evident that the class III methods are more general than the class IV
ones. Since they adapt better to the source, the performance of the class III methods
should therefore be better. Indeed the so-called parameter redundancy is smaller for
class III than for class IV, but since class III is richer than class IV, its model redun-
dancy is also larger. It depends on the length of the source sequence which of the
two effects will dominate. For small lengths, the class IV methods will outperform
the class III methods. For large lengths the effect of model redundancy becomes
negligible and the class III method gives a smaller codeword length.

6.4 Biometric Secrecy Systems in the Stationary Ergodic
Case

In Chapter 2 we presented Thm. 2.2. This theorem states that for biometric sequences
which are generated by jointly stationary ergodic sources, the maximum secret-key
rate that can be produced in the secret generation model is equal to I∞(X ;Y ). Using
the techniques described above, we can now estimate the maximum secret-key rates
for stationary ergodic sources.

6.5 Experimental Results

In this section we consider a specific example of biometric data from inanimate ob-
jects, i.e. optical Physical Unclonable Functions (PUFs). Using the context weighting
methods, we estimate the maximum secret-key rate for binary images obtained from
optical PUFs speckle patterns.

6.5.1 Physical Unclonable Functions

In the introduction to this thesis we have already discussed PUFs. In this chapter we
focus on optical PUFs. These PUFs were originally proposed in Pappu [52] and were
further studied by Tuyls and Batina [78] and Škorić et al. [70].

Optical PUFs consist of a transparent optical material (e.g. glass) with randomly
distributed light-scattering particles. Different challenges are obtained by directing
a laser beam under different angles through a PUF. Shining a laser beam through
the optical medium produces speckle patterns (responses) that are picked up by a
CCD camera. The response depends on the exact position and direction of the chal-
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lenge. The speckle patterns obtained from two measurements at the same challenge
are shown in Fig. 6.6. Note that the speckle-images are very similar.
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Figure 6.6: Two speckle patterns resulting from the same challenge.

A typical PUF-based key generation protocol (see e.g. Tuyls and Batina [78] or
Škorić et al. [70]) involves an enrollment measurement of the challenge-response pair
(CRP) and an authentication measurement of the same CRP. These measurements
(speckle patterns) correspond to the X- and Y - sequences in biometric secret genera-
tion model in Fig. 2.1. Gabor-filtering and thresholding as proposed by Pappu [52]
transform each speckle pattern into a binary image.

We have investigated five optical PUFs (labeled “A”, “B”, “C”, “D”, and “E”)
and for each of these five PUFs we have considered two challenges (two different
laser-angles labeled “0” and “1”). For each of the ten challenges we have measured
25 speckle patterns that were Gabor-transformed and thresholded. Each speckle pat-
tern resulted therefore in one binary 64× 64 image. We denote the binary image
corresponding to speckle-pattern of the enrollment image by X and the binary image
corresponding to speckle-pattern of the authentication image by Y. Fig. 6.8 shows
an example of enrollment and authentication PUF pairs.

In the rest of this chapter we find out how large the mutual information I∞(X;Y)
is for (our) optical PUFs.

6.5.2 Secret-Key Rate Estimation

We use the methods that were described in the previous sections to estimate the
mutual information between enrollment and authentication measurements of opti-
cal PUFs. From Feng et al. [26] it is known that the two-point intensity correlations
in a speckle pattern are translation invariant. Therefore we may conclude that an
optical PUF speckle pattern can be modeled as a stationary process. Moreover, this
process is also ergodic due to statistical properties of speckle patterns, viz. the spatial
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Figure 6.7: Images X (left) and Y (right) resulting from experiment A0 with
Gabor angle ϕ = 45◦.

distribution of intensities is the same as the PUF ensemble distribution of intensi-
ties, see Goodman [31]. Therefore the methods proposed in the previous sections are
applicable.

The secret keys are extracted from the pre-processed measurements of speckle
patterns. Preprocessing includes Gabor-filtering (at 45◦), thresholding and subsam-
pling, like e.g. in Škorić et al. [70], and results in 64×64 binary images. An example
of a pair of enrollment and authentication images X,Y is depicted in Fig. 6.7. We
observe that the enrollment and authentication images differ slightly due to the mea-
surement noise. Moreover, we see that application of a 45◦ Gabor filter results in
diagonal stripes. These stripes are caused by the high correlation in the direction per-
pendicular to the direction of the filter, see Škorić et al. [70]. Since correlation is the
strongest between points that are in the vicinity of each other, and it decreases with
the distance, as noted by Škorić et al. [70], it is natural to consider positions for con-
text candidates as shown in Fig. 6.8. This template appears to have a good balance
between performance and complexity. We have also considered a larger template.
However, using this larger template did not lead to smaller entropy estimates.

-¡¡@@

1 2
3

4

Figure 6.8: Template showing four context symbols and their ordering. Note
that the ordering is only important for class IV. The arrow indi-
cates the direction in which the image is processed.

We can calculate the mutual information with two alternative formulae, either
by estimating it as I∞(X ;Y ) = H∞(X)+H∞(Y )−H∞(XY ) or as I∞(X ;Y ) = H∞(X)−
H∞(X |Y ). Note that for each entropy involved in the formulae we have to compress
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an image (or a pair of images) using the context weighting method.
In what follows we describe, in more details, the analysis that we have conducted.

Class IV Analysis

1. The basic approach that we have used is based on the template shown in
Fig. 6.8. This template contains four context positions. Using the class IV
method we have determined codeword lengths λ(X) and λ(Y ) and the joint
codeword length λ(XY ). Note that λ(XY ) results from compressing a qua-
ternary image, since both symbols in a XY -symbol pair are binary. Using the
symmetric mutual information formula, we computed a mutual information es-
timate for each of the ten experiments (“A0”, “A1”, “B0”, etc.). Table 6.2(a)
lists these estimates in the column labeled “bas”. Table 6.1(a) shows the results
for the corresponding entropy estimates Ĥ(X), Ĥ(Y ), and Ĥ(XY ). The mutual
information averaged over the ten experiments turns out to be 0.2911 bit/pixel.
Fig. 6.9 shows the codeword lengths for experiment A0.

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

Compression step

C
od

ew
or

d 
le

ng
th

λ(X)

λ(Y)

λ(XY)

λ(X)+λ(Y)−λ(XY)

Figure 6.9: Codeword lengths λ(X), λ(Y ), λ(XY ), and λ(X) + λ(Y ) −
λ(XY ) as a function of the number of processed positions.
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2. The second approach is based on the assumption that the statistics of binarized
Gabor-filtered speckle patterns are symmetric, i.e. the probability of a binary
symbol x given context (c1,c2,c3,c4) is the same as the probability of 1− x
given (1−c1,1−c2,1−c3,1−c4). There are good reasons for this assumption.
While the statistics of the original, unfiltered speckle pattern are not symmetric
under dark↔bright reversal (due to the exponential intensity distribution, see
Goodman [31]), the binarization of the Gabor coefficients discards most of
asymmetry-related effects.

The symmetry assumption reduces the number of parameters that need to be
handled by the CTW method and therefore it should result in more reliable
estimates of the entropy and, consequently, more reliable estimates of the mu-
tual information. Comparing the columns “sym” and “bas” in Table 6.1(a), we
conclude that the symmetry assumption leads to improved (smaller) entropy
estimates for all Gabor images. This implies that the symmetry assumption is
reasonable. The corresponding estimates of the mutual information are listed
in the column “sym” in Table 6.2(a). From this table we see that the average
of the ten estimates is larger than the average found using the basic approach.
More specifically, nine out of ten estimates are larger than for the basic ap-
proach.

3. In the third approach we have increased the template size from four to six con-
text symbols, see Fig. 6.10. Just as in the previous approach we assumed sym-
metry of the statistics. The resulting entropy estimates ( column “sym+lar”)
show that we do not gain from increasing the template size.

-@@¡¡
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3

4

Figure 6.10: Template showing increased number of context symbols and
their ordering.

4. In the fourth approach we have determined mutual information using the con-
ditional formula I(X ;Y ) = H(X)−H(X |Y ). To determine the codeword length
λ(X |Y ), we selected seven context symbols in total from both X and Y images.
The resulting template is shown in Fig. 6.11. Again we assumed that the statis-
tics are symmetric. This method leads to higher mutual information estimates
than the estimates based on H(X) + H(Y )−H(XY ), see the column labeled
“sym+con”.
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Figure 6.11: Template showing the context symbols and their ordering for
computation of λ(X |Y ). The current position (×) in the X-
image corresponds to position 1 in the Y-image.

Class III Analysis

The same analysis was performed using the class III context weighting method. We
used the same context positions as before, but note that the ordering is irrelevant
now. Tables 6.1(b) and 6.2(b) describe the results of the class III analysis. Just as
for class IV, the estimates based on the symmetry assumption are more reliable than
those obtained from the basic approach. Moreover, for class III a larger template does
not improve the estimates and also the conditional formula here leads to the highest
mutual information estimates.

From the results of the entropy estimation in Table 6.1, we may conclude that the
entropy estimates for class III are smaller and, consequently, more reliable than the
estimates for class IV. Therefore we have more confidence in the mutual information
estimates obtained from the class III weighting methods than from the class IV meth-
ods. The difference between corresponding estimates is always quite small, though.
These small differences can be explained by noting that the template ordering was op-
timized to perform well for the class IV methods. Note that class III model obtained
using the procedures described in Chapter 5 can be used to indicate the appropriate
context ordering for class IV.

Remark: Looking at the entropy estimates in Table 6.1, we notice that for both
class IV and class III models, Ĥ(XY )− Ĥ(Y ) > Ĥ(X |Y ). From this we conclude that
the conditional entropy estimate from λ(X |Y ) is more reliable than the estimate from
λ(XY )− λ(Y ). As a consequence, the conditional formula for mutual information
does lead to more accurate estimates than the symmetric formula.
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Table 6.1: Entropy estimates.

(a) Class IV

Ĥ(X) Ĥ(Y ) Ĥ(XY ) Ĥ(X |Y )

exp bas sym sym+lar bas sym sym+lar bas sym sym+lar sym

A0 .5194 .5125 .5135 .5241 .5181 .5193 .8198 .8081 .8097 .2656
A1 .5213 .5142 .5154 .5189 .5119 .5126 .7054 .6868 .6895 .1557
B0 .5289 .5216 .5229 .5284 .5217 .5230 .7791 .7609 .7635 .2141
B1 .5188 .5122 .5126 .5219 .5161 .5170 .7743 .7561 .7565 .2353
C0 .5238 .5173 .5166 .5116 .5056 .5041 .7083 .6822 .6839 .1606
C1 .5404 .5339 .5327 .5384 .5321 .5318 .8053 .7826 .7851 .2420
D0 .5305 .5253 .5246 .5273 .5228 .5236 .7345 .7171 .7190 .1846
D1 .5260 .5192 .5188 .5194 .5126 .5117 .7503 .7241 .7259 .2009
E0 .5291 .5223 .5235 .5346 .5285 .5294 .7938 .7767 .7780 .2355
E1 .5492 .5420 .5423 .5296 .5232 .5234 .7596 .7449 .7465 .2042

ave .5287 .5221 .5223 .5254 .5193 .5196 .7630 .7439 .7458 .2098
std .0096 .0096 .0093 .0079 .0080 .0085 .0390 .0412 .0411 .0358

(b) Class III

Ĥ(X) Ĥ(Y ) Ĥ(XY ) Ĥ(X |Y )

exp bas sym sym+lar bas sym sym+lar bas sym sym+lar sym

A0 .5177 .5113 .5136 .5219 .5167 .5187 .8108 .8068 .8077 .2591
A1 .5196 .5133 .5157 .5163 .5103 .5116 .6965 .6823 .6857 .1488
B0 .5270 .5207 .5234 .5270 .5208 .5234 .7688 .7516 .7562 .2080
B1 .5171 .5114 .5123 .5208 .5156 .5176 .7713 .7566 .7541 .2276
C0 .5223 .5166 .5174 .5100 .5045 .5040 .6939 .6753 .6811 .1496
C1 .5395 .5332 .5331 .5365 .5310 .5312 .7997 .7826 .7857 .2368
D0 .5289 .5244 .5254 .5265 .5223 .5246 .7301 .7155 .7207 .1796
D1 .5245 .5185 .5185 .5183 .5123 .5122 .7438 .7240 .7264 .1948
E0 .5265 .5209 .5232 .5323 .5274 .5291 .7818 .7705 .7738 .2274
E1 .5478 .5416 .5434 .5270 .5219 .5233 .7463 .7407 .7427 .1952

ave .5271 .5212 .5226 .5236 .5183 .5196 .7543 .7406 .7434 .2027
std .0098 .0098 .0096 .0078 .0080 .0085 .0398 .0422 .0410 .0365
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Table 6.2: Mutual information estimates.

(a) Class IV

exp bas sym sym+lar sym+con

A0 .2236 .2224 .2231 .2469
A1 .3348 .3393 .3386 .3586
B0 .2782 .2825 .2824 .3075
B1 .2664 .2722 .2731 .2769
C0 .3271 .3408 .3368 .3567
C1 .2735 .2834 .2794 .2919
D0 .3233 .3310 .3293 .3407
D1 .2951 .3078 .3046 .3183
E0 .2699 .2742 .2748 .2869
E1 .3192 .3203 .3193 .3378

ave .2911 .2974 .2961 .3122
std .0352 .0374 .0365 .0369

(b) Class III

exp bas sym sym+lar sym+con

A0 .2288 .2211 .2246 .2522
A1 .3394 .3414 .3416 .3644
B0 .2851 .2899 .2906 .3127
B1 .2666 .2704 .2759 .2837
C0 .3384 .3458 .3403 .3670
C1 .2763 .2816 .2786 .2964
D0 .3252 .3313 .3292 .3447
D1 .2990 .3068 .3043 .3236
E0 .2770 .2778 .2784 .2935
E1 .3285 .3228 .3240 .3463

ave .2964 .2989 .2987 .3184
std .0363 .0385 .0366 .0376

6.6 Conclusions

We have used context weighting methods to estimate the secret-key rate of bina-
rized Gabor-filtered speckle patterns obtained from optical PUFs. Several alternative
approaches lead to the conclusion that secret-key rates up to 0.3 bit/pixel can be real-
ized.

Class III context weighting methods give more reliable and slightly higher esti-
mates of the secret-key capacity than class IV methods, since class III context weight-
ing methods are based on a richer model class than class IV methods and since the
size of PUF-sequences is large enough to compensate for the model redundancy. In-
spection shows that entropy estimates based on class III context weighting methods
are smaller than entropy estimates based on class IV methods. In theory, our methods
only converge to the entropy for asymptotically large images and if there is no bound
on the context size. Note that we have definitively not reached this situation here.

In the present chapter we have focused on estimating the secret-key rate for 45◦

Gabor images. It is obvious that similar estimates can be found for images that result
from 135◦ Gabor filtering. The 45◦ and 135◦ Gabor images are very weakly corre-
lated, as was noted by Škorić et al. [70]. These images represent almost independent
data, but their statistics are equivalent and therefore it is possible to compress them
using the same context-tree, see [34]. The estimates obtained in this way are, in
principle, more reliable than the estimates based only on 45◦ Gabor images.

The estimates that we obtain here can be used to evaluate the performance of
existing methods for both secret-key extraction and secret-key binding. It appears that
the secret-key rate estimates that were obtained in the current chapter are typically
significantly larger than the secret-key rates obtained in most practical systems. As
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an example, we first consider the fuzzy commitment scheme performed on optical
PUFs, presented in Škorić et al. [70]. Our estimates show that secret keys of size
larger than 1200 bits can, in principle, be generated. In [70] only 553 binary digits
(per Gabor-filtered image) were extracted, and, moreover, these binary digits were
correlated. We see that our estimate of the secret-key size is by at least a factor of 2.1
larger than the size of the extracted keys in [70], since there is correlation present in
the secret-key digits extracted in [70]. Moreover, in Chapter 16 of Tuyls et al. [76] a
method that extracts secret keys consisting of 95 binary digits per Gabor image was
described. These 95 digits are nearly independent and uniform. We observe that the
secret-key rate of this system is far below our estimate of the secret-key capacity.
These examples suggest that there is still much room for improvement in designing
secret-key extraction techniques.

Note that techniques like the ones that we have applied here can be used to esti-
mate the secret-key capacity of other biometric modalities such as irises and finger-
prints and to evaluate the corresponding secret-key extraction and secret-key binding
methods.

As a final remark we mention that although in this chapter we considered binary
sources of data, the CTW method and therefore our proposed techniques carry over
to larger alphabets.
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Chapter 7

Conclusions and Future Directions

Learn from yesterday, live for today, hope for tomorrow. The impor-
tant thing is not to stop questioning (Albert Einstein).

7.1 Conclusions

In this thesis we have studied the problem of generating secret keys from noisy data
and binding secret keys to noisy data. For this problem we have focused on minimiz-
ing the privacy leakage given the secret-key rate in the case when these noisy data are
derived from biometrics.

In the first part of this thesis we addressed the trade-off between secret-key rate
and privacy leakage in biometric secrecy systems. Four biometric settings were in-
vestigated. The first one is the standard (Ahlswede-Csiszár [3]) secret-generation
setting. Two terminals observe two correlated sequences. It is the objective of the
terminals to form a common secret by interchanging a public message that contains
a negligible amount of information about the secret. Since we consider biometric
sequences, it is crucial that the public message leaks as little as possible information
on the biometric data. The fundamental trade-off was determined for this case. Also
for the second setting, in which the secret is not generated but independently cho-
sen, the fundamental balance was found. In the settings three and four zero-leakage
systems were considered, where the public message contains a negligible amount of
information on both the secret and biometric sequence. To achieve this, a private-
key is needed, which can only be observed by the terminals. Both secret generation
and chosen secret models were considered and the regions of achievable secret-key
vs. private-key rate pairs were determined. For all settings two notions of privacy
leakage were considered, unconditional and conditional leakage.

Next, the fuzzy commitment scheme was studied. It was introduced by Juels and
Wattenberg [41]. This scheme is a particular realization of a binary biometric secrecy
system with chosen secret keys where the helper data are constructed as a codeword
from a selected error-correcting code, used to encode a chosen secret, masked with
the biometric sequence that has been observed during enrollment. The privacy- and
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secrecy-leakage properties of fuzzy commitment were investigated. The analysis was
carried out for four cases of biometric data statistics, i.e. for memoryless and totally-
symmetric biometric sources, memoryless and input-symmetric sources, memoryless
sources, and stationary ergodic sources. The analysis showed that the fuzzy commit-
ment scheme is only optimal for the memoryless totally-symmetric case if the scheme
operates at the maximum secret-key rate. Moreover, it was demonstrated that for the
memoryless and stationary ergodic cases the scheme leaks more information than
necessary on both the secret and biometric data. For these two cases outer bounds on
the corresponding achievable rate-leakage regions were derived. Tighter bounds on
the rate-leakage regions for the two latter cases were obtained for fuzzy commitment
based on systematic parity-check codes.

The next problem that was studied relates to finding the statistics of an observed
biometric source sequence pair. These statistics are needed to design a code that
has nearly-optimal performance. We could argue that the main question was to find
the model (structure) of the source. The context-tree weighting method (Willems,
Shtarkov, and Tjalkens [88]) is a sequential universal source coding method that
achieves the Rissanen lower bound [60] on the redundancy for tree sources. The same
authors also proposed context-tree maximizing, a two-pass version of the context-tree
weighting method [89]. Later Willems and Tjalkens [91] described a method based
on ratios (betas) of sequence probabilities that can be used to reduce the storage com-
plexity of the CTW method. These betas can be applied to express a posteriori model
probabilities in a recursive way (Willems, Nowbahkt-Irani, Volf [87]). We presented
new results related to betas. These results provide a new view on the relation between
context (tree) weighting and maximizing. The results that we have obtained can be
applied to find the best model matching to an observed biometric sequence pair.

Finally, methods to estimate the maximum secret-key rates of noisy sources (e.g.
biometrics and Physical Unclonable Functions (PUFs)) were proposed. These meth-
ods are again based on context weighting. PUFs and biometrics are often modeled
as two-dimensional processes. Therefore we investigated the entropy of a station-
ary two-dimensional structure and showed that it is a limit of a series of conditional
entropies, a result that was also found by Anastassiou and Sakrison [6]. We ex-
tended this result to the conditional entropy of one two-dimensional structure given
another one. It was also shown that the general context-tree weighting method also
approaches the source entropy in the two-dimensional stationary ergodic case. We
further extended this result to the two-dimensional conditional entropy and the two-
dimensional joint entropy. Based on the obtained results we performed several ex-
periments on optical PUFs. The estimates of the maximum secret-key rates can be
effectively used not only to evaluate the feasibility of a biometric modality to be
a secret-key source, but also to evaluate existing algorithms for key extraction and
binding.
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7.2 Future Directions

Considering the field of biometric secrecy systems, we see that there are still many
open questions.

In this thesis we concentrated on i.i.d. biometric sources. It is also interesting to
investigate how we can use the fundamental trade-offs obtained here to analyze the
models based on non-i.i.d. biometric sources.

Also the results that we have presented in this thesis are asymptotic. Therefore,
a question that still remains is how the performance of biometric secrecy systems is
influenced when real-life finite biometric sequences are used.

An interesting direction to consider is how multiple secret keys can be created
from a single biometric in such a way that these keys can be easily canceled if com-
promised, or in such a way that they can be used in different databases. It is important
to realize that in both cases multiple helper data sequences are needed, and we should
assume that all these sequences are public. As before we require that all secrecy leak-
ages from all publicly available data are negligible, and, moreover, we want the total
privacy leakage from all publicly available data to be as small as possible. Note that
compromised keys can also be assumed to be public. One way to solve the problem
of multiple keys is to partition the biometric sequences in as many parts as the num-
ber of keys we need to obtain and generate/choose a key for each part. The crucial
question is whether we can do better than that.

Another interesting problem relates to the fusion of biometric modalities in se-
crecy systems. The questions that arise here are (a) how should we distribute the
privacy leakage over the biometric modalities given a fixed total secret-key rate such
that the total privacy leakage is minimized, and (b) does a combination of modalities
result in a smaller total privacy leakage than the sum of the privacy leakages for the
individual modalities if we fix the total secret-key rate?

Observe that, in practice, biometric features are often represented by real-valued
numbers. Therefore it would be interesting to determine the fundamental trade-off
between secret-key and privacy-leakage rates also for continuous biometric sources.
In a first study, we could focus on Gaussian sources.

Another natural next problem to look at is actual code construction for biometric
secrecy systems. These codes should achieve close-to-optimal secret-key vs. privacy-
leakage rate behavior. It would be nice if we could construct these codes from stan-
dard building blocks, i.e. convolutional codes (see Johannesson and Zigangirov [39]),
TURBO codes (see Berrou et al. [8]), or LDPC codes (see Gallager [28]).
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[34] T. Ignatenko, G. Schrijen, B. Škorić, P. Tuyls, and F. Willems, “Estimating the
secrecy rate of physical unclonable functions with the context-tree weighting
method,” in Proc. of 2006 IEEE Int. Symp. Information Theory, July 9-14 2006,
Seattle, WA, USA, 2006, pp. 499–503.



152 Bibliography

[35] T. Ignatenko and F. Willems, “Privacy leakage in biometric secrecy systems,” in
Proc. of Forty-Sixth Annual Allerton Conference on Communication, Control,
and Computing, September 23-26 2008,Monticello, IL, USA, 2008.

[36] A. Jain, R. Bolle, and S. Pankanti, Eds., Biometrics: Personal Identification in
a Networked Society. Kluwer Academic Publishers, 1999.

[37] A. K. Jain, K. N, and A. Nagar, “Biometric template security,” EURASIP Jour-
nal on Advances in Signal Processing, 2008.

[38] F. Jelinek, Probabilistic Information Theory Discrete and Memoryless Models.
New York: McGraw-Hill Book Company, 1968.

[39] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding.
Wiley-IEEE Press, 1999.

[40] A. Juels and M. Sudan, “A fuzzy vault scheme,” in IEEE International Sympo-
sium on Information Theory, 2002, p. 408.

[41] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in 6th ACM Con-
ference on Computer and Communications Security, 1999, pp. 28–36.

[42] T. A. M. Kevenaar, G. J. Schrijen, M. van der Veen, A. H. M. Akkermans,
and F. Zuo, “Face recognition with renewable and privacy preserving binary
templates,” in AutoID, 2005, pp. 21–26.

[43] R. Krichevsky and V.K.Trofmov, “The performance of universal encoding,”
IEEE Transactions on Information Theory, vol. 27, pp. 199–207, 1981.

[44] L. Lai, S.-W. Ho, and H. V. Poor, “Privacy-security tradeoffs in biometric secu-
rity systems,” in Proc. of Forty-Sixth Annual Allerton Conference on Commu-
nication, Control, and Computing, September 23-26 2008,Monticello, IL, USA,
2008.

[45] J.-P. M. G. Linnartz and P. Tuyls, “New shielding functions to enhance privacy
and prevent misuse of biometric templates,” in AVBPA, 2003, pp. 393–402.

[46] E. Maiorana, M. Martinez-Diaz, P. Campisi, J. Ortega-Garcia, and A. Neri,
“Template protection for HMM-based on-line signature authentication,” in
Comp. Vision and Pattern Recognition Works., IEEE Comp. Society Conf., June
2008, pp. 1–6.

[47] U. Maurer, “Secret key agreement by public discussion from common informa-
tion,” IEEE Transactions on Information Theory, vol. 39, pp. 733–742, May
1993.



153

[48] F. Monrose, M. K. Reiter, Q. Li, and S. Wetzel, “Cryptographic key generation
from voice,” in IEEE Symposium on Security and Privacy, 2001, pp. 202–213.

[49] F. Monrose, M. K. Reiter, and S. Wetzel, “Password hardening based on
keystroke dynamics,” in ACM Conference on Computer and Communications
Security, 1999, pp. 73–82.

[50] K. Nandakumar, A. Nagar, and A. Jain, “Hardening fingerprint fuzzy vault us-
ing password,” in ICB07, 2007, pp. 927–937.

[51] R. Nohre, “Some topics in descriptive complexity,” Ph.D. dissertation,
Linköping University, 1993.

[52] R. Pappu, “Physical one-way functions,” Ph.D. dissertation, M.I.T., 2001.

[53] R. Pasco, “Source coding algorithms for fast data compression,” Ph.D. disserta-
tion, Department of Electrical Engineering, Stanford University, CA, 1976.

[54] S. Prabhakar, S. Pankanti, and A. Jain, “Biometric recognition: security and
privacy concerns,” Security & Privacy, IEEE, vol. 1, no. 2, pp. 33–42, March-
April 2003.

[55] V. Prabhakaran and K. Ramchandran, “On secure distributed source coding,”
Information Theory Workshop, 2007. ITW ’07. IEEE, pp. 442–447, Sept. 2007.

[56] N. K. Ratha, J. H. Connell, and R. M. Bolle, “Enhancing security and privacy
in biometrics-based authentication systems,” IBM Syst. J., vol. 40, no. 3, pp.
614–634, 2001.

[57] N. Ratha, S. Chikkerur, J. Connell, and R. Bolle, “Generating cancelable fin-
gerprint templates,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 29, no. 4, pp. 561–572, April 2007.

[58] R. Renner and S. Wolf, “Smooth Renyi entropy and its properties,” in IEEE
International Symposium on Information Theory (ISIT), 2004.

[59] A. Rényi, “On measures of entropy and information,” in Proc. 4th Berkeley
Symp. Math. Stat. and Prob., vol. 1, 1961, pp. 547–561.

[60] J. Rissanen, “Universal coding, information, prediction, and estimation,” IEEE
Transactions on Information Theory, vol. 30, no. 4, pp. 629–636, July 1984.

[61] J. J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM Jour-
nal of Research and Development, vol. 20, pp. 198–203, 1976.



154 Bibliography

[62] N. Schmid and F. Nicolo, “On empirical recognition capacity of biometric sys-
tems under global PCA and ICA encoding,” IEEE Transactions on Information
Forensics and Security, vol. 3, no. 3, pp. 512–528, Sept. 2008.

[63] N. A. Schmid and J. A. O’Sullivan, “Performance prediction methodology for
biometric systems using a large deviations approach,” IEEE Transactions on
Signal Processing, vol. 52, no. 10, pp. 3036–3045, Oct. 2004.

[64] B. Schneier, Applied cryptography (2nd ed.). New York, NY, USA: John Wiley
& Sons, Inc., 1996.

[65] ——, “Inside risks: the uses and abuses of biometrics,” Communications of the
ACM, vol. 42, no. 8, p. 136, 1999.

[66] S. Shamai and A. Wyner, “A binary analog to the entropy-power inequality,”
IEEE Trans. on Information Theory, vol. 36, no. 6, pp. 1428–1430, November
1990.

[67] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, pp.
612–613, 1979.

[68] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, pp. 623–656, 1948.

[69] ——, “Communication theory of secrecy systems,” The Bell System Technical
Journal, vol. 28, pp. 656–715, 1949.
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Glossary

List of abbreviations
BASIS Biometric Authentication Supporting Invisible Security
BSC Binary Symmetric Channel
CRP Challenge-Response Pair
FAR False Acceptance Rate
FRR False Rejection Rate
ICA Independent Component Analysis
ID Identity
i.i.d. Independent identically distributed
CTW Context Tree Weighting
LDA Linear Discriminant Analysis
MAP Maximum A Posteriori Model
PCA Principal Components Analysis
PUF Physical Unclonable Function
XOR exclusive or, addition modulo-2
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Notations
log(·) Logarithm to the base 2
X A set (A ,B, . . . ,Z are used to denote sets)
X A random variable
x Realization of random variable X
XN A sequence of random variables of length N
xN Realization of a sequence of random variables XN

xb
a A sequence (xa,xa+1, . . . ,xb), a,b integers, b≥ a

x A vector
X An image
A(N)

ε (X1,X2, . . . ,XK) A set of ε-typical N-sequences
B(N)

ε (X1,X2, . . . ,XK) A modified set of ε-typical N-sequences
Q(·) Source distribution
P(·) Arbitrary (test) distribution
Pr{·} Probability of an event
H(X) Entropy of a discrete random variable X
I(X ;Y ) Mutual information between X and Y
H∞(X) Entropy rate of a stationary process
h(·) Binary entropy function
⊕ Modulo addition modulo
ª Modulo subtraction
Ŝ Estimate of S
P Average of P
|S | Size of S
⊆ Subset
∂ Boundary
a∗b a(1−b)+b(1−a)
dae Largest integer not greater than a
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