45 research outputs found

    A new model for solution of complex distributed constrained problems

    Full text link
    In this paper we describe an original computational model for solving different types of Distributed Constraint Satisfaction Problems (DCSP). The proposed model is called Controller-Agents for Constraints Solving (CACS). This model is intended to be used which is an emerged field from the integration between two paradigms of different nature: Multi-Agent Systems (MAS) and the Constraint Satisfaction Problem paradigm (CSP) where all constraints are treated in central manner as a black-box. This model allows grouping constraints to form a subset that will be treated together as a local problem inside the controller. Using this model allows also handling non-binary constraints easily and directly so that no translating of constraints into binary ones is needed. This paper presents the implementation outlines of a prototype of DCSP solver, its usage methodology and overview of the CACS application for timetabling problems

    A coordination framework for distributed supply chains

    Get PDF
    Supply chain is a network of cooperating organizations that are involved through upstream and downstream linkages. Such a complex system cannot be modeled simply by mathematical equations without simplification of the problem. Recently, Multi-Agent System (MAS) is proposed as a modeling technique to represent supply chain networks. In fact, many application problems in MASs that are concerned with finding a consistent combination of agent actions can be formalized as Distributed Constraints Satisfaction Problem (DCSP). The main purpose of this paper is to propose a novel coordination framework by adopting the DCSP philosophy for distributed supply chains, which are modeled by MASs, subjected to uncertainties. Simulation results indicate that the proposed mechanism outperforms traditional stochastic modeling in solving supply chain dynamics in terms of total cost and fill rate of the system. © 2004 IEEE.published_or_final_versio

    Distributed Target Engagement in Large-scale Mobile Sensor Networks

    Get PDF
    Sensor networks comprise an emerging field of study that is expected to touch many aspects of our life. Research in this area was originally motivated by military applications. Afterward sensor networks have demonstrated tremendous promise in many other applications such as infrastructure security, environment and habitat monitoring, industrial sensing, traffic control, and surveillance applications. One key challenge in large-scale sensor networks is the efficient use of the network's resources to collect information about objects in a given Volume of Interest (VOI). Multi-sensor Multi-target tracking in surveillance applications is an example where the success of the network to track targets in a given volume of interest, efficiently and effectively, hinges significantly on the network's ability to allocate the right set of sensors to the right set of targets so as to achieve optimal performance. This task can be even more complicated if the surveillance application is such that the sensors and targets are expected to be mobile. To ensure timely tracking of targets in a given volume of interest, the surveillance sensor network needs to maintain engagement with all targets in this volume. Thus the network must be able to perform the following real-time tasks: 1) sensor-to-target allocation; 2) target tracking; 3) sensor mobility control and coordination. In this research I propose a combination of the Semi-Flocking algorithm, as a multi-target motion control and coordination approach, and a hierarchical Distributed Constraint Optimization Problem (DCOP) modelling algorithm, as an allocation approach, to tackle target engagement problem in large-scale mobile multi-target multi-sensor surveillance systems. Sensor-to-target allocation is an NP-hard problem. Thus, for sensor networks to succeed in such application, an efficient approach that can tackle this NP-hard problem in real-time is disparately needed. This research work proposes a novel approach to tackle this issue by modelling the problem as a Hierarchical DCOP. Although DCOPs has been proven to be both general and efficient they tend to be computationally expensive, and often intractable for large-scale problems. To address this challenge, this research proposes to divide the sensor-to-target allocation problem into smaller sub-DCOPs with shared constraints, eliminating significant computational and communication costs. Furthermore, a non-binary variable modelling is presented to reduce the number of inter-agent constraints. Target tracking and sensor mobility control and coordination are the other main challenges in these networks. Biologically inspired approaches have recently gained significant attention as a tool to address this issue. These approaches are exemplified by the two well-known algorithms, namely, the Flocking algorithm and the Anti-Flocking algorithm. Generally speaking, although these two biologically inspired algorithms have demonstrated promising performance, they expose deficiencies when it comes to their ability to maintain simultaneous reliable dynamic area coverage and target coverage. To address this challenge, Semi-Flocking, a biologically inspired algorithm that benefits from key characteristics of both the Flocking and Anti-Flocking algorithms, is proposed. The Semi-Flocking algorithm approaches the problem by assigning a small flock of sensors to each target, while at the same time leaving some sensors free to explore the environment. Also, this thesis presents an extension of the Semi-Flocking in which it is combined with a constrained clustering approach to provide better coverage over maneuverable targets. To have a reliable target tracking, another extension of Semi-Flocking algorithm is presented which is a coupled distributed estimation and motion control algorithm. In this extension the Semi-Flocking algorithm is employed for the purpose of a multi-target motion control, and Kalman-Consensus Filter (KCF) for the purpose of motion estimation. Finally, this research will show that the proposed Hierarchical DCOP algorithm can be elegantly combined with the Semi-Flocking algorithm and its extensions to create a coupled control and allocation approach. Several experimental analysis conducted in this research illustrate how the operation of the proposed algorithms outperforms other approaches in terms of incurred computational and communication costs, area coverage, target coverage for both linear and maneuverable targets, target detection time, number of undetected targets and target coverage in noise conditions sensor network. Also it is illustrated that this algorithmic combination can successfully engage multiple sensors to multiple mobile targets such that the number of uncovered targets is minimized and the sensors' mean utilization factor sensor surveillance systems.is maximized

    Real-Time Supply Chain Control via Multi-Agent Adjustable Autonomy

    Get PDF
    10.1016/j.cor.2007.01.027Computers and Operations Research35113452-3464CMOR

    Metaphor-based negotiation and its application in AGV movement planning

    Get PDF
    The theme of this thesis is "metaphor-based negotiation". By metaphor-based negotiation I mean a category of approaches for problem-solving in Distributed Artificial Intelligence (DAI) that mimic some aspects of human negotiation behaviour. The research in this dissertation is divided into two closely related parts. Cooperative interaction among agents in a multiagent system (MAS) is discussed in general, and the discussion leads to a formal definition of metaphor-based negotiation. Then, as a specific application, a "spring-based" computational model for metaphor-based negotiation is developed as an approach to solving movement planning, specifically the AGV scheduling problem (AGVSP) — determing the timings of AGVs' activities, of automated guided vehicles (AGVs) in a factory.By formally addressing the multi-agent cooperative interaction problem and assuming that agents in a MAS are rational, benevolent and fully informed, an initial strategy set of cooperative interaction can be reduced to a strategy set by eliminating strategies that are irrational in a group sense. However, it is proved in this dissertation that, in the remaining strategy set, no unique strategy can be found that is acceptable to all agents according their individual preferences. More specifically, in this smaller strategy set, if one agent moves from one strategy to another in an attempt to better its individual goal achievement, then there is at least one agent whose goal achievement will be negatively affected by such a move. So, the cooperative interaction problem can only be partially solved if no further knowledge is given to those agents. The idea of a common sense principle is introduced in this dissertation to overcome the deficiencies of the assumptions of rationality, benevolence and full-informedness.In reality, the assumption of full-informedness of agents may not be practical. Communication is needed for agents to (1) exchange their local problem solving information, and (2) exchange proposals for global problem solving, when their views are in conflict. Based on the discussion of cooperative interaction, a formal definition of metaphorbased negotiation is proposed to formally indicate what is a proposal and what is the condition for accepting a proposal from another agent. In this definition, the common sense principle is one of the most important features, not found in definitions of negotiation available so far in the literature, which guides agents to find an agreement when negotiation is running into difficulties.The AGVSP involves timing activities for each AGV in a AGV-based factory. The AGVSP is naturally distributed: the whole problem can be easily divided into several subproblems each of which involves timing of activities of one AGV. Therefore, it is intuitively straightforward for us to seek DAI approaches to solving the AGVSP. In spired by Kwa's Iterative Negotiation Model [Kwa 88b] [Kwa 88a] for the AGVSP, we developed a spring-based (metaphor-based) negotiation model for the AGVSP to overcome some vital problems in Kwa's model. The idea of the spring-based negotiation model is described below:The AGVSP can be regarded as a Distributed Constraint Satisfaction Problem (DCSP) and solved in a MAS. Each agent in the MAS is designed to solve a subproblem — a local scheduling problem which is a small Constraint Satisfaction Problem (CSP). Conflicts exist when intra-agent constraints or inter-agent constraints are violated. These constraints can be classified into hard constraints— those that can not be relaxed at the agent level unless the system designer permits (e.g., by providing an arbitrator), and soft constraints — those that can be relaxed at the agent level when necessary. When agents are in conflict, i.e, when some inter-agent constraints are violated (or say, when one agent's timings of its activities overlap those of some other agents), these agents involved will resolve the conflicts through a (metaphor-based) negotiation procedure in which conflicts will be gradually resolved by each agent's relaxation of its intra-agent constraints, i.e, by yielding some amount of its initially allocated resources to other agents or by shifting its initially allocated resources. The negotiation can be viewed as a process of exchanging proposals (of cooperative strategies) between conflicting agents, where a cooperative strategy is a possible resolution to a conflict according to the viewpoint of the proposing agent. However, since agents are designed to be rational, each agent that is involved in the conflicts will try hard to relax its intra-agent constraints as little as possible. Further, it is reasonably acceptable that the more an intra-agent constraint has been relaxed the less the respective agent is willing to relax it further. This feature can be modeled by a spring — the more it has been compressed the harder it is to compress it further. Based on this inspiration, a spring-based computational model of metaphor-based negotiation is proposed: each agent's local schedule is represented by a local spring network in which each spring element represents a soft intra-agent constraint. Relaxation of an intra-agent constraint is likened to a spring being compressed by external forces from other agents. As a consequence, the compressed spring will also show a reacting force upon those compressing agents. An agreement will be reached when those forces and reacting forces are balanced. This is the common sense principle in the spring-based negotiation. The model solves some key issues, e.g., how to select negotiation techniques and skills during the process of negotiation, that have not been solved by Kwa's iterative negotiation model. Some experimental evidence of the value of this model is presented

    Coalition Formation For Distributed Constraint Optimization Problems

    Get PDF
    This dissertation presents our research on coalition formation for Distributed Constraint Optimization Problems (DCOP). In a DCOP, a problem is broken up into many disjoint sub-problems, each controlled by an autonomous agent and together the system of agents have a joint goal of maximizing a global utility function. In particular, we study the use of coalitions for solving distributed k-coloring problems using iterative approximate algorithms, which do not guarantee optimal results, but provide fast and economic solutions in resource constrained environments. The challenge in forming coalitions using iterative approximate algorithms is in identifying constraint dependencies between agents that allow for effective coalitions to form. We first present the Virtual Structure Reduction (VSR) Algorithm and its integration with a modified version of an iterative approximate solver. The VSR algorithm is the first distributed approach for finding structural relationships, called strict frozen pairs, between agents that allows for effective coalition formation. Using coalition structures allows for both more efficient search and higher overall utility in the solutions. Secondly, we relax the assumption of strict frozen pairs and allow coalitions to form under a probabilistic relationship. We identify probabilistic frozen pairs by calculating the propensity between two agents, or the joint probability of two agents in a k-coloring problem having the same value in all satisfiable instances. Using propensity, we form coalitions in sparse graphs where strict frozen pairs may not exist, but there is still benefit to forming coalitions. Lastly, we present a cooperative game theoretic approach where agents search for Nash stable coalitions under the conditions of additively separable and symmetric value functions

    A Method for Optical Measurement of Urea in Effluent Hemodialysate

    Get PDF
    The addition of urea clearance monitoring to the care regimen of renal failure patients provides a dramatic decrease in complications due to improper or inadequate dialysis. Present methods of monitoring urea clearance are computationally complex and expensive to perform, resulting in poor rates of clinical acceptance of this measurement. Dialysate-side urea levels have been shown to relate to traditional measures of dialysis adequacy without the need for complex calculations. The requirements for photometric reagents or electrodes make determination of the urea level expensive and time consuming. This research is focused on the development of an optical measurement system to determine the sample urea level without the need for reagents. An algorithm was developed to predict the urea concentration of the sample from a set of optical transmission parameters recorded from the sample using a specially developed instrument. This instrument records the difference in sample transmission at two different wavelengths. Energy at the first wavelength is absorbed by urea, and the second wavelength is selected such that the matrix of the sample absorbs energy at both wavelengths equally. This effectively nulls out the absorbance of the background matrix, significantly improving the urea detection sensitivity. The algorithm was developed from an analysis of the instrument data and factors causing variations in the data. Calibration, bench study, and clinical protocols were designed, and performed using these protocols. Using a partial least squares approach, the algorithm was fit to a set of training data. The resulting algorithm was used to predict the urea content of patient hemodialysis samples. Compared to a reference standard (Beckman CX7, standard error /dl), the standard error of prediction for this algorithm was 0.47 mg/dl (N = 34 patients). The algorithm was able to predict dialysate urea at clinically relevant levels in samples collected from hemodialysis patients. Qualitative relationships were developed between the sample urea level and the data recorded from the sample. This system has the potential to provide a method that clinicians can use to efficiently and effectively monitor urea removal over the course of a dialysis session

    A general framework integrating techniques for scheduling under uncertainty

    Get PDF
    Ces dernières années, de nombreux travaux de recherche ont porté sur la planification de tâches et l'ordonnancement sous incertitudes. Ce domaine de recherche comprend un large choix de modèles, techniques de résolution et systèmes, et il est difficile de les comparer car les terminologies existantes sont incomplètes. Nous avons cependant identifié des familles d'approches générales qui peuvent être utilisées pour structurer la littérature suivant trois axes perpendiculaires. Cette nouvelle structuration de l'état de l'art est basée sur la façon dont les décisions sont prises. De plus, nous proposons un modèle de génération et d'exécution pour ordonnancer sous incertitudes qui met en oeuvre ces trois familles d'approches. Ce modèle est un automate qui se développe lorsque l'ordonnancement courant n'est plus exécutable ou lorsque des conditions particulières sont vérifiées. Le troisième volet de cette thèse concerne l'étude expérimentale que nous avons menée. Au-dessus de ILOG Solver et Scheduler nous avons implémenté un prototype logiciel en C++, directement instancié de notre modèle de génération et d'exécution. Nous présentons de nouveaux problèmes d'ordonnancement probabilistes et une approche par satisfaction de contraintes combinée avec de la simulation pour les résoudre. ABSTRACT : For last years, a number of research investigations on task planning and scheduling under uncertainty have been conducted. This research domain comprises a large number of models, resolution techniques, and systems, and it is difficult to compare them since the existing terminologies are incomplete. However, we identified general families of approaches that can be used to structure the literature given three perpendicular axes. This new classification of the state of the art is based on the way decisions are taken. In addition, we propose a generation and execution model for scheduling under uncertainty that combines these three families of approaches. This model is an automaton that develops when the current schedule is no longer executable or when some particular conditions are met. The third part of this thesis concerns our experimental study. On top of ILOG Solver and Scheduler, we implemented a software prototype in C++ directly instantiated from our generation and execution model. We present new probabilistic scheduling problems and a constraintbased approach combined with simulation to solve some instances thereof

    Managing Complex Scheduling Problems with Dynamic and Hybrid Constraints.

    Full text link
    The task of scheduling can often be a difficult one because of the inherent complexity of real-world problems. In the field of Artificial Intelligence, many representations and algorithms have been developed to automate the scheduling process. Many state of the art scheduling systems deal with this complexity by making assumptions that simplify the algorithms, but in doing so, miss some opportunities to improve performance. Scheduling problems are temporal in nature, and so they often contain constraints that change over time. Many scheduling systems assume that the problems they are solving are all independent, and so they ignore the similarities between subsequent sets of scheduling constraints. Additionally, scheduling problems often contain a mixture of finite-domain and temporal constraints. Many of the systems that can solve problems of this type do so by creating finite-domain variables to represent the constraints, but then ignore the distinction between the different types of variables when searching for a solution. In this dissertation, I identify opportunities to improve performance by exploiting structure where it has previously been overlooked. Following this approach, I develop a set of techniques that apply to a wide variety of situations that can arise in real-world scheduling problems. First, I consider dynamic scheduling problems with constraints that change over time. To address such problems, I introduce a new representation called the Dynamic Disjunctive Temporal Problem, along with several techniques to improve both efficiency and stability when solving one. Second, I consider scheduling problems in which a mixture of finite-domain and temporal variables can interact through hybrid constraints. I introduce the Hybrid Scheduling Problem to represent such problems, and I present a set of techniques that capitalize on the distinction between variable types to improve efficiency across the problem space. Finally, I conclude by proposing several ways that the dynamic and hybrid representations and techniques can be combined. To compare many of the techniques presented throughout this dissertation in the context of structured, real-world problems, I use them to solve scheduling problems based on actual air traffic control constraints recorded from the Dallas/Fort Worth International Airport.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/57625/2/pschwart_1.pd
    corecore