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ABSTRACT

This dissertation presents our research on coalition formation for Distributed Constraint

Optimization Problems (DCOP). In a DCOP, a problem is broken up into many disjoint

sub-problems, each controlled by an autonomous agent and together the system of agents

have a joint goal of maximizing a global utility function. In particular, we study the use

of coalitions for solving distributed k-coloring problems using iterative approximate algo-

rithms, which do not guarantee optimal results, but provide fast and economic solutions

in resource constrained environments. The challenge in forming coalitions using iterative

approximate algorithms is in identifying constraint dependencies between agents that al-

low for effective coalitions to form. We first present the Virtual Structure Reduction (VSR)

Algorithm and its integration with a modified version of an iterative approximate solver.

The VSR algorithm is the first distributed approach for finding structural relationships,

called strict frozen pairs, between agents that allows for effective coalition formation. Us-

ing coalition structures allows for both more efficient search and higher overall utility in

the solutions. Secondly, we relax the assumption of strict frozen pairs and allow coali-

tions to form under a probabilistic relationship. We identify probabilistic frozen pairs by

calculating the propensity between two agents, or the joint probability of two agents in a

k-coloring problem having the same value in all satisfiable instances. Using propensity, we

form coalitions in sparse graphs where strict frozen pairs may not exist, but there is still

benefit to forming coalitions. Lastly, we present a cooperative game theoretic approach

where agents search for Nash stable coalitions under the conditions of additively separable

and symmetric value functions.
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1

CHAPTER 1

INTRODUCTION

Coalition formation is of fundamental importance in a wide range of research disciplines,

including social sciences, economics, and computer science. Ultimately, the process of

forming a coalition comes down to choice. An agent must choose which coalition to join

and what role that agent will play within the coalition. Unfortunately, in environments

with dynamic tasks, time constraints, and unknown team sizes, a priori planning and/or

centralized approaches to designating agents to coalitions becomes infeasible. It becomes

necessary to enable the agents themselves to reason about the proper organization of the

coalitions that should form in order to effectively solve a problem. In order to represent

the decision problem of coordinating agent teams, researchers in multi-agent systems intro-

duced distributed constraint satisfaction and optimization problems, or DCSP and DCOP

respectively. Both DCSP and DCOP are an extension from successful work in the area of

constraint programming and a powerful way to represent local reasoning and communi-

cation interactions. In this work, we assume that agents are solving a constraint problem

in the form of DCOP as it is a popular method for representing both non-cooperative and

cooperative agent systems that maps well to a variety of domains.

The research presented in this dissertation can be viewed as a marriage between DCOP

and coalition formation. In Figure 1.1 we show a representation of how the process of
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finding DCOP solutions occurs in a traditional sense. A problem instance is created from

a set of variable constraints, a DCOP solver is called, and a solution is output. While

some approaches exist, which we cover later in this chapter, that pre-process the DCOP

instance before sending the instance to a solver, they are performed offline and with no

solver interaction. Our work is unique for two reasons: (i) we utilize a coalition formation

process that operates directly inline with a solver to reduce problem difficulty, and (ii) we

integrate the coalition formation process to work with iterative approximate solvers such

that it requires minor modification to the solver itself. In Figure 1.2 we show the insertion

of the coalition formation process into the traditional solution process. As this dissertation

will cover, the formation of coalitions simplifies DCOPs such that problem complexity is

reduced as well as problem size. By doing so, DCOP solvers find solutions faster and more

efficiently as they are performing search on smaller representations of the same problem.

Fig. 1.1: The traditional process for solving a DCOP problem.

Fig. 1.2: The coalition formation integrated process for solving a DCOP problem.

To motivate the use of DCOPs for the real-world, we present an example. Consider

the simple scenario of a team of agents self-organizing and collaborating to achieve the

selection of roles in a robotic monitoring application using very simple hardware with

limited capabilities. The Kilobot platform (Figure 1.3), a recent development from the
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Fig. 1.3: A Kilobot.

Harvard Self-organizing Systems Research Group1, is a low-power, quarter-sized robot

that relies on fast and economic solutions to carry out complex behaviors.

Let us assume that a large number of these Kilobots have been disseminated into an

environment via airdrop from a plane with an unknown distribution (and uncertain rela-

tive placement), Figure 1.4. The Kilobots are expected to carry out certain tasks such as

monitoring temperature, observing siezmic activity, or providing some other sensor cover-

age. Assume a desired global property of the group of Kilobots is to avoid creating dense

pockets of the same task role in any given region as this helps to provide maximal sensor

coverage of all types across the region. Kilobots form restrictions, or constraints, with other

agents that are within a certain distance. Constraints between any two Kilobots dictate that

they do not take on the same task role. As the robots were placed without prior knowledge

of where they would be spatially located before deployment, prior assignment of roles

or a priori planning will very likely fail in this scenario. A natural way of representing

this problem is as a DCOP. The Kilobots negotiate their role in the larger group by using

the constraints they have formed with other agents within their vicinity. On small-scale

robotics with limited capabilities, computing optimal solutions could be very computation-

ally burdensome, probably would not be possible, and most likely are not even necessary.

Simpler approaches, such as approximate algorithms, to negotiating the task roles would

be sufficient.

A major hurdle with using simpler approaches in distributed applications is that as prob-

1http://www.eecs.harvard.edu/ssr/
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Fig. 1.4: A sensor coverage problem framed as a DCOP. Different task roles are indicated
by the colors of the coverage areas surrounding each Kilobot.

lems grow in terms of both size and complexity, performance tends to degrade in terms of

cost and quality. As in the scenario above, we cannot just turn back to more complex algo-

rithms, so the question becomes “how can we make simple solutions better?” In this work

we will show that using coalitions of agents within a larger group can enable simpler so-

lution approaches to perform at higher levels, even as problem size and complexity grows.

The principal question addressed in this thesis is the following:

How can we enable a set of autonomous agents to distributedly self-organize

into coalitions of agents that are more efficient and effective at solving

Distributed Constraint Optimization Problems using simple iterative

approximate solvers?

What we wish to do is to provide a mechanism for agents to identify coalitional partners

and form coalitions that represents the same problem, but in a reduced way. For example, in

Figure 1.5 we show a constraint graph on the left that represents the original problem in full

form. By using our coalition formation technique, we reduce the complexity of the graphs

in terms of size and difficulty, as shown on the right of Figure 1.5. The coalitions that form

represente the original problem in an abstract way, where agents within a coalition are rep-

resented by one individual that negotiates for all members. When only one agent negotiates

for an entire group, search for a solution can progress in a more streamlined fashion. The



5

work we present in this dissertation is on how the process of coalition formation can be

achieved in DCOPs and what the effects of that coalition formation process are in terms of

problem complexity and solver performance.

Fig. 1.5: Example of reducing the original problem into a set of coalitions that represent
the original problem in a more compact way.

Layout of Dissertation

The formation of coalitions for solving DCOPs has received limited investigation in the

literature. Of the work that has been done, the research has been focused on partitioning

a DCOP into (possibly overlapping) partitions and then running complete optimal solvers

within those partitions. We detail the shortcomings of this methodology in Chapter 2. We

distinguish our contributions in this dissertation as we propose a methodology for form-

ing coalitions to solving DCOPs using iterative approximate methods, which results in

very good approximate solutions at a very low cost. In particular, we show that the use

of coalition formation directly impacts the efficiency and effectiveness of low-cost itera-

tive approximate solvers in the distributed k-coloring problem 2, a canonical problem used

in testing DCOP solvers from both the complete optimal and iterative approximate ap-

proaches. The k-coloring problem can be used to represent many problem types, which

we cover in Chapter 2, including the task role allocation problem presented above. We

compare our coalition formation approach on k-coloring problems of varying degree of

difficulty and report positive results in empirical testing against other iterative approximate

solvers introduced in Chapter 2. We propose three state-of-the-art contributions.

2We will also simply refer to this as the k-coloring problem.
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First, we have developed a novel distributed approach to efficiently forming coalitions

of agents in DCOPs with binary constraints and homogeneous domains, called the Virtual

Structure Reduction (VSR) algorithm. As we will discuss in Chapter 3, the VSR algorithm

works by finding relationships between agents in a DCOP that must have the same variable

assignment. We call these relationships strict frozen pairs, or simply frozen pairs. Frozen

pairs were first discussed in foundational work carried out by Cheeseman and Kanefsky

[13], and continued by Culberson and Gent [15], in analyzing the “easy-hard-easy” phase

transition that exists where constraint satisfaction problems go from satisfiable to non-

satisfiable as a function of problem density. Once frozen pairs are identified, it allows for

the delegation of authority from one agent to another over their joint variable assignment.

Agents that take on this authority to negotiate variable assignment for others are termed

surrogate agents and result in surrogate-led coalitions. To test the impact that coalition

formation has on the search for a DCOP solution, we combine our VSR approach with

a new version of the iterative approximate solvers, the Distributed Stochastic Algorithm

(DSA). The original DSA algorithm is detailed in Chapter 2 and the new version, DSA-

S, that works with our coalition formation process is presented in Chapter 3. By using the

VSR algorithm online with the DSA-S algorithm, we find both efficiency gains and solution

quality gains within the DCOP phase transition area. Our empirical results [20, 21] tested

against an optimized version of the DSA, DSA-B, and the Maximum Gain Messaging

(MGM) algorithm show that surrogate-led coalitions are a powerful approach for increasing

efficiency in the search for a DCOP solution; by directly reducing message passing and

computation overhead as well as indirectly reducing problem difficulty.

Our second contribution, detailed in Chapter 4, is in the introduction of weaker version

of the frozen pair concept. As we will show, the strict frozen pair relies on very particular

relationship to exist between agents in a DCOP instance. The strict frozen pairs relationship

is prevalent in particular regions of problem density. In regions where strict frozen pairs

are not as plentiful, we would like to be able to find pairwise relationships that can still
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enable agents to find suitable coalitional partners that lead to positive results. We introduce

the idea of a probabilistic frozen pair and show the effectiveness of using them as the basis

for coalition formation in sparse regions of the phase transition where problem density is

lower. Probabilistic frozen pairs lack the property of being guaranteed to have the same

joint variable setting, but are highly correlated with each other so that they could still ben-

efit from forming a coalition and being solved via surrogate-led negotiation. We introduce

a measure of propensity, or a probability of variables having the same value assignment in

a satisfying solution of a k-coloring problem. We show that by using different levels of

propensity as a criteria for agents to form coalitions, we can obtain increased solution qual-

ity where the strict frozen pairs coalition formation may have suffered. We introduce our

αVSR-DSA [19] algorithm, which introduces coalition formation among probabilistically

frozen agent pairs but solves k-coloring problems using the same iterative approximate

search processes as with the VSR coalition formation process. The αVSR-DSA algorithm

weakens the assumption of strict frozen pairs for a more flexible solution while still miti-

gating the degradation of solution quality seen in large, complex problem instances. The

αVSR-DSA algorithm provides an alternative approach for dealing with problem instances

where the occurrence of strict frozen pairs is not prevalent.

Our third contribution in this work, Chapter 5, is the game theoretic analysis of the

coalition structures generated by the VSR-DSA and αVSR-DSA algorithms. We frame the

coalition formation process as a Hedonic game, or game of preference, and show that the

coalitions which form under our formation process are Nash stable. We present the Hedo-

nic Game algorithm (HG-DSA) and show that by allowing agents to selectively consider

different coalitions based on the members within that coalition, we can improve solution

quality further in low density regions of the k-coloring problem. We provide some counter-

intuitive results of the coalition formation process under the Hedonic game formulation,

and discuss why selecting the highest propensity coalitions might not always be the best

choice.
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We conclude in Chapter 6 with remarks about our work and some future research di-

rections regarding the coalition formation process in k-coloring and general DCOPs.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This research focuses on the process of forming coalitions for solving DCOPs using an

iterative approximate solver. The use of an iterative approximate solver offers us a solution

type which is economic and efficient in terms of both computing power and time, respec-

tively. To demonstrate the effectiveness of our solution technique, we focus on a canonical

benchmark problem which many researchers use for testing the efficiency and effectiveness

of their algorithms; the distributed k-coloring problem. As we will point out, the distributed

k-coloring problem represents many application areas of practical use.

In the first section of this chapter, we discuss the general Distributed Constraint Op-

timization Problem (DCOP) formalization and the techniques used to solve Multi-Agent

System (MAS) decision problems framed in such a context. We present the mathematical

formulation of a DCOP and its constraint graph representation. We present the distributed

k-coloring problem and frame it as a DCOP, then provide examples of a mapping from

k-coloring to application areas. We then break DCOP solution techniques into 2 distinct

types: (1) optimal complete algorithms and (2) approximate local iterative algorithms. We

give an overview of the approach types with presentation of the most influential and suc-

cessful algorithms from their respective areas.

The second section of this chapter is focused on coalition formation games, a branch of
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cooperative game theory. We introduce coalition formation games and its related work from

game theory, distinguish between cooperative and non-cooperative games, and introduce a

particular type of coalition formation game called Hedonic coalition formation games. We

provide an overview of approaches from the DCOP community that are closely related to

coalition formation games for solving DCOPs, but point out that they do not utilize iterative

approximate solvers.

2.1 Distributed Constraint Optimization Problems

Distributed Constraint Optimization Problems (DCOP) arose from the relaxation of Dis-

tributed Constraint Satisfaction Problems (DCSP) [74]. Since it is not always possible to

find a fully satisfying solution to a DCSP, optimizing the solution as much as possible is

desirable in many contexts. A DCOP is defined as a 3-tuple 〈X,D, F 〉 such that:

• X = {x1, . . . , xn} is a set of variables

• D = {d1, . . . , dn} is a set of finite domains for each variable, where each dk repre-

sents a finite set of possible variable values

• F = {f1, . . . fm} is a set of cost functions, or constraints between the variables in X

Each fi is defined over a scope of variables (xi1 , . . . , xiz) that returns a real-valued number,

r ∈ R based on the combination of variables involved in the constraint. A binary constraint

problem is one where every fi is defined over the combination of two variables, such that

fi(xj, xk) = r. Given a set of cost functions over a set of variables, the goal is to find a

value assignment for each variable, A = {x1 = d1, . . . , xn = dn}, such that a global cost

function is either minimized or maximized,

G(A) =
∑

fi∈F,(xy ,xz)∈A

fi(xy, xz), (2.1)
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where xy and xz have been assigned values according to A. For clarity, but without loss

of generality, most researchers focus on binary constraint problems.

2.1.1 Constraint Graphs

A binary constraint problem can be represented as an undirected constraint graph (see

Figure 2.1) of the form G = 〈V,E〉 where each variable, xi ∈ X , is represented by a

vertex, vi ∈ V , and each binary constraint, fi, is represented by a weighted edge, ei ∈ E,

where the edge weight, denoted as w(ei), is equivalent to the cost function fi. We assume

that all cost functions are binary relations although relations of higher order are possible.

In addition, we assume that each agent is given responsibility over a single variable at the

beginning of a problem instance as is typically assumed, however multi-variate extensions

have been developed for many of the single-variate approaches [52].

Fig. 2.1: An example of a DCOP represented as a constraint graph.

In Figure 2.1, we provide a simple, five variable example of a constraint graph, along

with its solution. Each variable is represented by a node in the graph, and for each con-

straint in the problem, there is an edge relating the appropriate variables. Here the do-

mains, {d1, d2, d3, d4, d5}, for each variable, {x1, x2, x3, x4, x5}, are the same, specifically

{a, b, c}. The set of binary constraints, F , for this problem are the “not-equals” constraint,

where no two adjacent nodes (variables) may take on the same value assignment. Pictured
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on the right is one possible solution with zero constraint violations. As a DCOP, each vari-

able would be assigned to an agent that is responsible for negotiating an assignment for its

variable with the other agents in the problem.

2.1.2 Constraint Density

Of course, not all DCOPs are created equal. Constraint density is the ratio of the number

of constraints to the number of variables, D = |F |
|X| , and is considered to be directly corre-

lated with problem difficulty [2]. As constraint density grows, agents must reason over a

larger set of constraints, making for more complex problem instances. Typical constraint

densities studied in the literature vary, but for small domain sizes, typical values range from

2.0 (underconstrained) to 3.75 (highly constrained). The constraint density in our simple

example problem, Figure 2.1, is only 1.0.

The importance of the constraint density, and the role it plays in the hardness of finding

solutions for DCOPs should not be understated. Similar to phase transitions in physical

and natural processes such as water freezing to ice, the density of a constraint optimization

problem is considered the order parameter of the system. In Figure 2.2 we illustrate the

effect of density on the k-coloring problem for both problem difficulty and number of

problem instances that are satisfiable.

Fig. 2.2: The phase transition for k-coloring DCOPs from easy to hard to easy problem
instances based on constraint density.
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A rapid transition from easy-to-solve problems to hard-to-solve problems and back

to easy-to-solve problems occurs through the space of DCOP instances as the constraint

density of the problem goes from low values, such as 1.0, to high values of 5.0 and greater.

In addition, the set of satisfiable instances becomes less and less as density continues to

rise. We cover the phase transition in more detail in Chapter 3, Section 3.5.1.

2.1.3 Motivation for using DCOPs

Constraints have been recognized as an useful and powerful way of representing reasoning

problems in AI [61]. Constraint Satisfaction Problems (CSP) [76] are a general way of rep-

resenting various problems in artificial intelligence where the goal is to find a combination

of variable settings that are consistent, or do not violate any constraints that exist between

the variables value settings. Distributed Constraint Satisfaction Problems (DCSP) arose as

an extension to CSPs where a set of autonomous agents are each given the responsibility

of solving for only the variable(s) which they are assigned. In some environments, the

discovery of a consistent solution for a DCSP is not always desirable or possible. Some

environments could be over-constrained, and there simply exists no consistent solution. In

other environments, the complexity of the problem and limited amount of search time may

dictate that waiting for a consistent solution is not possible. And even more so, there are

instances of problems where different consistent solutions are more valuable than other

consistent solutions. Due to the reality of complex problems and varying solution quali-

ties, researchers turned to a relaxed version of DCSP where solution quality mattered and

consistency was not always necessary.

The motivation for designing a system of loosely-coupled agents in such a fashion of

a DCOP is to allow for collaborative autonomous agents to work together to accomplish

a global goal. Formulating problems in a distributed manner can provide benefit in terms

of scalability, redundancy, and flexibility of a system, all important aspects of problems

where an environment has unknowns and the number of agents in the system is expected
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to be large. Explicitly, for scalability, we are interested in increasing the efficiency of a

system, regardless of how large that system could become. Redundancy allows us to avoid

a single point of failure. Flexibility allows for the online addition or subtraction of agents

to the system. As each agent only has partial knowledge of the overall problem, effectively

coordinating behavior in this domain can be challenging for a number of reasons, including:

• Naturally distributed environments. Environments such as sensor networks or robotic

teaming where the set of operating agents are physically decoupled from one another

removes the possibility of a centralized controller. This is especially true as the scale

of the problem grows.

• Unknown team composition. While designers may know prior to release the types

of agents they will be deploying into an environment, it may be very likely that they

will not know the reality of composition after deployment is completed. Many of

the sensors could be damaged during an airdrop deployment, or a certain subset of

robots being used have power or actuator failures. Being the case, allocating certain

agents to one task/role or another a priori is infeasible due to unknown failures or

deployment methods.

• Limited Computational Power. As introduced in Chapter 1, when we are attempting

to coordinate the behavior of many low-powered, low-computationally outfitted de-

vices, lightweight solutions become necessary. Coordination must be efficient and

economical.

• Limited Time. In environments where time is of the essence, the challenge of finding

quick and sufficient solutions is paramount. In domains where the dynamics of the

system can change the problem quickly, such as a target tracking domain with a

moving target, fast solvers with sub-optimal behavior are acceptable.
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2.1.4 Distributed k-coloring and its Applications

Many real-world applications exist that can be modelled using the DCOP framework, and in

particular, the distributed k-coloring problem. These range from wireless sensor networks

[3] to distributed planning and scheduling [8]. Below, we introduce the distributed k-

coloring problem and provide two examples of how it can be framed to address real-world

problems.

Given that solving for optimal DCOPs is known to be NP-Complete [29], empirical

evaluation of solution techniques is necessary in order to evaluate performance. As certain

practical problems such as target tracking and traffic channel allocation have been studied,

there are a number of NP problems frequently used by researchers as benchmarks for the

study of DCOP approaches, including boolean satisfiablity and distributed k-coloring, or

graph coloring.

To begin, we formulate the k-coloring problem as a constraint satisfaction problem.

Given a graph, G, of size n nodes and k possible colors, the problem is to decide whether

the graph can be colored with no more than k colors so that no two adjacent nodes are the

same. In this problem, nodes are the variables, constraints are the edges, and colors are

the variables domain. It is assumed that constraints are binary and of the type “not-equal”.

A satisfying assignment is a mapping of variables to value assignments that do not violate

any of the constraints. A pair of adjacent nodes that are colored the same is a constraint

violation. When no constraint violations exist, a solution is said to be satisfied.

To make the k-coloring problem that of an optimization problem, we recognize that not

all problem instances may be able to be satisfiably colored in full either due to being over-

constrained instances or due to a lack of sufficient time. Instead, we look to minimize the

number of violated constraints, therefore maximizing global utility. This is referred to as

MaxSAT k-colorability, or more simply, k-coloring. In the distributed case for k-coloring,

it is assumed that each variable in the system is assigned to at most one agent. The agent is

responsible for negotiating the color for its variable based on the constraints assigned to its
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variable.

Constraints can be defined such that they carry a certain amount of weight when vi-

olated. For example, if two adjacent nodes are blue, that could result in a weight of 10,

whereas two adjacent red nodes results only in a weight of 1. In this way, we can represent

many different types of preferences for assignment and generalize graph coloring to have a

wider applicability.

Target Tracking

Target Tracking is a vital problem for surveillance and monitoring applications that involves

a set of sensors which are responsible for tracking or observing a set of targets in a given

area. The goal of target tracking is to provide information about targets to a user about

such things as location, velocity, etc. Each sensor in a target tracking application can have

different modes which effect the value of the information about the target. Collaboration

between sensors is crucial to provide the highest level of performance of the system.

To formulate the problem of target tracking, we can assume that there is an agent as-

signed to each sensor in the network. Sensors have different modes, potentially different

capabilities, and perhaps different responsibilities. Constraints are typically defined be-

tween agents/sensors with overlapping sensing ranges. Constraints relate to the specific

targets or areas of responsibility and could dictate such things as the number of sensors

required for a target, the types or modes of sensing, and amount of time required to fol-

low the target. The global function could be to maximize the number of targets tracked,

maximize the accuracy of the tracked targets, or minimize the power consumed by the

MAS as a whole. Successful examples of target tracking using DCOPs can be found in

[78], [9], and [38], and as an explicit k-coloring problem in [32] where targets are colors

and agents negotiate for the colors based on their neighbors assignments, capabilities, and

current workload.
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Role Allocation

Role allocation can be viewed as a distributed k-coloring problem where agents in a team

are required to periodically negotiate what role they will take on to carry out tasks or

achieve a goal. Similar to our Chapter 1 example, constraints between individuals could

be generated via geometric distance from one another, helping to distribute roles evenly

among the set of all agents. In some cases, the joint-capability of two individuals taking

on similar or contrasting roles in the team may need to be addressed, requiring the creation

of a constraint between the two. In peer-to-peer wireless networks or Mobile Adhoc Net-

works (MANET) [28], different nodes may need to take on different roles, represented as a

coloring, depending on the goals of the system. Determining which agents are allowed to

enter sleep mode to reserve energy versus which agents are required to stay awake to main-

tain network connectivity could be negotiated via constraint reasoning. Role allocation as

a distributed constraint optimization problem has also been used in Predator/Prey pursuit

games [1].

2.1.5 Algorithms for Solving DCOPs

In this section we present a taxonomy for DCOP solution techniques and representative

approaches from each which represent the state of the art. As stated, all these techniques

apply to distributed k-coloring as it is a problem within DCOP. Given the breadth of types of

applications that DCOPs can be formulated for, there are a number of types of approaches

developed for solving them. In this work we would like to adopt a similar taxonomy to

that found in [10]. We break the area of DCOP solutions into 2 main classes: (i) com-

plete solutions, (ii) iterative approximate solutions, shown in Figure 2.3. Even within the

class of complete solutions, we can still find a further dichotomy within these algorithms,

classifying a complete solution as either synchronous or asynchronous during execution.

Within the class of incomplete solvers, we find that there may be a further breakdown of

solution types to that of local search approaches and learning approaches. We detail many
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current approaches in this section, however this is not a complete list. Our focus is to intro-

duce many of the popular approaches, focusing on the approaches in local search, as that is

where our work belongs.

Fig. 2.3: A taxonomy of DCOP algorithms. In the diagram, DSA = Distributed Stochastic
Algorithm, DBO = Distributed Breakout Algorithm, MGM = Maximum Gain Messaging
Algorithm, FP = Fictitious Play, JSFP = Joint-Strategy Fictitious Play, RM = Regret Match-
ing, ADOPT = Asynchronous Distributed Optimization Algorithm, OptAPO = Optimal
Asynchronous Partial Overlay Algorithm, DPOP = Dynamic Programming Optimization
Algorithm.

Complete Solutions

A complete solution to a DCOP involves always searching for the optimal solution to the

problem at hand. Finding the optimal solution for a DCOP is an NP-Hard problem, which

can be seen by reducing the problem to the 3-colorability decision problem on a graph;

known to be NP-Complete [14]. While these techniques are theoretically important and

compelling, from a practical point of view, the exponential increases in computation and

communication quickly emerges as the size of the problem increases. That said, they are

still an important area of research when enough time and resources exist to dedicate to

finding a complete solution.
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Many approaches exist in the literature with very nice theoretical guarantees for provid-

ing complete, optimal solutions. Dynamic Programming Optimization (DPOP) [49], Asyn-

chronous Distributed Optimization (ADOPT) algorithm [38], No-Commitment Branch and

Bound (NCBB) [12], and Asynchronous Forward Bounding (AFB) [22] all provide opti-

mality guarantees and allows for agents to operate asynchronously. What this means is that

agents do not need to wait for messages from other agents in order to continue executing.

ADOPT performs distributed backtracking search using a best-fit strategy. Each agent

assigns the best value it can find given local information. In order for ADOPT to run, the

constraint graph must be re-organized into a depth first search (DFS) tree. Polynomial time

algorithms exist for computing this structure [48] and many complete search algorithms

use them. The key ideas behind ADOPT are (i) keeping a lower bound estimate of solution

quality, (ii) backtracking thresholds, and (iii) upper bound estimate of solution quality.

Each agent maintains lower and upper bound estimates of their local solution quality. Once

these values are equal, the search ceases. Backtracking thresholds can be used to introduce

error bounds into solution quality, allowing for sub-optimal results to be returned by the

algorithms. Several advances to ADOPT have been developed, including BnB-ADOPT

[73] and ADOPT-ng [65].

The DPOP algorithm is a dynamic programming based approach that applies equally

well to constraint networks as well as more general graphical models such as Bayes nets

and Markov random fields. The DPOP algorithm also utilizes a DFS tree and works in three

phases: (i) the variable arrangement into a DFS tree, (ii) propagation of a utility message

from leaf nodes to the root node, and (iii) propagation of a value message from root nodes

to leaves. In phase (i), the current utility of the agents is propagated upwards, that includes

both the current utility of the local assignments and the desired value assignment of each

agent. Once all messages are propagated up, phase (ii) involves the root node computing

a more desirable solution, in an attempt to minimize the violated constraints taking into

account the information obtained from the children nodes. This calculation is downward
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propagated to the children in phase (iii), the value assignment phase. This process continues

until an optimal assignment is determined. Like ADOPT, there have been many extensions

developed from DPOP, including Open DPOP [47] and MDPOP [51], a DPOP algorithm

that takes into consideration social choice theory and Vickrey auction mechanisms.

Iterative Approximate Solutions

The second class of algorithms, iterative best response type approaches. Finding optimal

solutions for constraint networks is an NP-Hard problem. Therefore, in many cases, the

complexity of using a complete solution solver is not practical for real-world applications.

Approximate algorithms are often preferred methods which generally scale well to large

distributed applications. We term these approximate approaches as iterative best response

after the framework developed in [10] which attempts to unify the DCOP literature with

game theoretic literature.

The trade off in using best response approaches is in sacrificing optimality for a re-

duction in communication and computation overhead. Although typical results of many

iterative best response algorithms perform quite well there exist pathological instance of

DCOPs where either we cannot put guarantees on algorithmic behavior or the algorithms

just perform plain bad. Regardless, these approaches are an important area of study, espe-

cially in time and resource constrained environments.

Most every approach in this class starts with a random assignment for all variables and

performs a series of local moves in an attempt to optimize the global objective function.

In algorithms that are considered greedy search, the process involves agents changing a

small set of variables in a local neighborhood with a new assignment that is closer to the

min/max of the objective function. This is typically referred to as gain. The process stops

once there is no local move that provides a positive gain. These approaches require very

little memory or computation power and work in a variety of settings. Approaches such

as Stochastic Local Search, walkSAT [64], and simulated annealing are considered greedy
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search approaches. Most approaches in this area utilize a random restart of randomized

steps to avoid local min/max.

The main issue with greedy approaches is in the fact that these type of algorithms

assume that they are making changes to the problem while the local state remains the same.

If all agents have the same belief, then greedy algorithms can lead to very chaotic behavior

and negative gain can be the result. This is referred to as the incoherence problem. To

address this problem, algorithms have been developed that introduce a stochastic element

to the decision process. The Distributed Stochastic Algorithm (DSA) [18] is one such

algorithm that has been extensively studied in the literature and experienced great success

as a popular benchmarking technique. DSA initializes with a random state DCOP and

proceeds into an infinite loop. At each execution step, each agent calculates the best gain

it can achieve. Each DSA agent holds an activation threshold, α ∈ <, that is compared

against a randomly generated number at each step, r ∈ <. If α < r then the agent will

make the change to its variable. Otherwise, the agent will due nothing. This simple addition

helps to address the negative gain problem by reducing the number of changes that occur

in the environment. As said, empirical results using DSA typically show monotonically

increasing solution quality during the execution time, but there are no theoretical guarantees

on DSA’s performance as an anytime algorithm, or one that can be stopped at anytime and

provide the best-to-date solution.

An alternative to DSA, which in addition to solving the coherence problem also pro-

vides theoretical guarantees on anytime behavior, is the Maximum-Gain Messaging (MGM)

algorithm [46]. MGM works by having agents in a local neighborhood agree on which of

them should change their value at each step. MGM is an extension of the Distributed

Breakout Method (DBO) [74]. DBO works using weighted edge constraint graphs. If a

violation occurs between two variables, that constraint edge is incremented by 1 and agents

compute maximum gain based on the sum of the weighted edges. The problem with DBO

that MGM addresses is outdated knowledge. Constraint edge weights accumulate over time
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in DBO and lead to inaccurate estimations on gain. MGM does not consider edge weight,

resulting in more coherent behavior. Unlike DSA, MGM is considered anytime as it acts

more as a hill climbing approach than stochastic search. MGM does not rely upon a pa-

rameter setting of α, but does require much more overhead in message passing due to the

exchange of potential gain of each agent shared with its neighborhood. Empirical results

show comparable performance between DSA and MGM [44].

Metrics for Evaluating DCOP algorithms

Algorithms for solving DCOPs are evaluated with three primary metrics: solution quality,

messages passed, cycles used. The global cost in Equation 2.1 of a potential solution is the

solution quality metric. We note this as it is the way most ofter referring to the minimization

or maximization of Equation 2.1, and is the primary metric for evaluating a DCOP solvers

effectiveness.

To obtain solutions for a DCOP, agents must interact with one another through message

passing. Every time an agent changes its variable assignment, it must communicate that

information to all its neighboring agents. We adopt the accepted definition of a cycle for

DCOPs, as introduced by Yokoo [75], such that during each cycle an agent:

1. Processes newly received messages

2. Performs local computation

3. Sends messages to other agents if necessary

Almost every analysis of a DCOP algorithm includes an evaluation of the performance

of that algorithm in terms of number of messages passed in the system or per agent as well

as the number of cycles taken to find a solution of given quality. Minimizing messaging and

cycle counts directly correlates with algorithmic efficiency, but does not necessarily equate

to good solution quality. Other metrics can be used to evaluate DCOP solver performance,



23

including memory use and computation time in the local computation portion of the cycle

above.

2.2 Coalition Formation

In this section we present a review of coalition formation and its game theoretic origins as

well as its relevance to multi-agent systems (MAS). Coalition formation has been studied

extensively in the context of economics, social interactions, political party formations, or-

ganized crime, etc. While the literature on the topic of coalition formation is vast, we will

narrow our view to those pieces which we believe pertain to our goal of groups solving

DCOPs. Coalition Formation can be generalized as a Complete Set Partitioning Problem

(CSPP) [72] where agents attempt to discover disjoint coalition allocations that maximizes

the reward of all coalitions. Many traditional approaches have been developed to deal with

finding exact and approximate solutions to the NP-hard problem of CSPP, but rely on tech-

niques where the complexity is exponential in the number of agents and the algorithms are

designed in a centralized manner. The problem of solving a DCOP is naturally distributed

and typically large scale; both of which present problems for CSPP solution techniques. As

such, we consider a more flexible and localized approach to forming coalitions using game

theory.

There are two distinct branches of game theory; cooperative and non-cooperative. The

main distinction between the two branches is in the level of analysis. In cooperative game

theory, the focus is on a set of agents who have come together to form a group while

its non-cooperative counterpart focuses on the analysis of the individual and the full set of

actions available to them. Non-cooperative game theory is the study of strategic interactions

between two or more agents. Non-cooperative games, or simply games, are analyzed by

using solution concepts. Solution concepts, such as the Nash equilibrium, provide a way

to describe what strategies will be used by the agents in a game. When used to study the
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coalition formation process, the focus shifts from equilibrium to stability, although they

are essentially the same concept. Stability is used in settings where individuals will be

negotiating for admittance into a group and the analysis is based on the coalitions that

could form and deviations between them. Analysis in cooperative game theory is focused

on the group, not the individual.

In the next section we provide a general framework for coalition formation followed by

a discussion on the types of coalition formation techniques discussed in the literature with

a focus on work relating to coalition formation with DCOP research.

2.2.1 General Framework

There have been many proposed frameworks for modelling the coalition formation process.

We present a model closely following that in [58] Typically, the main components of the

model include the following:

• A finite set of players or agents, N , which is typically referred to as the grand coali-

tion

• A compact set of states, X

• A (possibly) infinite set of time, t = 0, 1, . . .

• Initial state, x0 ∈ X

• A payoff function, ui for each i ∈ N defined over each x ∈ X

• For each pair of states x and y, a collection of coalitions E(x, y) that are effective at

moving from x to y

• A set of existing coalitions, S

• A set of potential partners, P ⊆ N \ S
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Existing coalitions may propose, or be proposed to, by the potential partners in the sys-

tem. These partners are usually referred to as free or non-committed agents. In addition to

the above components, there are other formal properties that are useful for various models

of the coalition formation process. A protocol, p, represents a probability distribution over

the systems “choice” of active coalitions at each time step t. As our work will employ ac-

tive negotiating agents, we do not consider a system model of p. A response order for every

set of Q ⊆ P , where Q is the set of agents presented with a proposal, is used to determine

whether or not the system moves from state xt to state xt+1. It is normally assumed that if

just one agent in Q rejects the proposal, the system does not move during that time step.

Movement in a coalition formation process is referred to as mt = (xt, St, Qt). And lastly,

we can keep track of a history, ht, of moves that have taken place to date. Histories main-

tain the sequence of state spaces that the coalition formation process has moved through

and are similar to that of a Markov Chain. State space information can be as simple or

complex as needed, but should minimally contain the coalitions that exist at each time step,

and probably the relationships that exist between those coalitions (if any).

We can represent the end state of a system as E(x, y) = ∅, meaning that there is no

transition to another state possible in the system. Some coalition formation processes have

no end state due to the possibility of renegotiation, coalition reformation, and expiration

of agreements. The process of forming coalitions then is the process of moving from one

state to another either ad infinitum or until an end state is discovered.

2.2.2 Coalition Formation Related Work

There are many approaches to coalition formation. In the DCOP literature, this is referred

to as partial centralization. In game theory, it is referred to as coalition formation games or

cooperative games. There has been some work in using non-cooperative game theory for

forming coalitions as well, and we give some discussion on that as well.

The Asynchronous Partial Overlay (APO) [35] and Optimal APO (OptAPO) [34] are
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two algorithms that work to solve DCOPs by partially centralizing pieces of the problem

via the use of cooperative mediation. The process of centralizing the problem into subsets

of the original problem allows for increases in efficiency to finding the solution. The use

of mediators as the subsets problem solver is used to represent the group with a shared

utility function and negotiate with other mediators. Agents are allowed to change groups

and be represented by different mediators over time. This process can continue until much

of the problem is centralized, and utilizes either a complete solver (in APO), or modified

version of such (in OptAPO), to solve the subproblem. The solution technique and coali-

tion generation are tightly coupled, as both rely upon each other. Our work focuses on

using existing solutions and forming coalitions without the need to tailor existing solution

techniques, creating a strict de-coupling of solution and coalition formation. The work of

[67] discusses a similar process and cites its work as very similar in nature to cooperative

mediation.

Non-cooperative game theory has been used as a negotiating basis for developing ap-

proaches to coalition formation. As non-cooperative games are the study of strategic inter-

actions between individuals, they have been most popularly studied as a bargaining game

[11]. The process of bargaining can be seen as the proposing and acceptance/rejection of

agents to join a group. The use of bargaining has been studied extensively in economics

and political science in works such as [41] and [23].

The work of Chapman in [10] reformulates the the problem of a DCOP as that of a

non-cooperative potential game on hypergraphs. Chapman attempts to bring to light the

fact that solving a DCOP and solving for a potential function in game theory equate to

the same process. He discusses the lack of a common vocabulary between the economics

and computer science research communities and highlights how much of the work in non-

cooperative game theory and DCOP is the same with different terminology. Chapman

develops a framework for analyzing approaches to solving potential games and DCOPs for

single, peer-to-peer, strategic interactions.
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In cooperative game theory research on coalition formation games, the use of a standard

value function, or characteristic function, is typically employed. The value function assigns

a real-valued payoff to each each agent for each possible coalition that can form in the

environment. Works such as [57], [55], and [62] employ this technique. This type of

work assumes that the value function can be derived ahead of time and that the different

combinations of individuals working together can be quantified.

There has been some scattered pieces of work, aside from Chapman [10], that have

looked at the relationship between DCOP and coalition formation games. There has been

quite a bit of research regarding k-optimality [45][43], t-optimality [30], and c-optimality

[69]; a family of optimality measures where the joint action space of agents is explored

in terms of guaranteeing solution quality within some bounds δ in terms of size (k), time

(t), and space (c). This family of optimality measures give guarantees that a solution is

locally optimal if no group of agents can change their actions unilaterally to increase the

local utility of that group. From these optimality measures came the C-DALO algorithm

[69] where groups of neighboring agents are formed and a selected leader agent attempts to

solve for the subproblem within the bounds of δ. The C-DALO algorithm is more compu-

tational complex than iterative best response type algorithms, using sophisticated locking

techniques and data structures to allow for agents to exist in multiple groups at the same

time.

There have been approaches developed for performing coalition formation based on the

results from solving DCOPs. In both [68] and [42] the works utilize the optimal solutions

found by running various DCOP solution solvers to define the optimal coalition structures

for team environments. While related, this work is using DCOPs to generate coalitions as

opposed to using coalitions to solve DCOPs.

Rahwan et al [56] propose the introduction of constraints between agents to bound the

search for suitable coalitions. As is accepted in traditional coalition formation and the

NP-Hard problem of SPP, every possible subset of agents needs to be considered in order
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to find a solution of coalitions that will form. By introducing constraints to the problem,

they reduce the number of possible coalitions that need to be analyzed. Introduced is a

new model for studying coalition formation called Constrained Coalition Formation (CCF)

where restrictions are placed upon certain agents from working together, similar to the

model of constraints placed between DCOPs. It is possible that we can utilize the CCF

model in our studies.

Other Work Related to Coalition Formation

Partial centralization and coalition formation have been shown to be a powerful tools for

solving complex instances of DCOPs. DPOP [49] is a partial centralization algorithm that

works by first reformulating the constraint graph as a depth-first search tree in which adja-

cent nodes in the original graph fall into the same branch of the tree. DPOP suffers from

over-centralizing the problem and creating messages that are far larger than necessary. To

remedy this, the authors developed PC-DPOP [50] which bounded the centralization and

increased performance. Once cluster nodes have formed, both DPOP and PC-DPOP use

centralized algorithms to solve their problem partitions. OptAPO [34] is a partial central-

ization approach that utilizes a process called cooperative mediation. Partitions of cooper-

ating agents are represented by a mediator agent that uses a centralized technique to solve

their problem partition. Since partitions are not unique, additional work is done due to

possible partition overlap. Another partial centralization algorithm is the VSR-DSA algo-

rithm [20] in which the authors investigate using stochastic methods, but rely too heavily

on partially centralizing based on one specific structure that is identified via frozen pairs

discussed previously. This results in poor performance on sparse graphs. Related to partial

centralization is the coalition formation research for DCOPs. There has been much work in

k-optimality [45], t-optimality [30], and c-optimality [69]; a family of optimality measures

where the joint action space of agents is explored in terms of guaranteeing solution quality

within some bounds δ in terms of size (k), time (t), and space (c). This family of optimal-
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ity measures give guarantees that a solution is locally optimal if no group of agents can

change their actions unilaterally to increase the local utility of that group. From these opti-

mality measures came the C-DALO algorithm [69] where groups of neighboring agents are

formed and a selected leader agent attempts to solve for the subproblem within the bounds

of δ. The C-DALO algorithm is more computational complex than stochastic search al-

gorithms, using sophisticated locking techniques and data structures to allow for agents to

exist in multiple groups at the same time. With the exception of [20], we differentiate from

all these pieces of work in that we are using an algorithm which is both distributed and

stochastic.
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CHAPTER 3

VIRTUAL STRUCTURE REDUCTION ON

CONSTRAINT GRAPHS

In this chapter, we introduce our Virtual Structure Reduction algorithm (VSR). The VSR

algorithm is the first distributed algorithm that allows for the search and discovery of frozen

pairs of agents, or agents which are guaranteed to have the same variable assignment in a

solved instance of a DCOP. Agents independently discover their frozen pair relationships

and are given the opportunity to form a coalition with one another. The coalitions that

are formed represent a single bargaining unit within the DCOP, and are represented by a

single agent, termed a surrogate agent. Surrogate agents are given the responsibility by

the coalition to negotiate the variable settings for all agents within that coalition. As coali-

tions form, the structure of the problem is changed to reflect the new negotiation channels

between surrogate agents and agents which the coalition has constraints with.

We integrate the VSR algorithm with a modified version of the Distributed Stochastic

Algorithm (DSA) and show that by using coalitions of agents we can improve efficiency

in terms of message passing, cycle consumption, solution quality, and time to solution on

randomized instances of the k-coloring problem against two successful iterative approxi-

mate algorithms, DSA and MGM (see Chapter 2.1.5 for a review). Our positive empirical
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results are a direct result of the coalition formation process, and how it affects the con-

straint graph structure. Constraint density, or the ratio of the number of constraints to

the number of variables, has a significant effect on the difficulty of distributed problem

solving. As the density of problem instances increases, a phase transition occurs from

under-constrainedness to over-constrainedness, resulting in an easy-hard-easy behavior of

search for solutions. In the middle of this phase transition, problems tend to be most diffi-

cult to solve. Reducing density equates to reducing problem difficulty and we report results

pertaining to how the formation of coalitions leads to a reduction in active constraint graph

density and the overall reduction in problem size.

The remainder of this chapter is organized as follows: First, we discuss the concept

of frozen variables, and provide definitions we will be using, highlighting some important

properties of frozen pairs. We then detail the VSR algorithm and VSR-DSA integration

used to communicate structure and negotiate control between variables. Empirical results

with regard to the structural changes of the problem are presented showing reductions on

constraint graph active density and active variables. Further in our evaluation, we provide

results demonstrating the performance increase using VSR-DSA compared with DSA-B

and MGM algorithms.

3.1 Frozen Pairs

The intuition behind frozen pairs is straightforward; two variables that must have the same

value in all satisfying assignments of a given problem instance. For example, if one was

to find every set of satisfying assignments for the 3-coloring problem shown in Figure 3.1,

they would find that no matter what, variables x1 and x2 would always have to be the same

value.

The concept of frozen pairs, first introduced by Culberson and Gent [15], provides

us with a new perspective on strategies for solving DCOPs with variables that share the
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Fig. 3.1: Simple example of a frozen pair between x1 and x2. Every satisfiable value
assignment for this problem results in these two variables having the same color.

same domain. Culberson and Gent were studying the phase transition region of k-coloring

problems and its relationship to finding hard to solve instances within that region. This

easy-hard-easy phase transition has attracted much attention and has been documented by

many researchers [39, 54, 66]. Culberson and Gent identified frozen pairs through a cen-

tralized process of adding constraints and detecting inconsistencies (unsolvable problem

instances) that occurred as a result of the newly added constraint. If the violation could be

resolved only by making the pair of variables the same, those two variables were deemed

frozen.

In addition to Culberson and Gent pointing out that there exists an intimate relationship

between certain variables in k-coloring problems, Cheeseman et al [13] pointed out a sim-

ilar relationship in his work. Studying the varying degree of difficulty in k-coloring and

kSAT problems, Cheeseman suggested that reducing a graph based on identifying nodes

that shared a k − 1 clique would be beneficial for finding solutions while not affecting the

original problem given the proper bookkeeping. He also pointed out that the sharp phase

transition from fully satsifiable instances to unsatisfiable instance directly correlated with

problem difficulty.

Both Culberson’s and Cheeseman’s work were foundational in the area of k-coloring

for centralized constraint satisfaction. No known distributed algorithm for finding frozen
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pairs exists which could be utilized for solving DCOPs online. Our work is novel in the

respect that we are able to identify and effectively utilize the property of frozen pairs in a

distributed fashion. Our work is also the first to utilize an iterative approximate algorithm

for finding solutions for coalitions of agents, sometimes referred to as partial centralization.

When a pair of variables must have the same assignment, either agent in that pair can

negotiate individually with the members of their shared neighborhood and provide a satis-

fying assignment to the other frozen variable. Having one agent negotiate on behalf of two

or more agents (i.e. a coalition) eliminates a significant number of messages and cycles

that would otherwise be wasted “competing” between variables for satisfying assignments

within their shared neighborhood. As a result, efficiency gains can be immediately real-

ized. But another byproduct of forming coalitions between frozen pairs is that the resulting

reduced graphs have a lower constraint density.

As introduced in Section 2.1, constraint density is the ratio of the number of constraints

to the number of variables in a problem, D = |F |
|X| . Low constraint density problems are

more likely to yield a satisfiable, or closer to satisfiable, solution from an initial random

assignment as opposed to high constraint densities. Utilizing the concept of frozen pairs

can allow us to lower the number of active negotiating agents in the problem, which we

have empirically found to also reduce the effective constraint density of the problem. For

both Distributed Constraint Satisfaction Problems (DisCSP) and Optimization (DCOP),

lower densities typically lead to problem instances that are easier to solve.

3.2 Definition of Frozen Pairs

A binary constraint problem 〈X,D, F 〉 can be represented as a constraint graph of the

form G = 〈V,E〉, where each vertice vi ∈ V represents a variable, xi ∈ X with domain

di ∈ D, and each edge ej ∈ E represents a binary constraint fj ∈ F . For more detailed

information, we refer the reader to Section 2.1.
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Let N be a neighbor function, such that N (xi) = {xp|∃f(di, dp) ∈ F} and S is the

shared neighbor function, such that S(xi, xj) = N (xi) ∩N (xj). We define xi to be frozen

with xj iff S(xi, xj) contains a maximal (k-1)-clique. For domains of size k, xi is frozen

with xj iff S(xi, xj) contains a (k-1)-clique and S(xi, xj) does not contain a k-clique. In

the event that a k-clique is detected, the problem can be deemed unsatisfiable as we will

show below. Note that we use the terms “node”, “agent”, and “variable” interchangeably

unless it is necessary to differentiate between them.

Definition 1. Given a constraint graph G, two nodes, xi ∈ G and xj ∈ G are a frozen

pair, FP (xi, xj), iff there exists a maximal (k − 1)-clique within the shared neighborhood

S(xi, xj) where ∀xp ∈ S(xi, xj), [fi(di, dp) ≡ fj(dj, dp)] and di ∩ dj 6= ∅.

Fig. 3.2: Examples of frozen pair structures in graph form, with the core in grey, for
domains of size 2, 3, and 4. Frozen pairs are variables that must have the same assigned
value in a solution when they share the same neighbors of a core.

If xi is frozen with xj , then we refer to the (k-1)-clique in S(xi, xj) as the structural core

of that frozen pair. In Figure 3.2, we highlight the structural cores that enable frozen pair

detection. A single variable may be in multiple cores or be frozen with another variable.

When frozen, xi and xj will have, at most, one possible value after the members of the core

have been given their assignments. This property ensures that any agent who is frozen can

negotiate a local assignment with the members of the core and share that assignment with

the other frozen agent. A variable that is frozen to another variable has a value that can be

induced by the assignment of the core.
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Proposition 1. When two nodes are a frozen pair, they must have the same variable assign-

ment.

Proof. Assume there exists two nodes, xi and xj , such that FP (xi, xj) and |Di| = |Dj|.

Let k = |Di|. Then a k-clique is the largest fully connected subgraph of G such that there

exists a variable assignment that is a satisfiable solution. By definition, the frozen nodes

xi and xj share a (k − 1)-clique. Let the (k − 1)-clique shared by xi and xj be labelled

P . Assume that each variable in P has a value assigned such that P is locally satisfied.

Now consider the set of variables P ′, where P ′ = P ∪ {xi}. There must exist only a single

value for xi in P ′ such that P ′ is a local satisfiable solution. This is induced by |P ′| = k

and that the other k − 1 values had already been assigned in P . Now consider the set of

variables P ′′, where P ′′ = P ∪ {xj}. Again, there must exist only a single value for xj in

P ′′ such that P ′′ is also a local satisfiable solution. As xi and xj both share P , the single

value assigned to xi and xj must be the same.

If xi is frozen with xj , xi and xj both have constraints with all of the members of their

shared core. We can allow xj to negotiate with the core as a surrogate for xi (or vice

versa). In other words, once the core has found an assignment that is consistent with xj , xi

will have the same exact variable assignment. By allowing xj to complete the negotiation

process on xi’s behalf, we can reduce both the number of messages and cycles necessary

to find a solution. The reduction of messaging is a direct result of there being a lower

number of negotiating agents in the search process, while the reduction of cycles is due

to there being a smaller search space. Because there are a lower number of negotiating

agents, there are less occurrences of “thrashing” that occur, or variable settings that are not

consistent. Consider the case of three agents, x1, x2, and x3, such that a constraint exists

between x1 and x2, and a constraint exists between x2 and x3. In a k = 2 coloring problem,

x1 and x3 would be frozen. It is more likely that conflicts occur during the search for a

solution to the problem with both agents x1 and x3 negotiating with x2 than if only one of

the two agents were to negotiate with x2. We define the set of all of an agent xi’s frozen
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variables as its frozen list, Fi. Once an agent has become a surrogate for another agent, or

set of agents from Fi, it stores those agents’ IDs in a list called its coalitionList.

In addition to providing a detection of frozen pairs, our search process can allow agents

to detect and report the occurence of unsatisfiable instances if it is so desired by the designer

of the system.

Proposition 2. If an agent detects a k-clique during the search for frozen pairs, the problem

instance is unsatisfiable.

Proof. The proof follows from recognizing that in a satisfiable instance, a k-clique has

exhausted each possible domain value for the agents involved. If an agent searching for

a frozen pair discovers a k-clique to which it has a connection to each member of that

k-clique, there exists a clique of size k + 1, and there is no possible way to satisfy the

instance.

Being able to recognize an unsatisfiable instance of a k-coloring problem instance is

desirable in certain cases SAT problems with hard constraints (i.e. no violations allowed).

Standard methods of iterative approximate algorithms do not have a utility for recogniz-

ing unsatisfiable instances. In our integration of the VSR with DSA, we can now allow

that to be done. In addition to simply identifying unsatisfiable instances themselves, we

also allow for the detection of unsatisfiable cores [63], or the regions of a problem that are

causing the instance to be unsatisfiable. Recognizing not only that an instance is unsatisi-

fable but where that instance is unsatisfiable is important to researchers in model checking,

debugging logic, generating certificates of unsatisfiability.

3.3 VSR-DSA

The Virtual Structure Reduction DSA (VSR-DSA) algorithm is a two phase algorithm con-

sisting of coalition formation and assignment. It is a 3-state cyclic process for identify-

ing surrogates and forming coalitions which terminates when no further frozen pairs are
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found. An entire series of the 3-state process of coalition formation requires 3 cycles (i.e.

each state receives messages, processes and computes, then sends messages) and a varying

number of messages.

The coalition formation phase consists of the following three states that are executed,

in order, by each active agent:

1. Targeted Local Structure Sharing

2. Frozen Pair Discovery

3. Collapse

These states are executed locally by agents that are currently active, with all agents

being initialized with active = true. When an agent is not active, it is because that agent has

joined a coalition and has relinquished control of its variable assignment to the surrogate

agent leading the coalition. All inactive agents are maintained in the surrogate agent’s

coalitionList which is updated in Algorithm 2 when a ‘collapse’ message is received.

3.3.1 Example

In Figure 3.3 we illustrate the process of the coalition formation phase on a constraint graph.

Frozen pairs are indicated by dashed connections. Active surrogates are indicated by the

darker grey coloring. We can see that once an agent has relinquished control of its variable

assignment, the resulting graph can actually be reduced, or folded, because the connections

of all agents in a surrogates coalition list have become its own. Since there are shared

constraints between the frozen pairs, edges and nodes are “virtually collapsed” on top of

each other resulting in smaller, and typically less dense constraint graphs. The illustration

provided is solely for the purpose of demonstrating what is logically occurring. While there

is a manipulation of the constraints and variables going on through the coalition formation

process, it does not change the evaluation of the original problem. Once a solution is found,
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the original constraints and variable relationships are used to determine the quality of the

solution.

(a) (b)

(c) (d)

Fig. 3.3: Illustration of VSR on k-coloring problem, k=3. (a) Constraint graph in original
form. (b) Identification of frozen pairs indicated by dashed lines. (c) Grey nodes indicate
surrogate agents. (d) Reduced constraint graph.

In Figure 3.3a we show a 10-variable binary constraint graph in original form with a

density of 1.4. In Figure 3.3b, 3 frozen pairs have been identified. We see the resulting

graph from the first full series of the coalition formation phase in Figure 3.3c. Agent2

has become the surrogate for agent1 and agent7 is the surrogate for agent5. Figure 3.3d

shows the second full series of the coalition formation phase where agent3 has become

the surrogate for agent2. At this point, there are no more cores and coalition formation

is complete. Note that agent3 was moved to agent2’s position in the illustration, but the
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positioning is inconsequential to the resulting graph structure. The resulting constraint

density of the graph in Figure 3.3d is approximately 1.29.

3.3.2 Algorithmic Description

The VSR coalition formation technique is integrated with the DSA solver and presented as

the VSR-DSA in Algorithm 1. Following the coalition formation phase, illustrated above,

the assignment phase takes place where active agents negotiate a value for their variables

and can be done similar to other DCOP solvers, but leveraging the surrogate assignments

provided by the coalition formation phase.

It should be noted that the use of the DSA algorithm with our VSR coalition forma-

tion technique is only one possible candidate for integration. Other iterative approximate

algorithms, such as the MGM algorithm, could be considered as candidates for integration

with the VSR coalition formation process as there is a clear delineation with the assignment

phase. While the prospect of integration with other solvers is high, it will always require

some modification to the solver itself, but not at the risk of changing the foundation of the

chosen algorithm. Results we present in the following section suggest that any existing

algorithm could benefit from utilizing VSR either as a full integration or a pre-processing

method. If used as a pre-processing method, Algorithm 1 could simply be abridged by

ending at line 24 and having no assignment phase.

3.3.3 Algorithmic Details

At the beginning of each cycle, agents process all new messages sent to them from the

previous time step via Algorithm 2. It is in this algorithm where local changes are col-

lected, including changes to an agent’s neighborhood, an agent’s neighbors neighborhood,

the agent’s coalition list, and the local variable assignments. The types of messages sent

between agents are:
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• local structure - informing a receiving agent about the sending agent’s neighbors and

constraint types

• collapsing - informing a receiving agent that the sending agent will be delegating

authority to another agent (surrogate), thereby allowing the receiving agent to update

its internal data structures

• collapse - informs a receiving agent that it has been given authority over the sending

agent’s variable, including the sending agent’s local information (neighborhood)

• assignment - informs a receiving agent what the sending agent has selected as its new

variable assignment

We now provide more detail on the coalition formation and assignment phases.

3.3.4 Targeted Local Structure Sharing

Starting on line 5 of Algorithm 1, all agents will send a ‘local structure’ message to their

neighbors containing their local view. An agent’s local view consists of their variable(s)

domain and a list of the agents with whom their variable(s) have a constraint with. Sharing

this information provides an extended view of the structure of the local problem to each

neighboring agent. The state is switched to Frozen Pair Discovery for the beginning of

the next cycle. Agents will only send local information to others if it is determined to be a

necessary update. If an agent’s local neighborhood has not changed, then there is no need to

send a ‘local structure’ message to its neighbors. Additionally, if agents detect that a local

state change also affects certain agents within its neighborhood (i.e. via a shared neighbor

between the two sending an update), then the agent will only send ’local structure’ updates

to those agents which it deems could not have been part of another update it has received.

This is necessary to update neighboring agents with information regarding new constraints

or second neighbors.
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Algorithm 1 Sketch of VSR-DSA executed by agenti
1: {Given: set of neighbors, Ni}
2: call ProcessMessages() {Process all new messages}
3: if active = true then
4: {Coalition Formation phase}
5: if state = Targeted Local Structure Sharing then
6: for each neighbor j ∈ Ni do
7: if local structure update necessary for j then
8: send ‘local structure’ message to j
9: state← Frozen Pair Discovery

10: if state = Frozen Pair Discovery then
11: for each neighbor j ∈ Ni do
12: Compute Si,j
13: for each neighbor j′ ∈ Nj do
14: Compute Fi,j′
15: if |Fi| > 0 then
16: surrogate← SurrogateSelection(Fi)
17: if canCollapse = true then
18: for each neighbor j ∈ Ni do
19: send ‘collapsing’ message to j
20: state← Collapse
21: if state = Collapse then
22: if canCollapse = true then
23: send ‘collapse’ message to surrogate
24: active← false
25: state← Local Structure Sharing
26: {Assignment phase}
27: if localChange = false then
28: call DSA-S()

3.3.5 Frozen Pair Discovery

In this state, each agent i processes the local views provided by neighbors to determine

if a structural core exists. This process begins on line 9 of Algorithm 1 and proceeds by

building the structural cores and storing them in S. Recall that the structural core is the

(k − 1) clique. Using the set of cores stored in S , the agent determines the frozen list,

F , by inspecting agents that are the neighbors of his neighbors. If any agent j′ ∈ Nj is

fully connected to the same structural core as agent i, j′ is placed in F . In the event an

agent discovers it is frozen with another agent(s) it must also determine whether or not it
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Algorithm 2 Sketch of ProcessMessages executed by agenti
1: for each message in mailbox from agent j do
2: if message type is ’local structure’ then
3: localChange← true
4: Update N (agentj) and related domains
5: if message type is ’collapsing’ then
6: localChange← true
7: N (agenti)← N(agenti)− agentj
8: if message type is ’collapse’ then
9: localChange← true

10: N (agenti)← N(agenti) ∪N(agentj)
11: coalitionListi ← coalitionListi + agentj
12: coalitionListi←MERGE(coalitionListi, coalitionListj)
13: if message type is ’assignment’ then
14: Record local variable assignment change

will potentially become the surrogate agent responsible for another. This is decided via

SurrogateSelection, Algorithm 3. Our first implementation of the VSR algorithm uses a

Algorithm 3 Sketch of SurrogateSelection executed by agenti
1: {Given: set of frozen agents, Fi}
2: canCollapse← true
3: for each agent j ∈ Fi do
4: if IDj < IDi then
5: canCollapse← false
6: if canCollapse = true then
7: surrogate← arbitrary agent from Fi

lexicographical ordering based on agent ID to determine a surrogate selection between two

agents. This is an accepted methodology in multi-agent systems and DCOP for differenti-

ating agents. Looking forward, we will show in Chapter 4 that there are ramifications for

making such naive selections of a surrogate, and in Chapter 5 we will show that there are

improvements that can be made by performing smarter surrogate selection. When set to

false, the canCollapse flag indicates that there is no possibility of becoming a surrogate of

another lower ranking (via lexicographical identifier) agent.

When an active agent reaches line 18 in Algorithm 1 it checks if the canCollapse flag is

set to true. If canCollapse is true, the agent sends a message consisting of the header string



43

‘collapsing’ to indicate the message type and the agent ID that will become its surrogate

agent. This step is necessary to provide consistency between agents that neighbor each

other and could both be possibly collapsing. If two neighboring agents collapse to two

different surrogates, they will both need to update their local neighbors list before sending

it forward to the surrogate agent. This update is performed in Algorithm 2, line 7. as

agents receive new structure information and maintains consistency in the local structural

knowledge of all agents.

3.3.6 Collapse

Active agents that enter the Collapse state will again check to see if the canCollapse flag

is set to true. At this point, all neighbors of the agent know of its intent to collapse to a

surrogate agent and have updated their local knowledge accordingly. All that is left is to

send a ‘collapse’ message to the surrogate agent identified in Algorithm 3. Agents with

the canCollapse flag equal to true send a message consisting of the header ‘collapse’ to

indicate the message type, the list of its current neighbors, and its coalition list. Sending the

coalition list is necessary as it is possible that the collapsing agent is acting as a surrogate

for other agents and those agents will need to be added to the new surrogate’s coalition list.

This agent now sets its active flag to false, and simply waits for a ’color’ message from its

surrogate once a viable solution has been found. In short, after an agent sends a ’collapse’

message, it is no longer an active participant in the problem solving process.

3.3.7 Assignment phase

In the current implementation of the VSR-DSA algorithm, variable assignment is attempted

in every cycle when no local structure changes have occurred by calling our minimally

modified version of DSA, DSA-S, shown in Algorithm 4. A local structure change is

detected by either a ‘local structure’, ‘collapsing’, or ‘collapse’ message. Any general

DCOP solver could be used for this phase with modifications with respect to the assignment
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of surrogates. However, because this phase is local, a solver would also need to allow for

surrogate assignment to take place after the local solving process has started. Otherwise,

some additional form of a signal would be required to start the solving process after the

coalition formation process is complete and all surrogates have been assigned.

Algorithm 4 Sketch of DSA-S
1: {Given: domain D, activation probability α = 0.33}
2: if there is a conflict of local variable(s) then
3: Compute best possible conflict reduction, δ
4: p← random value from (0.0, 1.0]
5: if p < α then
6: Change variable assignment to δ
7: if new assignment != old assignment then
8: Send neighbors new ‘assignment’ message
9: if time elapsed since last local structure change ≥ ∆ then

10: Send all agents in the coalitionList the new variable ‘assignment’ message

One could simply run the VSR algorithm as a pre-processing step and then run the

DCOP solver of choice. While straightforward, this would lose some of the inherent and

fundamental aspects of the distributed problem solving process and may not always be

possible. In fact, our preliminary work in integrating VSR with the DSA solver shows that

there is some benefit to integration over a strict delineation between coalition formation and

assignment (see Section 3.5.3. Although the VSR algorithm could be used as a stand-alone

pre-processing function for any DCOP solver, integrating it with more sophisticated com-

plete optimal algorithms for a full online solution could be a challenge, if not impossible

without major modification. Many complete optimal solvers assume that the problem is

static throughout algorithm execution as they rely on backtracking and tree search. Inher-

ent in the VSR approach is the possibility of a dynamic graph topology. Because an agent’s

view of the problem structure is changing, modified algorithms will need to take into con-

sideration the possible lack of consistent structure from time step i to time step i + 1. The

DSA algorithm was a simple integration due to its probabilistic nature and non-assumption

of continuity in the problem structure.
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3.4 Properties of Frozen Pair Discovery

Here we discuss 3 basic properties of frozen pairs: Symmetry, Transitivity, and Induction.

Definition 2. Symmetry. Given constraint graph G and two nodes, xi ∈ G and xj ∈ G, if

xi is frozen with xj , then xj is frozen with xi.

As we will discuss in Chapter 5, symmetry is an important property of frozen pairs as

it allows us to prove stability of the coalitions that form under the frozen pairs relationship.

As shown in Figure 3.4, xi would discover xj and vice versa in the VSR algorithm Frozen

Pair Discovery state.

Fig. 3.4: Symmetry property of frozen pairs. Agents x1 and x2 will independently discover
each other.

Definition 3. Transitivity. Given constraint graph G and two frozen pairs, FP (xi, xj) and

FP (xj, xk)→ FP (xi, xk).

As agents may be frozen with more than one agent at a time, pairs of agents that would

not initially discover each other will do so via a shared frozen pair relationship. This

property, shown in Figure 3.5, allows coalitions of agents to form that spans larger portions

of the constraint graph. Agents will find transitive frozen pair relationships once a collapse

occurs in the Collapse state of the VSR algorithm, and another search for frozen pairs

begins.
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Fig. 3.5: Transitive property of frozen pairs. Agents x2 and x3 do not initially recognize
each other, but will end up in the same coalition with x1.

Definition 4. Induction. Given constraint graph G and a frozen pair, FP (xi, xj), a new

frozen pair will form between two nodes, xw and xu, given they share a constraint with the

frozen pair, FP (xi, xj), and share a constraint with another node, xz, such that xz has a

constraint with either xi or xj .

We give an example of the induced frozen pairs in Figure 3.6. Agents x1 and x4 are

not directly frozen with one another, and would not initially detect each other. However,

because x2 and x3 are frozen, they will collapse, creating a new frozen pair due to x1 and

x2’s shared constraint with x5. Induced frozen pairs happen as a result of a coalition for-

mation between two nodes and are discoverable only after the first full iteration through the

VSR algorithm has been completed. As the formation of a coalition combines constraints

of two agents into a single surrogate, that surrogate may enable the detection of further

pairs of agents that will be frozen given the new topology of the constraint graph. Merging

edges and nodes in a repeated fashion results in nested induced frozen pairs and allows for

coalition formation to occur between agents in the network that at first seem unrelated to

one another.

3.5 Empirical Evaluation

In this section we present empirical results pertaining to the structural changes in the con-

straint graphs as well as the algorithmic performance for solving k-coloring problems. All
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Fig. 3.6: Induction property of frozen pairs. Upon the collapse of x2 and x3, x1 and x4

will discover each other in a frozen pairs relationship allowing them to form a coalition.

of our simulations were run in the MASON multi-agent simulation toolkit 1, developed

out of George Mason University. MASON is a discrete-event based multi-agent simulation

library designed to allow researchers to custom build large-scale, lightweight simulations.

Before we begin discussing the coalition formation results, we will discuss the phase tran-

sition in constraint satisfaction problems and how it relates to DCOPs and k-coloring. Our

discussion on the phase transition is necessary to justify the parameter settings used in the

empirical evaluations.

3.5.1 Phase Transitions in Constraint Satisfaction

Constraint satisfaction problems (CSP) are one of the fundamental problems in computer

science and statistical physics. A typical CSP will involve a large number of variables with

a small domain, usually something such as {0, 1} or {true, false}. Given a set of constraints

relating a set of variables, the question of how many variables can be simultaneously satis-

1http://cs.gmu.edu/ eclab/projects/mason/
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fied has been at the heart of discussion in many works. As we have pointed out, and as has

been discussed in the literature, CSPs tend to go through a phase transition of easy-hard-

easy sets of problems. The regions of this phase transition have been studied by various

researchers since the 1991 seminal work of Cheeseman, Kanefsky, and Taylor [13] and the

conclusions as to where the boundaries of easy and hard problems reside has been mostly

agreed upon for various types of CSPs. While there is some minor variations as the where

the region of hard problems begins and ends, it is most certainly agreed upon that there are

more hard problem instances in the middle of the phase transition than at the tails. This

region can typically be found via the order parameter of they problem.

For k-coloring problems, the order parameter used to define the phase transition is

usually the average degree of the graph. Average degree is twice as large as constraint

density since average degree = 2×|E|
|V | and constraint density = |E|

|V | (a simple ratio). We

unify the theoretical results we report on below to be given in terms of constraint density,

where necessary.

Given this, we can control the difficulty of the problems by controlling the constraint

density of the generated random instances. Many works provide a thorough investigation in

an attempt at locating the bounds of the phase transition for k-coloring in terms of average

degree, but a strict consensus has yet to arise. Cheeseman et al [13] empirically showed

that the probability of finding a solvable problem instance sharply transitioned from 1.0 to

0.0 at approximately an average degree = 5.0, which is a constraint density of = 2.5. They

also showed that there was a correlation at this point with the computational difficulty of

finding a solution. Culberson and Gent [15] also performed many empirical evaluations on

the phase transition in k-coloring problems, finding that the phase transition starts as early

as constraint density of 2.3 running to about a max of 3.5. In 2005, Achlioptas, Naor, and

Peres [2] provided a proof that claims the bounds on d could be as wide as 2(k−1)ln(k−1)
2

<

d < (2k)ln(k)
2

, which for k = 3 coloring problems is ≈ 1.4 < d <≈ 3.3. Their work

was strictly on Erdos-Reyni graphs, some with many disconnected components; a property
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criticized in [40]. We are using random networks, generated similarly as Minton [36] did,

which has been adopted in other works such as [38] [35], and [37] where the network

is more connected in terms of maximum graph distance. As a result, most researchers

investigating random networks recognize a phase transition from ≈ 2.4 < d <≈ 3.5.

Therefore, our test and evaluation will be on graph instances that fall within this range.

As we will show, outside of the phase transition areas, we do not see as much benefit,

if any at all, from utilizing the VSR algorithm as we do from using it within the phase

transition region. This is due to the under and over constraindness of the problems outside

the “hard region" of the phase transition. It has been shown that iterative approximate

algorithms, such as DSA, provide very good results in underconstrained problem sets [79].

In the case of overconstrained problems, iterative approximate algorithms are going to

perform poorly but, theoretically, there is very little room for them to improve upon the bad

results they find anyhow. When problems are underconstrained, there is a lack of sufficient

numbers of frozen pairs to allow coalitions to form, leading to wasted cycles and messaging

trying to detect such pairs. In overconstrained problem sets, there is as well a lack of frozen

pairs to lead to the coalition formation of agents using VSR. Agents detect structural cores

but quickly detect that a constraint exists between themselves and the agent opposite the

structural core, again leading to wasted cycles.

3.5.2 Coalition Formation Results

One of the main goals of performing coalition formation in DCOPs is to reduce the dif-

ficulty of finding solutions. In terms of the phase transition, this can be seen as taking a

problem instance that lies at some point of density within the transition, and attempting to

“push it back” in the transition to an earlier part of the curve. We reintroduce the figure

presented in Chapter 2, Figure 3.7, which highlights the area of the transition where we are

attempting to reduce our problem instance densities to.
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Fig. 3.7: The phase transition for k-coloring DCOPs from easy to hard to easy problem
instances based on constraint density. The rightmost shaded region is the original density
region where the “hard” problems lie. The leftmost shaded region is the density range we
attempt to achieve through the coalition formation process.

Our first evaluation is with respect to the reduction in density of the structure resulting

from the coalition formation process. We perform coalition formation only on random in-

stances for k = 3 constraint graphs. These graphs were generated via the routine reported

in [36] for generating satisfiable instances. We then take an existing edge and replace

it with an edge between two randomly selected pairs in the constraint graph. This way

of generating random graph instances is similar in fashion to the Model B, Erdos-Renyi

function and provides us a way to generate graphs with Erdos-Renyi like properties while

guaranteeing full connectedness of the graph. We present the resulting density measures

after running VSR on constraint graphs of different sizes in Figure 3.8, and provide more

detail for certain densities of interest in Table 3.1. Our analysis shows that using VSR on

problems with original densities that are relatively low (i.e. 2.0) we see very little gain.

This is due to the lack of core structures that create frozen pairs in the problem. Without

a sufficient number of frozen pairs, significant coalition formation can not be found. In

Figure 3.8 we see that as density rises more density reduction occurs due to coalition for-

mation. Interestingly, once density rises above a value around 2.7, we see rapid reduction

in the resulting density values. This is the result of the occurrence of many structural cores
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that allow for frozen pairs to form, and corresponds to the phase transition bounds.. In
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Fig. 3.8: Resulting active density values from virtual structure collapsing.

Original 30 var 60 var 90 var
Density resulting ± std resulting ± std resulting ± std

2.0 1.875 ± 0.168 1.985 ± 0.037 1.996 ± 0.012
2.3 1.832 ± 0.414 2.219 ± 0.193 2.279 ± 0.059
2.7 1.333 ± 0.453 1.994 ± 0.662 2.445 ± 0.511

Table 3.1: The resulting average density for 30, 60, and 90 variable problems after per-
forming a virtual structural collapse.

Table 3.2, we show how the actual active problem size decreases. The active problem size

is simply the number of variables that have not collapsed. Note again how the problem

size decreases quickly as the coalition formation process continues to occur in higher and

higher densities. This should be expected, as the number of frozen pairs is increasing and

allowing for more surrogate relationships to form, also supported by the results in Figure

3.8. Also noted is the reduction in overall problem structure resulting from the use of the

VSR. As shown in Figure 3.9, we see that problem structure is reducing to approximately

20% of the original problem structure. There has been much discussion in the literature of

satisfiablity about backdoor variables [71, 70] and the key variables [60] revolving around

what makes the hard problems hard. This could help shed some light on to that problem.
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Fig. 3.9: Resulting active structure from virtual structure collapsing.

Original 30 var 60 var 90 var
Density active ± std active ± std active ± std

2.0 25.73 ± 4.15 56.84 ± 2.85 87.52 ± 1.96
2.3 18.83 ± 7.13 51.43 ± 7.93 85.12 ± 5.90
2.7 8.59 ± 5.24 30.64 ± 18.13 66.05 ± 24.17

Table 3.2: The resulting number of active variables remaining after VSR is used for 30, 60,
and 90 variable problems.

3.5.3 Solver Performance

To test performance, we evaluate the VSR-DSA algorithm on a standard benchmark, MaxSAT

3-colorability DCOP, or as we have referred to it, the distributed k-coloring problem, us-

ing randomized graph instances. Given a set of cost functions f = {f1, . . . fm} where

each fi(di, dj) returns 0 iff di 6= dj , 1 otherwise, the goal is to find a set of assignments

A = {d1, . . . , dn} such that global cost G(A) =
∑m

i=1 fi(A) is minimized. A k-coloring

problem is an instance of graph coloring where each variable has the same finite domain

of k colors to choose from. Finding an assignment of colors for a k-coloring problem,

for any fixed integer k greater than 2, is known to be NP-complete [14]. We compare the

VSR-DSA algorithm against DSA-B [78], a variation of the Fixed Probability algorithm

outlined in [18] and the Maximum Gain Message (MGM) algorithm, a modification of the
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Distributed Breakout Method [77], and detailed in [33]. DSA-B has been shown to have the

best performance on the k-coloring problem of any of the DSA variations that have been

developed. DSA-B works by choosing a new assignment with probability p (the activation

probability) when the agent can move to another state of equal or better value. DSA-B was

chosen as a benchmark to show the relative improvement found by using VSR for coalition

formation while the MGM algorithm was chosen as it employs a form of locally consis-

tent behavior through unilateral variable assignment. Both algorithms are covered in more

detail in Chapter 2.1.

The four main comparisons we carry out in this section are regarding the coalition for-

mation processes overhead, overall solution quality, message passing, and cycles to com-

pletion. We also present a minor result for the real-time performance of the algorithms.

In all experiments, we determine that a solution is completed when the solution quality is

either maximized (i.e. no constraints violated) or when a maximum number of cycles is

exhausted. In all our experiment cases, 500 maximum cycles is used to end testing if no

maximal solution is found. We have run tests with maximal cycles of 1000 and 5000 with

minimal gains in solution quality.

VSR Overhead

We first present results that report on the amount of overhead associated with using the

VSR algorithm in conjunction with the DSA solver. We have developed two different

integrations with VSR. VSR-DSA is our full integration attempting to find an optimal so-

lution while collapsing the constraint graph. The VSR-DSA algorithm is an interactive

algorithm, meaning that the coalition formation process is being performed inline with the

DSA attempting to find a solution. Also presented is the VSR+DSA algorithm, which is

a modified version of VSR-DSA which allows for the VSR to be used as a pre-processing

routine. The VSR+DSA algorithm is considered a batch pre-processing approach. When

using VSR+DSA, coalition formation is run to completion, and then the DSA-B algorithm
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Fig. 3.10: Average number of messages required to solve various instances of 3-coloring.
Here, the shaded area under the curve is displaying the number of messages required for
only the coalition formation phase (VSR alone).

is called on the already reduced graphs. As we discussed in Section 3.3, we can abridge

the VSR-DSA algorithm to use it as a pure graph processing utility. In order to determine

when to stop the coalition formation process, we run VSR until there have been no local

structural changes for δ time steps. The experiments shown reporting on the VSR overhead

use a δ = 5.

Choosing to use either the VSR-DSA or VSR+DSA algorithms is a matter of the type

of environment the algorithm will be run in. Although we will show that there is a bene-

fit to using VSR-DSA over VSR+DSA, we point out that using VSR as a pre-processing

method with solvers other than DSA may be useful. This is especially true when integrat-

ing the VSR coalition formation process with a complete optimal solver where problem

consistency is required. If we tried to use an inline (or interactive) version of VSR with

a complete optimal solver, such as ADOPT [37], the graph topology would change and

ruined the assumptions of the algorithm. Again, this is why we are using an iterative ap-

proximate solver, as there is no requirement for problem consistency to exist as there are

no backups in the search process.

In Figure 3.10, we have a k-coloring problem with a density of 2.7. The shaded area un-
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der the curve represents the amount of overhead in terms of messages used to find coalitions

in the constraint graphs of different variable numbers. The VSR+DSA line itself represents

the combined amount of messages used to find a solution once the pre-processed graph has

been passed to DSA. As we can see, a significant amount of messaging is used to find the

coalition structures that change the graph topology. Very little work is actually required

by the DSA solver itself as the graphs reduce down to a small enough number of active

variables and a low enough constraint density, as we reported on above. The VSR-DSA

full integration requires slightly more messages to find a solution to the problem. This

is due to the fact that during the coalition formation process itself, the graph topology is

changing and taking instances of problem solutions that are close to a solution and making

them non-optimal for the new topology. This requires new negotiation over variable value

assignments. Most of this additional message passing due to topology changes happens

early in the solution process. If we take a snapshot of the average solution quality for

VSR-DSA on a 30 variable problem instance (Figure 3.11) at density of 2.7, we observe

solution quality suffering early in search. Topology changes affect already “agreed upon”

local solutions. This triggers more negotiation for variable assignment. Once the structures

start to settle, the solution quality quickly begins to converge
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Then the question might be, why don’t we just run the VSR algorithm as a pre-processing

routine as opposed to the full integration? The answer turns out to be related to the stochas-

tic nature of iterative approximate algorithms themselves. Figure 3.12 shows the number

of cycles used on the same problem sets to find an optimal solution. Again, we report

the amount of VSR overhead associated with forming the coalitions in terms of number of

cycles as the grey shaded area under the VSR+DSA curve. What we find is that the num-

ber of cycles used to find a solution using the VSR algorithm as a pre-processing routine

and then running DSA requires more work on average than if we used the full integration,

VSR-DSA. This is a due to the fact that sometimes you just get lucky. More specifically,

because the DSA algorithm moves from one solution to another in a stochastic manner,

there are opportunities to find a solution before the graph topology settles. In addition to

having an opportunity at finding a solution more quickly, in terms of cycles, is that it is

difficult to quantify the exact value of δ for larger numbers of variables. To blame for this

is the existence of the Induced Frozen Pairs. When problem instances are small, induced

frozen pairs exist in either a very small number or not at all. As the variable size grows,

the number of induced frozen pairs grows. Quantifying the number of induced frozen pairs

could help us identify the proper value of δ, however the randomization of the problem

graph topologies makes this a difficult task. We will discuss this further in Chapter 6.

Solution Quality

Here we will study the effects of density on solution quality, which is the maximum number

of constraint violations that have been satisfied. To show the effects that density has on

both the problem of finding a solution as well as the opportunity for the VSR algorithm

to build coalitions of agents, we investigate instances of the problem before entering the

phase transition, within the phase transition region itself, and in the late stages of the phase

transition.

Figure 3.13 shows the behavior of the solution quality found using both the DSA, VSR-
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Fig. 3.12: Average number of cycles used to return a result or exceed maximum cycles
allotted. Here, the shaded area under the curve is displaying the number of cycles required
for only the coalition formation phase (VSR alone).

Fig. 3.13: Average solution quality at a density of 2.25, just before entering the phase
transition of a k-coloring, 100 variable problem.
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Fig. 3.14: Average solution quality at a density of 2.7, at the beginning of the phase
transition of a k-coloring, 100 variable problem.

DSA, and MGM algorithms just before entering the phase transition area. As we can see

from the results, there is not much benefit to using a coalition structure at this point. As the

density of the problem is only 2.25, there is a lack of frozen pair structures to be utilized

by the coalition formation process. In addition, most of the graph structures generated with

such a low average degree tend to be chains. As the VSR-DSA algorithm is attempting

to do some frozen pair discovery where there is a significant lack of them, it pushes the

convergence point out farther due to wasted cycles that were not used on search for a

solution. Although we do not find benefit in the use of the VSR-DSA vs using DSA alone,

we do find that the VSR-DSA converges to similar solution quality. In very sparse graphs,

DSA is a better choice for finding a faster convergence on solution quality.

As we enter the beginning of the phase transition at a density of 2.7, we begin to see

the VSR-DSA and DSA algorithms converging to approximately the same quality. Frozen

pair structures are becoming more prevalent with the higher density allowing VSR-DSA to

form coalitions and find solutions equivalent in quality to simply using DSA alone.

At a density of 3.5 and well within the phase transition, we find that the difficulty of
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Fig. 3.15: Average solution quality at a density of 3.5, well into the phase transition of a
k-coloring, 100 variable problem.

the problems located here begin to pose a problem for the stochastic search mechanism,

DSA. As the VSR-DSA algorithm forms coalitions and the graph topology reduces, the

problem instances themselves begin to alleviate some of the difficult search structures that

make cause DSA to get stuck in local maximums.

As is typical with the VSR-DSA, convergence tends to lag behind due to the graph

topology changes. Interestingly, it appears that the graph topology begins to settle just

as the solution quality begins to overtake the DSA solution quality results. This is most

likely due to the fact that the frozen pairs themselves are what is making the problem more

difficult, and therefore limiting DSA’s ability to breakout of the local maximum it finds

itself in. By reducing the structures that harbor the frozen pairs as we do with VSR, we are

able to increase the performance of the search and obtain better results.

In Table 3.3 we present the distribution of solution quality for three particular density

regions of the problems. The VSR-DSA algorithm finds higher numbers of optimal so-

lutions (no constraint violations) as density increases. When density is at a value of 3.0,

92% of the time the optimal solution is found, however, there is still a small chance that

we find a very bad solution (0.7% less than 50% of constraints satisfied). Unfortunately,
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this is the curse of using iterative approximate algorithms which utilize a stochastic search

methodology.

Mean Number of Instances per 100
Density Percent Constraint Violation VSR-DSA DSA-B

2.25

0% (optimal) 0.5 1.2
1% 4.1 6.2
5% 51.3 66.9

10% 39.3 25.6
20% 4.7 0.0
50% 0.1 0.1

2.7

0% (optimal) 52.4 4.0
1% 4.9 0.3
5% 5.3 24.3

10% 27.2 67.9
20% 5.8 3.4
50% 4.4 0.1

3.0

0% (optimal) 92.0 6.1
1% 0.0 7.4
5% 2.7 15.8

10% 1.5 57.5
20% 3.1 12.4
50% 0.7 0.8

Table 3.3: The average number of experiments that resulted in an “at most” percentage of
violated constraints after 500 cycles for the VSR-DSA and DSA-B algorithms.

Message Passing and Cycle Usage

Here we discuss the efficiency gains in terms of message passing and cycle usage from

the VSR coalition formation process. Given some of the results wide variances reported

below, we provide both mean results with their associated variances as well as the Welch’s

two sample t-test to provide the probability of the samples having equal means2. We begin

again by investigating solver performance just as we enter the phase transition region. At

a density of 2.5, Figure 3.16, the number of messages exchanged between agents using

either the VSR-DSA or DSA algorithms begins to vary slightly. The number of frozen

pairs begins to appear as approximately 5% of the active nodes are in a frozen relationship.

The MGM algorithm offers no benefit in terms of message passing at this density, or in

any of our experimental results. Each agent employing the MGM algorithm first sends a
2Welch two sample tests were run in R (http://www.r-project.org/)
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Fig. 3.16: Average number of messages passed at a density of 2.5 as number of variables
increase.

coordination message to each of its neighbors so that agents can calculate whether or not

they would be the maximal gaining agent in the event of a value change. Then, each agent

sends a second message indicating it’s new value. The overhead associated with the MGM

negotiation and search provides little benefit for the k-coloring problem and there for we

omit it for the rest of the message passing analysis. Seen in Figure 3.17 (associated Welch

t-test in Table 3.4) is a better scaled view of the messaging results for a density of 2.5.

Fig. 3.17: Messages passed at density = 2.5. Fig. 3.18: Cycles used at density = 2.5.
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Messages Cycles

Number Variables VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA) VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA)

50 517.3 838.6 1.29e−10 219.7 475.3 2.20e−16

75 1154.4 1369.0 1.32e−3 349.1 495.7 7.17e−12

100 1894.5 1851.0 5.31e−1 454.5 499.0 4.34e−4

Table 3.4: Welch two sample t-test for the number of cycles need to solve instances of
3-coloring problems of various sizes at density of 2.5.

As we proceed farther into the phase transition region, at a density of 2.75 in Figure

3.19 (associated Welch t-test in Table 3.5), we begin to see a clear advantage to using

frozen pairs to form coalitions. At this density, the percentage of nodes in a frozen pairs

relationship is still only about 12%, but the average gain in message reduction is upwards

of 60% as the size of the problem grows.

Fig. 3.19: Messages passed at density = 2.75. Fig. 3.20: Cycles used at density = 2.75.

Messages Cycles

Number Variables VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA) VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA)

50 435.8 952.5 2.20e−16 93.9 448.2 2.20e−16

75 903.6 1526.1 5.99e−16 213.5 468.1 2.20e−16

100 2335.7 1629.9 2.53e−14 324.5 495.0 1.12e−13

Table 3.5: Welch two sample t-test for the number of cycles need to solve instances of
3-coloring problems of various sizes at density of 2.75.

Proceeding even farther into the phase transition, at densities of 3.0 and 3.5 (Figures
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3.21 and 3.23, respectively and associated Welch t-tests in Tables 3.6 and 3.7, respectively)

we find further benefit in terms of the number of messages passed and cycles used. We also

observe a tightening in the variance of our results. While the variance around the number

of cycles is a product of the random graph generation and certain problem instances being

more difficult to solve than others, we can see that the messaging becomes quite efficient

as there are more frozen pairs and a higher degree of coalition formation occurring.

Fig. 3.21: Messages passed at density = 3.0. Fig. 3.22: Cycles used at density = 3.0.

Messages Cycles

Number Variables VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA) VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA)

50 446.8 1048 2.20e−16 71.6 341.2 2.20e−16

75 805.1 1540.2 2.20e−16 100.1 435.9 2.20e−16

100 1224.9 2474.2 2.20e−16 151.2 488.3 2.20e−16

Table 3.6: Welch two sample t-test for the number of cycles need to solve instances of
3-coloring problems of various sizes at density of 3.0.

At these densities, roughly 50% of the graph is inactive (nodes and edges) and we report

the percentage of variables that are frozen at these densities to fall between 18% to 25%.

The percent increase of message passing efficiency is upwards of 45% at d = 3.0 and 50%

at d = 3.5. The percent of increase for cycle useage efficiency is upwards of 67% at d = 3.0

and 72% at d = 3.5 on average.
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Fig. 3.23: Messages passed at density = 3.5. Fig. 3.24: Cycles used at density = 3.5.

Messages Cycles

Number Variables VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA) VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA)

50 526.8 916.9 1.81e−9 61.0 210.5 3.08e−11

75 879.5 1772.3 2.20e−16 80.0 364.1 2.20e−16

100 1320.7 2407.9 2.20e−16 101.7 389.4 2.20e−16

Table 3.7: Welch two sample t-test for the number of cycles need to solve instances of
3-coloring problems of various sizes at density of 3.5.

As we begin to come out of the phase transition region, at a density of 4.0 (Figure 3.25

and Table 3.8), the VSR-DSA algorithm is still more efficient in terms of message passing

and cycles, but we begin to see the percentage of gain tail off. Variances are slightly tighter

in this region due to a high number of frozen pairs, but the average gain against the DSA

algorithm falls to only 37% for message passing and about 58% for cycle usage.

Messages Cycles

Number Variables VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA) VSR-DSA Mean DSA Mean p(DSA ≤ VSR-DSA)

50 622.3 853.3 5.50e−5 65.9 148.5 8.71e−6

75 1036.6 1618.6 6.69e−10 76.7 232.7 2.41e−12

100 1480.2 2320.6 1.05e−10 90.8 251.6 2.11e−13

Table 3.8: Welch two sample t-test for the number of cycles need to solve instances of
3-coloring problems of various sizes at density of 4.0.
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Fig. 3.25: Messages passed at density = 4.0. Fig. 3.26: Cycles used at density = 4.0.

Real-time Running Results

In Figure 3.27, we see that VSR-DSA drastically outperforms the basic DSA-B and MGM

algorithms in terms of real computation time. This performance gain is due to the reduced

number of agents that the system has to wait on for negotiation to occur. Due to agents that

have relinquished control of their variable assignments, there is less communication and a

hastened turnaround time until the set of agents in the system get to re-negotiate.

We would like to point out that the real-time running results presented here only reflect

the average amount of running-time in the system. These results do not accurately reflect

how a real distributed system might behave in the elapsed computation time of to find a

solution. Because the MASON multi-agent system is being run on a single system, each

agent’s code is actually called in succession. Reducing the number of active agents in the

active set will naturally reduce the overall running time. Less agents being active means

less code being run, which leads to this result. However, if we were to field this system onto

a real distributed cluster of computing components, removing one computing component

from the group will not affect the amount of time that the others use. If this were a true

system, what our sample of real-time running result indicates is that the overall system

would be using less average computation cycles across the entire distributed system. Our

cycle use results reported above show that there is a benefit in terms of computational loops

that each agent performs, but those computational loops may be a more expensive process
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Fig. 3.27: Average number of msec required to solve various instances of k-coloring
DCOPs. Performed on a 2.4Ghz Intel Core i7.

due to the coalition search and discovery segments of code. The computing components of

the system that are not actively attempting to solve the problem due to their inclusion in a

coalition are free to do whatever they choose. It might be the case that they go to sleep or

run cycles for another process.
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CHAPTER 4

PROPENSITY-BASED COALITIONS

In the previous chapter we presented the VSR coalition formation method which is based

on the concept of frozen pairs. Agents in a constraint network independently discover

relationships between one another such that they must be assigned the same value when

a satisfiable solution to a problem is found (i.e. the joint probability of their variable

assignments being equal was always 1.0). The VSR algorithm is a powerful method for

distributedly identifying frozen pairs and forming coalitions within the phase transition of

k-coloring problems. Upon formation of the proper coalitions, the integrated DSA solver

is able to find high quality results with a reduced number of messages passed and cycles

utilized.

In this chapter we investigate the question, “what is the proper measure for coalition

formation before the phase transition”? Although VSR-DSA outperforms DSA and MGM

within the phase transition, Figure 3.13 hinted at the fact that the VSR algorithm might ac-

tually reduce the performance of DSA in lower density regions. In fact, performance before

the phase transition was hindered slightly due to the overhead associated with searching for

frozen pairs that might not exist, delaying the convergence to good solution quality. We in-

troduce the concept of probabilistic frozen pairs in this chapter to address the VSR-DSA’s

lack of performance at densities before the phase transition has begun. A probabilistic
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frozen pair may not necessarily require that the joint probability of two variables values

be equal to 1.0 in every solved instance of a problem. In fact, we will discuss many sub-

structure instances in which a coalition can be formed which will allow for positive gain.

When necessary, we will refer to the previous chapter’s definition of a frozen pair as a strict

(or strictly) frozen pair to capture the strict assumption of the joint probability of same vari-

able assignments being 1.0. Using probabilistic frozen pairs, we introduce the αVSR-DSA

algorithm and study its performance on problems before the phase transition where there is

a lack of strict frozen pairs.

We introduce the concept of propensity which drives the probabilistic frozen pairs rela-

tionship and captures the idea of the joint probability between two agents having the same

value assignment in a solved instance of a problem. We first introduce a Markov chain

formulation of k-coloring which motivates a definition of propensity based on the amount

of shared neighborhood between two agents. We show that our definition of propensity

holds for any 2-hop pairwise agent relationship where the two agents shared a common

neighborhood. As the amount of the shared neighborhood grows, the propensity for the

two agents to have the same value grows.

We introduce a Markov network definition of propensity which serves two purposes:

(1) It verifies our definition of propensity based on shared substructure and (2) It offers

us a way to generalize propensity for coalition formation beyond the k-coloring problem.

In problem domains that do not have only the “not-equals” constraint that we have in k-

coloring problems, we can use a Markov network formulation to find propensity values for

other shared substructures that are composed of different constraint types.

This chapter is arranged as follows. In the next section we introduce the Markov chain

representation of k-coloring and define a propensity value which drives the probabilistic

frozen pair phenomenon. We then generalize the propensity value to work for pairs of

agents that share more than one neighbor and are related in a cycle. Following that, we

introduce a Markov network formulation of the problem and discuss the use of the Markov
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network for problems other than k-coloring. We then present the αVSR-DSA algorithm

which uses a minimal value of propensity, α, as its basis for coalition formation. Empirical

results are presented regarding the solution quality, message passing, and cycle use for

problems before the phase transition.

4.1 Markov Properties of k-Coloring

In this section, we discuss the Markov properties for the k-coloring problem and formulate

the k-coloring problem as a Markov network by which we will derive a model for proba-

bilistic frozen pairs. First, we present a Markov chain formulation for k-coloring problems

from an independent agents point of view. This is an important point worth clarifying.

There has been much work in the use of Markov chains for discovering random proper

colorings for a graph, where a proper coloring is one in which no two vertices connected

by an edge have the same coloring. Most work to date that relates Markov chains and k-

coloring problems comes from the statistical physics community and focuses on studying

the Glauber dynamics of an antiferromagnetic Potts model [27]. The Glauber dynamics is

modelled as a Markov chain, Xt, with a state space of all possible colorings, Ω = |k||V |,

where a random walk from a time step t to t+ 1 proceeds as follows:

1. Choose a vertex v ∈ V uniform randomly.

2. Choose a color c ∈ D at random from the set of colors in domain D.

3. If the selection of c provides a proper coloring, set Xt = Xt+1, otherwise Xt = Xt.

Given the Glauber dynamics, researchers have focused on finding polynomial time al-

gorithms for generating an approximate set of all the possible proper colorings of a given

graph,G. Introduced by Jerrum in 1995 [27] to works as recent as Dyer et al [17] and Hayes

[25], researchers have provided polynomial time algorithms for estimating the number of

proper colorings in G which rely on bounding average degree of the graph with k.
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What we investigate here is the pairwise relationship between a fixed node in a graph

to all other nodes in that graph, termed propensity.

Definition 5. Given a constraint graphG, two nodes, xi ∈ G and xj ∈ G have a propensity

value, P , for one another which is the probability that the two nodes are colored the same

when a solution to the problem is found.

A strict frozen pair is a special case of the probabilistic frozen pairs where P = 1.0. A

propensity value P = 0.0 indicates that there are no instances of a solution to a problem

in which the two variables have the same value. Adjacent pairs in a k-coloring problem

always have a propensity for one another which is 0.0 due to the fact that they will never

have the same coloring. From the definition of propensity, we can now define a probabilistic

frozen pair as follows.

Definition 6. Given a constraint graph G, two nodes, xi ∈ G and xj ∈ G are a probabilis-

tic frozen pair, wFP (xi, xj), iff there exists sufficient shared substructure between xi and

xj such that P ≥ α, where 0 ≤ α ≤ 1.0.

The α value is a minimum threshold we will use to allow agents to determine if they

should attempt to form/join a coalition with another agent. What remains to be defined is

the actual derivation of propensity. To do so, we will use Markov networks and define a

value of propensity based on the inference problem in small Markov networks. We start

our discussion by looking at a simple example of propensity in k-coloring chained arrange-

ments.

4.1.1 k-Coloring as a Markov Chain

Given a constraint graph N = 〈V,E〉, where V = {v1, . . . , vn} is a set of n variables and

E = {e1, . . . , em} is the set of m binary constraints, we pose the question, “Given the set

of all satisfiable instances in N , what is the percentage of those satisfiable instances where

two nodes, i and j, have the same joint variable assignment?” To begin, we consider a
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DCOP instance of k = 3 coloring organized in a chained arrangement. As a combinatorial

problem, we know that there kn total combinations of joint assignments over the entire

graph. Since we are interested in only those variable assignments which provide satisfiable

solutions to the problem, we reduce the set of final joint assignments to be 3× 2× 2. More

generally, for a Markov chain of length n in any k-coloring problem, we have

 k

1


1

×

 k−1

1


2

× . . .×

 k−1

1


n

satisfiable instances for k ≥ 2 and n ≥ 2. We see this is true if we consider this as a Markov

Decision Process (MDP) and walk sequentially from left to right along the chain, selecting

a non-violating color assignments at each node. The first node selects from the full set of

possible variable assignments, k, while every subsequent node has its choice reduced to

choosing from the set of k − 1 variable assignments. As an example, Figure 4.1 illustrates

all proper colorings for a network with three nodes and three colors.

Fig. 4.1: Full enumeration of all possible proper colorings for k = 3, n = 3.

By brute force we can generate every possible satisfiable instance for the graph and

record the frequency of equivalent joint variable assignment.

In Figure 4.2, for this highly degenerate case, we find that variable i has 0% chance

of having the same assignment with its adjacent node, and a 50% chance of having the

same assignment with the node 2 hops away. If we extend the k-coloring problem to a



72

Fig. 4.2: A simple chain example of the 3-coloring problem. Dashed lines indicate a
propensity measure.

Markov chain of unbounded length, n, we observe a pattern of conditional dependencies

that exists between non-adjacent nodes in the graph. We extend the graph to have a length

n → ∞ with k = 3 and without loss of generality focus on the probability of equivalent

joint variable assignments between variable 1’s position in the network to all other nodes.

In Figure 4.3 we find that the probability of the same value being assigned to any two

variables in the network converges in a non-monotonic fashion as the distance between the

variables grows. The probability fluctuates around the value 1
k
, or a random assignment.

Fig. 4.3: A chain example of the 3-coloring problem with associated probabilities of
variables having the same joint assignment. Dashed lines indicate this probability.

Changing the value of k will change the probability measure between variables in a

chain arrangement, but we find that the probability will still converge to the value of 1
k
. In

Figure 4.4 we find the same non-monotonic behavior for k = 4.
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Fig. 4.4: A chain example of the 4-coloring problem with associated probabilities of
variables having the same joint assignment. Dashed lines indicate this probability.

Let us define the n-step propensity measure, P(n)
i,j , to capture the observed probability

of equivalent joint variable assignment. For mathematical convenience, we let P0
i,i = 1.0,

as a variable i has the same assignment as itself every time. We then define P recursively

as

P(n)
i,j =

1− P(n−1)
i,j−1

k − 1
, (4.1)

where i and j act both as variable IDs as well as graph indices. We observe that this

function behaves in accordance with the observed frequency in the brute force, exhaustive

method. The probability of node i equaling node j is strictly dependent on the observed

value of node i equaling node j− 1. Variables that are close to each other in the chain have

a higher influence on one another. However, this value quickly converges to random, or 1
k
,

with convergence rates increasing as a function of k, shown in Figure 4.5. Intuitively, as k

grows, there is more freedom in the selection of a variable assignment, and therefore the

probability of equivalent joint assignment decreases rapidly.
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Fig. 4.5: Probabilities of equivalent joint assignments based on graph distance between
two nodes in a chain, random = 1

k
.

While Equation 4.1 works for defining Markov chain structures, we need need to ex-

pand our definition of propensity to handle more robust structures. We find many cycles in

typical constraint graphs and need to calculate the probabilistic relationship of equivalence

between variables in these graphs as well. Using the same method as above of generating

the sets of all satisfiable instances of a k = 3 coloring problem and finding the equiva-

lence probability, we see that the same n-step propensity defined in Equation 4.1 does not

hold. Highlighted in Figure 4.6 are cyclic constraint graph instances. The 1-step propen-

sity measure is indeed the same due to the not-equals constraint, but the 2-step propensity

is different in all cases. This is due to the assignment of a variables value being influenced

by multiple variables as opposed to a single variable as in the chain structure. We observe

that as the cycle size grows so too does the convergence of the equivalence probability to

the related n-step measure from the Markov chain instances. For instance, the values of

the 2-step propensity measures, P (2)
i,j , seem to be converging to the value of 0.5 as the size

of the cycles grows, again demonstrating a fluctuating behavior. Figure 4.7 shows the ob-

served behavior as cycle size grows. Based on the observation of behavior in limited cycle

sizes, it seems that the propensity between an agent and its neighbors on “either side” of it

in the cycle follow with Equation 4.1. Unfortunately, this only holds with sufficiently large
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Fig. 4.6: Propensity measures (dashed lines) between agents with growing cycle structure.

n, but it still gives us insight as to the relationship of two agents in a cycle; the farther away

two agents are in a cycle, they lower the propensity value will be. This idea holds for the

Markov chains as well. If we were to chain out two large enough cycles and connect them

at their ends, as in Figure 4.3, the propensity values look to converge towards 1
k

at their

connecting point, n
2
.

The point to take away from the large chains and cycles is that as distance grows in

either, the propensity value between two agents drops quickly to random. There is no

reason to look out beyond a second neighbor (i.e. a neighbor’s neighbor), even in k = 3

problems. An agent only needs to share local neighborhood information in order to have a

reasonable idea about the propensity relationship between itself and it’s second neighbors.

Therefore, we concentrate only on the information about shared structure between two

agents.

The chain structures shown in Figures 4.3 and 4.4 are straight forward and the propen-

sity values follow from Equation 4.1. We now turn to identify a propensity computation

that can handle the case of shared structure of more than one neighbor. Considering at least
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Fig. 4.7: As n grows sufficiently large in a cyclic structure, propensity is observed to
converge to that found in the Equation 4.1.

two neighbors will guarantee a cycle in the graph which we have shown Equation 4.1 can

not handle. Consider the four node structure in Figure 4.6. From agent 1’s perspective,

there is no benefit in attempting to form a coalition with either agent 2 or 4. All adjacent

nodes have a propensity of 0.0. From the brute force method, we find that the propensity

between agent 1 and 3 is 0.67. The majority of the solved instances evaluate with these two

agents with the same variable value. As we increase the number of shared neighbors (or

structure), the propensity rises quickly, as we show by running the brute force method on

the structures in Figure 4.8.

The reason for this increasing propensity is due to the total number of permutations of

variable assignments within the shared neighborhood between two agents, S(i, j). Imagine

we begin coloring from a centralized approach, starting at the top node, i, for any of the

structures in 4.8. In a k = 3 problem, one color is chosen, at random for i’s assignment.

As we flow down to the shared neighborhood, there are exactly (k − 1)b permutations,

where b is the number of variables in S(i, j), of variable assignments that will allow for a

proper (sat) coloring. After that permutation is realized, the variable at the bottom, j, of

the structure can be assigned whatever value is remaining, based on the shared structure’s
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Fig. 4.8: Increasing shared neighborhoods between two variables leads to rapidly increas-
ing propensity values.

assignments. The question then becomes, what permutations of the shared neighborhood’s

variables will allow i and j to be equal? Let us ask the opposite question: what permuta-

tions of the shared neighborhood’s variables do not allow the variables i and j to be equal?

It turns out, that the only state in which i and j do not have the same assignment is when all

the nodes within S(i, j) have been assigned the same value for their variables. For exam-

ple, in any of the structures above, if variable i is assigned “red”, then the neighbors of i can

only choose from the values “green” and “blue”. As long as both “green” and “blue” are

selected by any number of agents in the shared neighborhood, then variable j has no choice

but to be “red”. However, even in the event where the shared neighborhood is assigned all

the same value is not enough to imply that i and j will not be the same. There is a chance

that the value could be either one of the two remaining values that the shared neighborhood

did not utilize.

Using this information, we setup a definition of propensity that is a function of b, the

number of shared neighbors. Let us define propensity as,

Pi,j =
(k − 1)b

(k − 1)b + (k − 1)(k − 2)b
, (4.2)

where k is the domain size of the variables and b is the number of shared variables
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between i and j. The numerator of our propensity definition takes into account the total

number of permutations that the shared neighborhood can take on. For a cycle of size 4

with k = 3, this number is 4 (assuming “R” selected by i, the 4 permutations are {G,G},

{B,G}, {B,B}, and {G,B}). When the shared neighborhood takes on one of the (k − 1)b

states, it is again possible, but not guaranteed to lead to i and j having the same value.

Now we normalize this number by the total number of possible satisfiable instances, where

again, (k−1)b is the set of all permutations where i can equal j and add in the states where

i and j could choose differently; when i selects from the (k − 1) values not used in S(i, j)

and where j selects from the remaining (k − 2)b choices leftover.

For the 4-node, 5-node, and 6-node examples in Figure 4.8, the calculations of propen-

sity using Equation 4.2 are:

Pi,j =
4

6
≈ 0.67

Pi,j =
8

10
≈ 0.80

Pi,j =
16

18
≈ 0.89

respectively, which are exactly the values given by our brute force method. For a chain

configuration such as Figure 4.2, the propensity using our new equation is P = 2
4

= 0.5,

which is equivalent to the recursive chain definition of propensity in Equation 4.1. We use

Equation 4.2 in the αVSR-DSA algorithm to provide propensity values between an agent

and his second neighbor based on the shared neighborhood between them.

In Figure 4.9 we show the behavior of Equation 4.2 as the size of the shared neigh-

borhood, b, increases. Notice that propensity quickly converges to 1.0 in k = 3 problems.

When there is no shared structure (at b = 0) between two nodes, note that the propensity

value is equal to 1
k
, or a random assignment. This is the same as we saw in the Markov chain
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Fig. 4.9: Propensity for increasing sized shared neighborhoods. In the figure, b represents
the size of the shared neighborhood between two nodes in the graph.

arrangements. As the size of k increases however, more shared neighbors are needed to in-

crease propensity between two agents. This is due to the fact that there are more possible

combinations of variables in the shared neighborhood that could lead to two probabilisti-

cally frozen agents to have different values. This is similar to the results we presented in

Figure 4.5. With more choice of k comes a weaker relationship between two probabilisti-

cally frozen agents.

4.1.2 k-Coloring as a Markov Network

To both verify and generalize the propensity values between variables in the constraint

graphs, we utilize a Markov network formulation of the problem. Markov networks, or

Markov Random Fields, originated from the study of statistical physics and probability

theory and are essentially an undirected version of Bayesian networks. They were for-

mally studied by Preston in 1974 [53], but were first introduced in Ising’s work, in 1925,

of which he was attempting to model empirical observations in ferromagenetic materials

which resulted in his now famous Ising Model [26]. More recently, Koller and Friedman

[31] provide a thorough treatment of Markov networks and demonstrate the usefulness
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of these graphical models for computer science application. We use the Markov network

formulation for two particular reasons: (1) for verification of our propensity definition,

Equation 4.2, and the use of (k-1) cliques for identifying strict frozen pairs, and (2) to ex-

tend the applicability of the frozen pair concept to problems with heterogeneous constraint

types.

Let H = 〈V,E〉 be a (possibly cyclic) undirected graphical model with variables rep-

resented by the set of vertices, V , and conditional dependencies between the variables rep-

resented by the set of edges, E. A set of Markov network factor functions can be defined

for DCOP k-coloring problems that represent the local utility, or propensity between any

two adjacent variables in the constraint graph. Each edge, or constraint, ei ∈ E, represents

the “value” to each of the agents related by this edge. We define a factor function for a

3-coloring problem as shown in Table 4.1.

φ(ei) Value

ared bred 0

ared bblue 1

ared bgreen 1

ablue bred 1

ablue bblue 0

ablue bgreen 1

agreen bred 1

agreen bblue 1

agreen bgreen 0

Table 4.1: A factor function for k = 3 coloring.

Given a set of factors that represent every constraint in the k-coloring instance, Φ =

{φ1(e1), . . . , φm(em)}, we can generate a Gibbs measure over the entire space of the DCOP

instance. This distribution will provide us with the same measures we empirically observed
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in the brute force method as well as the propensity values calculated by Equation 4.2. First

we generate the unnormalized measure, P̃ , using a product of all the factors representing

the constraints.

P̃Φ(X1, . . . , Xm) =
k∏
i=1

φi(Xi) (4.3)

To normalize Equation 4.3 we define a partition function, ZΦ, which is simply the sum

over all the values in the joint distribution table represented by P̃Φ.

ZΦ =
n∑
i=1

P̃Φ(xi) (4.4)

The partition function ZΦ is then used to give us our desired Gibbs measure for any

DCOP instance as:

PΦ(x1, . . . , xn) =
1

ZΦ

P̃Φ(x1, . . . , xn) (4.5)

Following from the principle of maximum entropy, the Gibbs measure provides for us

the complete set of joint variable assignments for our network as well as a way to verify

the propensity values from Equation 4.2. For comparison, we ran an exact inference query

over the 4,5, and 6-node structures from Figure 4.8 as well as on 7 and 8 node structure of

similar topology (i.e. with shared neighborhoods of 5 and 6). The values obtained from the

Markov network calculations were exactly equal to our propensity calculations. For the 7

and 8-node Markov networks, the computations came out as:

MN(i, j, 5, 3) ≈ 0.941 = Pi,j =
25

25 + (3− 1)(3− 2)5
≈ 0.941

MN(i, j, 6, 3) ≈ 0.97 = Pi,j =
26

26 + (3− 1)(3− 2)6
≈ 0.97

where MN(i, j, b, k) is the Markov network calculation of a k-coloring between two
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nodes, i and j, with shared structure size b. We also tested our propensity equation against

Markov networks with k = 4. The Markov network calculations again verify the correct-

ness of the propensity equation, Equation 4.2.

MN(i, j, 2, 4) ≈ 0.429 = Pi,j =
32

32 + (4− 1)(4− 2)2
≈ 0.429

MN(i, j, 3, 4) ≈ 0.529 = Pi,j =
33

33 + (4− 1)(4− 2)3
≈ 0.529

Extending Propensity

The Markov network formulation of a DCOP problem allows us to extend our propensity-

based coalition formation approach beyond simple k-coloring problems with homogeneous

“not-equals” constraints. If we were to change the k-coloring problem to include “equals”

constraints, the equation for propensity of canonical k-coloring problems will no longer

hold. Instead of having to reformulate the propensity equation, we can model the factor

functions as a representation of the new constraint types that are that makeup a given DCOP.

Given a set of constraints relating a set of variable assignments, we can build a factor

function that represents those constraints. In Figure 4.2, we show a factor function for a

k-coloring problem with the addition of an “equals" constraint for the two variables having

the same color “blue", which equates to φ(ablue, bblue) = 1.
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φ(ei) Value

ared bred 0

ared bblue 1

ared bgreen 1

ablue bred 1

ablue bblue 1

ablue bgreen 1

agreen bred 1

agreen bblue 1

agreen bgreen 0

Table 4.2: A factor function for k = 3 coloring with the added “equals” constraint being
valued for two variables adjacent and having the value “blue”.

Now, instead of attempting to reconfigure our Equation 4.2 to fit the new constraints,

we simply a series of graph topologies such as those in Figure 4.8, record the propensities

based on the constraints recognized and the number of variables in the shared neighborhood

between two variables, and record those special topologies in a look up table for an agent.

While this is not as general of an approach as we had for the canonical k-coloring prob-

lem, it does serve as a meaningful way of encoding graph topologies with their associated

propensity values as agents detect them.

4.1.3 Strict Frozen Pairs and Propensity

As we have shown, unconstrained agents that have a shared neighborhood between each

other share a positive propensity value with one another. Our propensity equation shows

that as the size of the shared neighborhood between two agents grows, so too does the

propensity between those two agents. We point out that Equation 4.2 does not handle the

case where there is a constraint between any two agents within the shared neighborhood.
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In Chapter 3 we have shown that the strict frozen pair must have the same joint variable

assignment, or propensity equal to 1.0, as in Figure 4.10.

Fig. 4.10: A strict frozen pair for k=3 coloring. Dashed line indicates propensity.

If we were to calculate this graph topology as a Markov network, we indeed will obtain

a value of 1.0. We point this out as in the next section we present the αVSR-DSA algorithm,

which uses our propensity equation. As the propensity equation does not account for the

strict frozen pair, we must still search for it. If a (k − 1) clique is detected, it is a strict

frozen pair, and we set the propensity between the two agents sharing that clique to 1.0.

4.2 αVSR-DSA

We now present the αVSR-DSA algorithm, Algorithm 5, which uses the concepts of both

strict and probabilistic frozen pairs to identify potential coalitional partners. We use the

tuning parameter, α, to control the minimal acceptable level of propensity that the VSR will

use to identify frozen partners. In terms of propensity, α = 1.0 will only allow the agent to

identify the strict frozen pair relationship where it is guaranteed that the two variables must

have the same variable joint assignment. As we lower α, agents will consider coalition

formations with agents with less and less shared structure. For example, at α = 0.67, an

agent running αVSR-DSA will take a coalition partner that it shares a 2-node neighborhood

with, as that shown in Figure 4.8.

As with the VSR-DSA algorithm, agents the coalition formation works in a synchro-

nized 3-phase approach with all agents initialized as active. The algorithm initializes by

having all agents share their local structure with their neighbors. This information includes
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the agents neighbors, domain, and constraint information. From this information, each

agent can independently calculate the structure they share with each of their second neigh-

bors. This is done in phase 1, frozen pair discovery. During frozen pair discovery, an agent

looks for a second neighbor that shares a common structure, Si,j . If α = 1.0, each agent is

searching for a (k-1)-clique. A shared (k-1)-clique indicates the strict frozen pair, and once

detected, the search can terminate. For α < 1.0, shared structure is calculated by looking

for the number of neighbors that are shared with a particular second neighbor. During the

evaluation of propensity from and agent i to an agent j, if a strict frozen pair is detected,

the search terminates and Pi,j gets set to 1.0. Otherwise, agent i records the number of

shared neighbors, b, and uses b in Equation 4.2 to calculate Pi,j . The propensity values

calculated for each second neighbor are stored in a vector of 2-tuples, Fi, which holds the

second neighbor identifier and propensity value.

As with the VSR-DSA algorithm, each agent independently decides which of them

will act as the surrogate of the to-be-formed coalition in the SurrogateSelection algorithm,

Algorithm 3. If an agent has determined that it is not a surrogate and will be joining another

agent to form a coalition, or join an existing one, the agent sends a collapsing message to all

its neighbors. This message indicates that neighbor agents should update their internal data

structures to reflect the proper agent to now negotiate with during the search for a viable

variable assignments. If the agent is a potential surrogate, it will wait and see if it has been

selected to be a surrogate by another agent in the second phase.

In the second phase, agents that are going to join a coalition send the coalition surro-

gate agent a “collapse” message that includes all that agents local constraint information.

The surrogate agent will receive this information and update its internal data structures

accordingly. Once the agent has collapsed with the surrogate, it becomes inactive and sim-

ply waits for any value assignments that get passed to it from only its surrogate. In the last

phase, the Assignment phase, all agents, surrogate or independent, will attempt to negotiate

a variable setting using the DSA-S algorithm, Algorithm 4. Local structure changes have
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been detected by either “collapsing” or “collapse” messages, so updates to the internal data

structures would allow proper negotiation with all active agents. Surrogate agents will not

send an update message to the members of their coalition until a certain amount of time,

ω, has elapsed where no other negotiating agents have sent value update messages. This

prevents unnecessary messaging between surrogate and coalition members.

4.2.1 Internal Conflict

The propensity values we calculate are estimations of the true value. When two agents are

related by a shared neighborhood, they only can take into account that local information

when calculating the propensity values. The definition of propensity we provide treats the

value calculation as if the network were in a vacuum with no external dependencies. This

assumption is fine the majority of the time, however, there is the possibility that a conflict

within the coalition itself can occur, which we call internal conflict.

Consider the constraint network presented in Figure 4.11. If agent 2 had full knowl-

edge of the problem, she would never chose to form a coalition with both agents 4 and

6 as that would create a coalition in which one solution does not work for all members.

Unfortunately, agent 2 only has local knowledge, so the constraint between agents 4 and

6 is unknown, and 4 and 6 do not know they will be simultaneously collapsing to agent

2. Once the collapse occurs, internal conflict is present. This can have a direct effect on

solution quality if the agents on the left and right attempt to join the agent in the middle at

the same time.

While internal conflict can theoretically occur, in practice they do not occur frequently.

In fact, the only way an internal conflict can occur is if there are at least three agents,

arranged as in Figure 4.11 (i.e. shared neighborhoods between three consecutive agents),

and the agents on the “ends” attempt to form a coalition with the middle agent selected

as the surrogate. The constraint densities before the phase transition consist of structures

that have “sparse” mean degree, and the occurrence is low where two agents having a
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Fig. 4.11: a. True propensity, b. Local propensity estimation, c. Resulting coalition with
internal conflict between agents 4 and 6 if this coalition is formed.

probabilistically frozen relationship to the same second neighbor, and then having a direct

constraint between each other that would cause internal conflict. We detect internal conflict

in our empirical evaluation and find that the occurrence is less than 3%.

4.3 Empirical Evaluation

To evaluate the usefulness of coalition formation in the low constraint density regions be-

fore the phase transition, we tested our approach in the distributed k-Coloring Min-CSP

problem discussed in Chapter 2 on 50, 75, and 100 variable problems with a constraint

density of 2.25. We chose this density as it represents the area of the problem region which

the VSR-DSA algorithm did not at least match the solution quality of the DSA algorithm.

The under-performance of VSR-DSA in terms of solution quality at this density is due to

the lack of triadic closures which enable a strict frozen pair to form, and therefore result in

coalitions. As agents search for coalitions that are not usually there, wasted cycles result in

a longer time to convergence than DSA which was constantly looking for a solution. The

overhead of the coalition search and formation did not result in “easier” structures, only

longer assignment times. We present results using both the DSA algorithm and αVSR-

DSA algorithm at various settings for minimal propensity. The α = 1.0 setting is the

VSR-DSA algorithm which will only form a coalition with agents that have strict frozen
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pair relationship. The α = 0.67 setting will have agents forming coalitions with one an-

other if they detect a shared neighborhood that has a minimum of two shared neighbors

between any two agents. As the α values go towards 1.0, more and more shared neighbors

have to exist for agents to consider them as coalition partners.

We begin by investigating the solution quality performance of the algorithms at a prob-

lem size of 50. The DSA algorithm converges at a faster rate than the αVSR-DSA al-

gorithm, just as we observed in Chapter 3 due to the coalition formation process eating

up cycles that could be used to search for a solution. At this number of variables, all the

αVSR-DSA implementations converge to roughly the same point as DSA, with the excep-

tion of α = 0.67. Agents utilizing probabilistic frozen pairs at this density level tend to

find coalition partners that offer benefit in terms of finding better solution quality. Once

the probabilistic frozen pair coalitions form, at roughly 150 cycles, convergence to a higher

average solution quality can be found. The use of probabilistic frozen pairs allows agents

to break out of local maximums. For the other α settings, there are not enough occurrences

of larger shared neighborhoods that allow for coalitions to form. This results in these im-

plementations getting stuck in the same local maximum as the DSA algorithm.

Fig. 4.12: Solution quality for n = 50 at a density of 2.25.
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Fig. 4.13: Solution quality for n = 75 at a density of 2.25.

At both the 75 and 100 variable problem sizes, we see similar results, where the lack

of coalition structures limits the performance boosting effects of VSR method. Again,

at α = 0.67, there are enough probabilistic frozen pairs to allow coalitions to form, and

provide a benefit in terms of overall solution quality.

4.4 Summary

In this chapter, we have introduced the concept of a probabilistic frozen pair, which is

driven by the propensity value between two agents. Propensity is the probability of the

variables having the same joint assignment in satisfiable instances of a given constraint

graph. We present a Markov chain formulation of the k-coloring problem that motivates

the use of only local knowledge as the farther away two agents are in k-coloring chain,

the more random the propensity between two agents becomes. Propensity values between

agents behave differently in a graph cycle than a chain, and we present a definition of

propensity to capture the relationship between two variables that exist in a cycle and have

a certain amount of shared substructure, or neighborhood. We verify the correctness of



90

Fig. 4.14: Solution quality for n = 100 at a density of 2.25.

our propensity measure by formulating the k-coloring problem as a Markov network and

showing that structures in both equate to the same propensity values. In addition, we show

how the Markov network can allow us to generalize the concept of propensity in problems

other than canonical k-coloring with only the “not-equals” constraint. This can allow us

to set up a Markov network to derive special sub-structures worth exploiting for coalition

formation to occur between two agents. We present solution quality results in low density

problems where strict frozen pairs do not frequently occur, and the VSR-DSA algorithm

struggled. The αVSR-DSA uses probabilistic frozen pairs to form coalitions, boosting the

performance of the VSR-DSA for increased overall solution quality.
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Algorithm 5 αVSR-DSA as executed by agenti
1: {Given: set of neighbors, Ni, tuning parameter α}
2: call ProcessMessages() {Process all new messages}
3: if active = true then
4: if state = Targeted Local Structure Sharing then
5: for each neighbor j ∈ Ni do
6: if local structure update necessary for j then
7: send ‘local structure’ message to j
8: state← Frozen Pair Discovery
9: if state = Frozen Pair Discovery then

10: for each neighbor j ∈ Ni do
11: Compute Si,j
12: for each neighbor j′ ∈ Nj do
13: valj = mathcalPi,j′
14: if valj ≥ α then
15: Fi ← (i′, valj)
16: if |Fi| > 0 then
17: surrogate← SurrogateDetection(Fi)
18: if surrogate != agent i then
19: for each neighbor j ∈ Ni do
20: send ‘collapsing’ message to j
21: canCollapse = true
22: else
23: canCollapse = false
24: state← Collapse
25: if state = Collapse then
26: if canCollapse = true then
27: send ‘collapse’ message to surrogate
28: active← false
29: state← Assignment
30: if state = Assignment then
31: call DSA
32: if time since last value update ≥ ω then
33: send update message to all coalition members
34: else
35: do nothing this phase
36: state← Frozen Pair Discovery
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CHAPTER 5

THE STABILITY OF COALITIONS FOR

k-COLORING

As has been shown in the previous chapters, the use of coalition structures for solving dis-

tributed constraint optimization problems with an iterative approximate solver results in

both solution quality gains as well as efficiency gains in terms of both the amount of in-

formation exchanged as well as the amount of time it takes to find a solution. The use of

identifying both strictly, as well as probabilistically, frozen pairs allows agents to distribut-

edly identify potential coalition partners. In this chapter, we detail the cooperative nature

of the frozen pairs relationship and study the formal aspects of coalition formation between

frozen pairs as that of a hedonic game.

We define a new value function for use under the hedonic game assumption. Our value

function uses the propensity function to derive value of a potential coalition to an agent.

We discuss the stability of the coalitions based on the new value function and introduce

a new algorithm for coalition formation under the hedonic game assumption called the

Hedonic Game DSA (HG-DSA) algorithm. In the HG-DSA algorithm, agents selectively

evaluate potential coalitions and make a decision about joining or not joining based on the

composition of agents within (or potentially within) a coalition.
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This chapter is organized as follows. We first provide an introduction to hedonic games

and their formal definition. Then, we discuss preference and value functions and their

properties. We then introduce the Nash stability concept that have been proven in the

literature to exist under the use of particular types of value functions. We discuss the

stability of the coalitions under the strict and probabilistic frozen pairs relationships. We

introduce the HG-DSA algorithm and provide empirical results supporting the value of its

use for solving k-coloring problems. We point out that sometimes selecting what might

seem as the “best” coalition to join does not always result in the most effective strategy for

coalition formation.

5.1 Hedonic Coalition Formation Game

The study of coalitions in game theory has played an important role since the von Neumann

and Morgenstern released their book the Theory of Games and Economic Behavior in 1944.

Coalitional games, also referred to as cooperative games, address two basic questions:

(1) Which coalitions will form and (2) How are the payoffs divided up fairly among the

members of the coalitions. Traditional work in the area of cooperative game theory has

focused on the second of the two questions, as most of the time it is assumed that either

the grand coalition (the group of all members of a game) should and will form, or that

the set of players will be pre-arranged in specialized partitions for study. Under these

assumptions, analysis concepts such as the Shapley value and core were used to study the

distribution of payoffs to members in a partition. To answer the first question, Dreze and

Greenberg introduced coalition formation games [16] to study the formation of coalitions

themselves. Extending the work of Dreze and Greenberg, both Bogomolnaia and Jackson

[7] and Banerjee et al [6] introduced the hedonic assumption about the coalition formation

process, called hedonic coalition formation games or more simply hedonic games. The

hedonic assumption is that a member of a coalition is only concerned about the composition
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of the coalition he is a part of and not how external coalitions are organized.

A hedonic game, G, is a pair, (N, (�i)i∈N), where N is a finite set of all players,

N = {1, . . . , n}, and �i is a complete, transitive, and reflexive binary relation (preference

profile) over the set Si(N) = {S ∈ 2N : i ∈ S}. Note that a strict preference relation,

�i, and indifference relation, ∼i, are given by S �i T ⇔ [S �i T and T 6�i S] and

S ∼i T ⇔ [S �i T and T �i S]). A coalition partition1 is a set π = {Sk}Kk=1 over N such

that Sk ⊂ N are disjoint and
⋃K
k=1 Sk = N . Each subset, Sk, is called a coalition of N . We

denote the coalition which i is a part of in π as Sπ(i) Let the set of all possible coalition

partitions in N be denoted as π(N). Also, let all partitions of which an agent i is a part of

in π(N) be denoted as π(i).

5.1.1 Preferences and Value Functions for Hedonic Games

Each agent i ∈ N has a value for being in a coalition with another agent j ∈ N reflected

by a real numbered value function vi(j). We assume that vi(i) = 0 unless otherwise stated.

We can extend the value function to apply over coalitions of agents, vi(S) for all S ∈ π(i).

This restricts the evaluation of a coalition to only those coalitions which i can be a part of.

There have been many ways of extending the value function to apply to a coalition for

which an agent i finds itself in. In particular, researchers have studied the min [59] and max

[24] hedonic games where a coalition’s value to i is based off the least preferred and most

preferred member, respectively, fractional hedonic games [5] where the coalition’s value

to i is based off the average value of the members in the coalition, and additively separable

hedonic games where a coalition’s value to i is based off the sum of all members values in

the coalition. We will focus our discussion on additively separable games as they are most

representative to the coalitions formed under the VSR utility function presented later in the

Chapter. First, we present some mathematical properties about value functions.

Given a preference profile for the game �i, and a value function vi : N → R, we

1Also referred to as a coalition structure.
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require that,

S �i T ⇔ vi(S) ≥ vi(T ), (5.1)

for all coalitions S, T ∈ π(i). If a coalition is preferred by an agent i, then the value

function vi will reflect that preference. We say that a value function exhibits rationality, or

individual rationality, if for all coalitions Sk ∈ π(i),

vi(Sk) ≥ vi(i). (5.2)

Individuals in a coalition are behaving rational if the coalition which they are a part of

provides as good as or better situation for them than acting alone. Corollary to Equation

5.2, a partition π is said to satisfy individual rationality if for all i ∈ N ,

π(i) �i {i} (5.3)

We will be discussing the value function an agent uses and how it effects the stability of

resulting coalitions. Bogomolnaia and Jackson [7] showed that if a value function demon-

strates both additive separability and symmetry that Nash stability. Here we introduce the

properties necessary for Nash stable coalitions to form.

Definition 7. A game G satisfies anonymity iff for any i ∈ N , for any S, T ∈ Si(N) with

|S| = |T | we have S ∼i T .

Alternatively, we can look at anonymity from the individual player’s perspective. We

say that player i’s value function satisfies anonymity if ∀S1, S2 where i ∈ S1 and i ∈ S2,

|S1| = |S2| ⇒ vi(S1) = vi(S2).

Definition 8. A value function is symmetric if vi(j) = vj(i) for all agents i, j ∈ N and

strict symmetric if vi(j) 6= 0.
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As discussed in Chapter 3, the frozen pairs relationship is symmetric by nature. Our

value function should not violate that symmetry. Next we introduce the concept of additive

separability.

Definition 9. A value function is additively separable if for each coalition S ∈ π(N) and

all agents i ∈ N ,

vi(S) =
∑

j∈S vi(j)

if i finds himself in the same coalition as j and for any two coalitions S, T ∈ π(N), if

S �i T then,

∑
j∈S vi(j) ≥

∑
j∈T vi(j)

5.1.2 Nash Stability

Here we introduce the Nash stability concept which is typically used in the literature. Sta-

bility of the system is a key concern for the coalition formation process. Stability, which

we can also view as equilibrium, is detrimental to the efficiency of the system and quality

of the solutions. If the system were out of equilibrium, we would see tremendous increases

in both message and cycle counts as well as degradation in solution quality.

Definition 10. A coalition partition π is Nash stable if there does not exist an i ∈ N and a

coalition Sk ∈ π ∪ {∅} such that Sk ∪ {i} >i Sπ(i) and Sk ∪ {i} ≥j Sk for all j ∈ Sk.

A Nash stable coalition is one in which no player can benefit by defecting from his

current coalition S to a new coalition T . Nash stability was shown to exist in [7] for

additively separable games with symmetry.

5.1.3 Frozen Pairs Graph

As we are only concerned with the coalition formation process as it pertains to the set of all

frozen pairs, we introduce a frozen pairs graph model of the frozen pairs relationships. A
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frozen pairs graph, FPG = (V,E), represents the frozen agents and their propensities to-

wards one another. We derive FPG from the original constraint graph where V represents

our frozen agents (i.e. FP (i, j)∀i, j ∈ N ), and E = {(i, j) : i, j ∈ V, FP (i, j)} represents

the propensities between agents. For example, Figure 5.1 shows a simple constraint graph

for a k = 3 coloring problem with a single frozen pair and the corresponding frozen pairs

graph.

Fig. 5.1: A simple constraint graph (left) with α = 0.67. Resulting frozen pairs graph
(right) with two edges.

The edges in a frozen pairs graph between two agents, i and j, is assumed to have a

value of 1.0 if P(i, j) ≥ α. In Figure 5.1, the edge between i and j exists only if α = 0.67.

If we set α = 1.0, then we get the resulting frozen pair graph with no edges in Figure 5.2.

If unspecified, we assume α = 1.0, the strict frozen pairs case.

Fig. 5.2: A simple constraint graph (left) with α = 1.0. Resulting frozen pairs graph
(right) with no edges as there are no strict frozen pairs.
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5.2 Additively Separable Value Function for Coalition

Formation

In this section we cover the two additively separable value functions we use for an agents

evaluation of which coalition to join. The general structure of the value function we use is

derived directly from Definition 9 and re-stated here:

vi(S) =
∑
j∈S

vi(j), (5.4)

where,

vi(j) =

 1 : P(i, j) ≥ α

−∞ : adjacent in constraint graph

The value of −∞ is necessary to maintain consistency in the solutions and make a

coalition structure which contains a conflict for an agent i undesirable for that agent. Note

that the value of a coalition S is equivalent to the size of the coalition due to the transitivity

property of frozen pairs. If two agents i and j are frozen, then any agent k which i or j

is frozen with must be frozen with coalition {i, j}. Given the choice between two equally

sized coalitions, the agent would be indifferent. Therefore, given two coalitions of equal

size, U and T , the value function exhibits anonymity,

vi(U) =
∑
j∈U

vi(j) = |U | = |T | =
∑
k∈T

vi(k) = vi(T ) (5.5)

since the only members of U or T are members where FP (i, j) = 1.0. The value

function for strict frozen pairs is derived directly from the definition of additive separability,

and we show symmetric evaluation below.

Proposition 3. The value function in Equation 5.2 is symmetric between for agents i and

j, where vi(j) = vj(i).
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Proof. Part 1: The first part of the proof requires us to show that vi(j) = vj(i) for the strict

frozen pairs. In the event that an agent detects a (k − 1) clique in the frozen pair discovery

phase, P(i, j) will return the value of 1.0 without running a calculation using Equation 4.2.

As shown in Chapter 3, both agents in a strict frozen pair will detect each other and must

have the same variable assignment.

Part 2: Next, we handle the probabilistic frozen pairs case. Recall that the calculation

of P(i, j) = (k−1)bi,j

(k−1)(k−2)bi,j
where k is the size of the domain and bi,j is the size of the

shared neighborhood. The calculation of the shared neighborhood, S, between two agents

i and j is calculated as S(i, j) = N (i) ∩ N (j) (see Chapter 3) where N (x) is the entire

neighborhood of an agent x. Then, we have

P(i, j) = P(j, i)

(k−1)bi,j

(k−1)(k−2)bi,j
= (k−1)bj,i

(k−1)(k−2)bj,i

(k−1)(S(i,j))

(k−1)(k−2)(S(i,j)) = (k−1)(S(j,i))

(k−1)(k−2)(S(j,i))

(k−1)|N (i)∩N (j)|

(k−1)(k−2)|N (i)∩N (j)| = (k−1)|N (j)∩N (i)|

(k−1)(k−2)|N (j)∩N (i)|

for which we know |N (j) ∩N (i)| = |N (j) ∩N (i)| and therefore bi,j = bj,i.

Part 3: Finally, we note that any two agents that are directly constrained with each other

(adjacent) both know they are adjacent, and therefore vi(j) = vj(i) = −∞

5.2.1 Strict frozen pairs

When two agents are in a strict frozen pair relationship, they have a propensity of 1.0, a

state where there is a guarantee that they will have the same value assignment. Otherwise,

there is no such guarantee available and we assign a value of −∞ to prevent any coalitions

from forming outside of the strict frozen pairs. Coalitions formed in the strict pairs VSR

algorithm are formed in a pairwise, synchronous manner. When an agent determines it is
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frozen with another, the surrogate selection process indicates to an agent, independently,

which one will become the lead. Once an agent joins another agent’s coalition, the rela-

tionships (constraints) that the joining agent has are transferred to the surrogate. At this

point, the surrogate has the information necessary to determine if additional frozen pairs

exist from the addition of a coalition member. This is the transitivity property discussed in

Chapter 3 Section 3.4 and allows for larger coalitions to be formed over time. As this is

the case, as coalition size grows, information about the set of coalition partners to a given

individual grows. Consider the game with the frozen pairs shown in Figure 5.3.

Fig. 5.3: (a) A simple constraint graph with two frozen pairs. (b) A simple frozen pair
graph.

We represent the values for this game in Table 5.1 and omit the values for agents with

no frozen pair relationships, {l,m, n, o}.

π(N) vi(Sπ(i)) vj(Sπ(j)) vk(Sπ(k))

{i}, {j}, {k} 0 0 0

{i, j}, {k} 1 1 0

{i, k}, {j} 0 0 0

{i}, {j, k} 0 1 1

{i, j, k} 1 2 1

Table 5.1: Additive separable values for each agent in the coalition game from Figure 5.3.
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The resulting coalition of {i, j, k} is stable in terms of Nash stability and core stable.

For Nash stability, we are looking for a coalition that one can deviate from their current

coalition to better themselves, which does not exist. The partition {i, j, k} also represents

the unique core allocation for this game.

5.2.2 Probabilistic frozen pairs

The coalition formation process for the probabilistic frozen pairs utilizes the same value

function given in Equation 5.4. The relaxation away from strict frozen pairs introduces the

possibility that an agent i could enter a coalition S which violates i’s individual rationality,

or vi(Sk) < vi(i). This occurs when an agent enters a coalition with internal conflict, as

introduced in Chapter 4. We present again the issue of internal conflict in Figure 5.4. As

the entry into a coalition can occur simultaneously by an unknown number of agents in the

system, we could get internal conflict between two individuals that join at the same time.

In the Figure 5.4, agents 2, 4, and 6 would detect each other as probabilistic frozen pairs

running the αVSR-DSA algorithm with a minimum α = 0.67. With the current identifiers

of each agent in this configuration and the lexicographical surrogate selection algorithm,

agent 2 would be selected as the surrogate for the coalition, and therefore would be the

agent that both agents 4 and 6 would attempt to join with. However, notice that agents 4

and 6 have a direct constraint with each other, and therefore a value of −∞ for each other.

Unfortunately, neither agent 4 or 6 will detect this issue until they have joined the coalition

with agent 2.

The coalition pictured in Figure 5.4c would evaluate to: v4({4, 2, 6}) = v6({4, 2, 6}) =

1 −∞ and v2({4, 2, 6}) = 2. Note that this coalition is not a Nash stable solution. Both

agents 4 and 5 can deviate from this coalition in order to better themselves. We present the

frozen pair graph in Figure 5.5 and full payoff table for agents 2, 4, and 6 in Table 5.2.
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Fig. 5.4: a. True propensity, b. Local propensity estimation, c. Resulting coalition with
internal conflict between agents 4 and 6 if this coalition is formed.

Fig. 5.5: The frozen pairs graph for the constraint graph in Figure 5.4.

π(N) v4(Sπ(4)) v2(Sπ(2)) v6(Sπ(6))

{4}, {2}, {6} 0 0 0

{4, 2}, {6} 1 1 0

{4, 6}, {2} −∞ 0 −∞

{4}, {2, 6} 0 1 1

{4, 2, 6} −∞ 2 −∞

Table 5.2: Additive separable values for each agent in the coalition game from Figure 5.4.

Two Nash stable solutions for the game in Table 5.2; {{4, 2}, {6}} and {{4}, {2, 6}}.

Unfortunately, the αVSR-DSA algorithm will not find either of the two in it’s current form.

Therefore, we must account for this and allow the evaluation of particular coalitions to
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be done by the agents before forming. For that, we introduce the Hedonic Game DSA

algorithm.

5.3 Hedonic Game DSA Algorithm

To avoid violating individual rationality, we modify the VSR algorithm to allow agents to

evaluate potential coalitions before joining, and therefore avoiding internal conflicts lead-

ing to non-Nash stable solutions. We introduce the HG-DSA (Hedonic Game - DSA)

algorithm, presented in Algorithm 6. The HG-DSA algorithm overhauls the αVSR-DSA

algorithm by adding two new states to the coalition formation phase: Surrogate Response

and Check Coalition. The HG-DSA algorithm is structured as such:

1. Targeted Local Structure Sharing

2. Frozen Pair Discovery

3. Surrogate Response

4. Check Coalition

5. Collapse

6. Assignment

Targeted Local Structure Sharing every cycle, but “local-structure” messages are only

sent when the local neighborhood of an agent has changed. A “local-structure” message is

sent by every agent only in the first cycle and then on a as needed basis. This step is the

same as in the original VSR and αVSR coalition formation methods.

The Frozen Pair Discovery state is computes the set of all frozen agents. This is done

the same as with the αVSR-DSA algorithm. The change in the Frozen Pair Discovery

comes with a “request” message from any agent that is frozen with another agent but has
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not determined that it will be acting as a surrogate agent. If the agent has determined it

will be acting as a surrogate, it does nothing until the next phase, waiting on the “request”

messages from all potential coalition partners.

In the Surrogate Response state, non-surrogate agents do nothing while the surrogate

agents collect all “request” messages from the previous cycle. At this point, surrogate

agents combine the list of new agents possibly joining the coalition with the set of agents

already in the coalition and send a “request-response” message in response to the agents

that sent “request” messages. The “request-response” message contains the list of potential

and existing members. It is only necessary to send this message to agents requesting to

join, as they will be able to determine if they are in conflict with a member already in the

coalition without having to ask the current members to additionally check.

In the Check Coalition state, surrogate agents do nothing while the non-surrogates wish-

ing to joining a particular coalition, C check for any members or potential members which

they will have a conflict with. In the case where a conflict is detected, the agent will not

attempt to join and will mark a propensity value of −∞ in a history table to prevent future

consideration of a coalition with that potential surrogate. If there is no conflict detected,

then the algorithm proceeds as it did before, with the agent sending out a “collapsing” mes-

sage to all neighbors to indicate that future negotiations should be directed to this agent’s

new coalition surrogate.

All agents proceed to the fourth state, Collapse, agents update their neighborhood in-

formation if they received in a “collapsing” message from any of their neighbors. Agents

that are joining a coalition send a “collapse” message to their coalition surrogate, and then

set their active flag to false.

The final state is the Assignment state where all active agents call the DSA method to

attempt to find a solution. If no new members have joined the coalition or no new local

structure messages have been received in the last ω cycles, then any surrogate agents send

the members of their coalition the newly updated value. By default we set ω = 6 which
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allows for a complete rotation of states to occur.

5.3.1 Empirical Results for HG-DSA

We report mixed results for the performance of the HG-DSA algorithm. In Figure 5.6 and

Figure 5.7 the use of the HG-DSA algorithm offers us no advantages in terms of either cy-

cles or message passing. This result is not completely unexpected as we have increased the

overhead of the coalition formation process by 2 cycles each iteration. The increased mes-

sage passing is also a direct result of the extra “request” and “request-response” messages

sent by the agents before a collapse.

Fig. 5.6: Average number of cycles used to find solutions using HG-DSA.

In terms of the number of cycles used, the HG-DSA algorithm unfairly punishes the

strictly frozen pairs case (where α = 1.0). As the agents in a strict frozen pairs rela-

tionship will always be able to form a coalition, there is no need for the added overhead

with requesting and responding. Couple that with the lack of sufficient density to allow

enough strict frozen pairs to form, and the HG-DSA with α = 1.0 suffers greatly. The

same phenomenon also hinders the performance of HG-DSA with α = 0.89 and α = 0.8.
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At α = 0.67 and α = 0.5, there are enough coalitions that form so that solutions can be

found more efficiently, putting performance on par with the DSA-B algorithm.

Fig. 5.7: Average number of messages sent within the system using HG-DSA.

For message passing, all the HG-DSA implementations performed approximately the

same. In the strict frozen pairs case, there is no need for agents to send request messages

if there are no agents they have a strict frozen relationship with. This saved the α =

1.0, α = 0.89, and α = 0.8 from having too many “request” and “request-response”

messages being sent throughout the system. For the lower two α settings, more “request”

and “request-response” messages were sent, but there was savings since coalition formation

was occurring. This evened out the number of overall messages being sent within the

system.

A more positive result is the solution quality for regions before the phase transition

using our hedonic game coalition formation. In Figures 5.8, 5.9, and 5.10 we provide

solution quality results for problem sizes n = 50, n = 75, and n = 100, respectively.

At n = 50, we notice that the value of using coalitions that accept members with

lower propensity increases the solution quality slightly for α = 0.67 and α = 0.5. The
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Fig. 5.8: Solution quality for n = 50.

solution quality at higher propensities provides insignificant gain. While the formation of

these coalitions should increase the solution quality due to the fact that there can be no

internal conflict using the HG-DSA algorithm, the additional overhead for searching for

those coalitions with no actual formation results in much slower convergence to the same

level as DSA-B.

We notice substantial improvement in solution quality as problem size becomes larger.

In the larger instances with lower density, there are more chains and loosely coupled agents.

This allows the lowest propensity relationships (α = 0.5) to form effective coalitions and

work their way out of local maximum. We find that the α = 0.67 formation also results

in increased solution quality, but the structures seem to not occur often enough at such low

densities.
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Fig. 5.9: Solution quality for n = 75.

Fig. 5.10: Solution quality for n = 100.

As problem size continues to grow, we see sustained gains in solution quality using

low propensity coalitions against DSA-B, and little value added using higher propensity

coalitions due to lack of shared structure.
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5.4 Effects of Coalition Partners with Low Propensity

Up until this point, it has been assumed that during the search for coalitional partners, an

agent will search for other agents where the propensity relationship, P , evaluates to a value

greater than the minimum threshold, α. Given a choice between multiple agents of varying

propensity, the agent will select the one with the highest value. Intuitively this makes sense.

As propensity is a measure of the likelihood that two agents will end up with the same value

once the instance is solved, joining a coalition in which this value is the highest would seem

to lead to the greatest chance of success. Indeed, for the strict frozen pair, an agent would

be acting irrational to not choose a coalition partner where they must have the same value.

But can the same be said for the probabilistic frozen pair relationship? In Figure 5.11 we

re-present the internal conflict graph along with the potential coalitions that could form

based on propensity at certain α values.

Fig. 5.11: (a) Original constraint graph with α = 0.67. (b) Resulting coalition from using
α = 0.67. (c) Original constraint graph with α = 0.5. (d) Resulting coalitions from using
α = 0.5.
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In Figure 5.11b, we see that if the agents were using the value of α = 0.67, the coali-

tions {1, 3} and {5, 7}would form, leading to a resulting coalition which has five coalitions

in a single cycle. As covered previously, the coalitions {4, 2} and {2, 6} are not possible

based on the HG-DSA algorithms method for avoiding internal conflict. Once the coali-

tions in 5.11b are formed, the coalition formation process will stop because there are no

probabilistic frozen pair relationships that evaluate to a minimum of α = 0.67. However,

if we were to utilize a lower value of acceptable propensity at α = 0.5 as shown in Figure

5.11c, we would get the coalition structures shown in Figure 5.11d where a strict frozen

pair has formed. The coalition formation process would not end as agent 2 could join the

coalition with agents 4 or 6 and the strict frozen pair would collapse to form the coalition

{1, 5, 3, 7}. In fact, from the original constraint graph, we can derive a perfect k-clique,

where every variable is satisfied by the assignment which surrogate agent negotiates with

its neighbors.

To test the effects of coalition formation with low propensity partners, we look at the

solution quality resulting in agents selecting to join coalitions with which they have high,

low, and exact propensities with. In the presence of a strict frozen pair, agents will always

choose to form those coalitions, but outside of the strict frozen pair relationship, we find

results vary depending on the preference.

In Figure 5.12, we report results pertaining to coalition selection with agents either pre-

ferring the highest propensity relationships found (High), lowest propensity relationships

found (Low), or the exact propensity of 0.5 (Exact). The agents with preference towards se-

lecting the highest found propensity coalitions are those we have studied up until this point.

We find that when we enable agents to form coalitions by preferring the lowest propensity

relationships, we can still find an uptick in solution quality over the previous preference of

highest possible propensity. Additionally, looking for exactly the propensity value of 0.5

leads to approximately equal results as the high propensity preference. This is a positive

result for low density problems, but further investigation is necessary to see if preferring
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Fig. 5.12: HG-DSA at α = 0.5 with n = 75 using a surrogate selection that looks for
highest propensity first (High), lowest propensity first (Low), and exact propensity first
(Exact).

lower propensity coalitions would offer any benefit in terms of better solution quality for

problems with a density that falls within the phase transition.

5.5 Summary

The hedonic game based algorithm, HG-DSA, allows agents to only join coalitions for

which they have conflict free relationships. The coalitions that form are stable in terms

of Nash stability due to the properties of additive separability and symmetry, but finding

those coalitions comes at a cost of increased cycles and messaging. Using the HG-DSA

algorithm in problem instances where constraint density is low is an attractive option when

using lower propensity thresholds for coalition formation to occur. The lower propensity

coalitions lead to greater structure reduction as a result of interesting series of coalition

formations such as those shown in Figure 5.11.
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Algorithm 6 HG-DSA as executed by agenti
1: {INPUT: set of neighbors, Ni, tuning parameter α}
2: call ProcessMessages() {Process all new messages}
3: if active = true then
4: if state = Targeted Local Structure Sharing then
5: for each neighbor j ∈ Ni do
6: if local structure update necessary for j then
7: send ‘local structure’ message to j
8: state← Frozen Pair Discovery
9: if state = Frozen Pair Discovery then

10: surrogate← frozenPairDiscovery(Ni, α)
11: if surrogate != agent i then
12: {this agent is not a surrogate agent}
13: send ‘pre-coalition’ message to surrogate
14: state← Check Coalition
15: if state = Check Coalition then
16: if received ‘coalition’ message then
17: Check Coalition C for conflicts
18: if C is conflict free then
19: for each neighbor j ∈ Ni do
20: send ‘collapsing’ message to j
21: canCollapse = true
22: else
23: historyTable[surrogate] = −∞
24: canCollapse = false
25: if surrogate = = agent i then
26: canCollapse = false
27: state← Collapse
28: if state = Collapse then
29: if canCollapse = true then
30: send ‘collapse’ message to surrogate
31: active← false
32: state← Assignment
33: if state = Assignment then
34: call DSA
35: if time since last value update ≥ ω then
36: send update message to all coalition members
37: else
38: do nothing this phase
39: state← Frozen Pair Discovery
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Algorithm 7 frozenPairDiscovery
1: {INPUT: set of neighbors, Ni, tuning parameter α.}
2: {OUTPUT: surrogate agent as determined by SurrogateDetection().}
3: for each neighbor j ∈ Ni do
4: Compute Si,j
5: for each neighbor j′ ∈ Nj do
6: valj = Pi,j′
7: if (valj ≥ α) && (historyTable[j’] 6= −∞) then
8: Fi ← (i′, valj)
9: if |Fi| > 0 then

10: surrogate← SurrogateDetection(Fi)
11: return surrogate
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work, we have shown that the use of coalition formation combined with an iterative

approximate solution method for solving distributed k-coloring problems has shown to be

of benefit. This thesis has introduced three new algorithms for coalition formation in spe-

cialized instances of Distributed Constraint Optimization Problems (DCOP), distributed

k-coloring. The Virtual Structure Reduction (VSR) algorithm uses the concept of strict

frozen pairs to allow agents to independently identify coalition partners with which they

must eventually be assigned the same variable value. We then weaken the idea of strict

frozen pairs and look for probabilistically frozen pairs in the αVSR algorithm. Propensity

captures the idea of two agents having a certain probability of being assigned the same

value when the problem instance is solved. This was modelled by both our propensity

equation based on shared neighborhoods in a constraint graph, as well as a Markov net-

work inference model of k-coloring. We then presented the Hedonic Game (HG) coalition

formation algorithm which uses the αVSR propensity model, but allows agents to search

out for Nash stable coalitions. We have shown that by forming coalitions we can make dis-

tributed problems smaller and less complex in most instances. This is especially true within

the phase transition region of a k-coloring problem where it is known that many difficult

to solve instances lie. Efficiency gains can be seen in terms of time, message passing, and
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solution quality.

There are many opportunities for further investigation using the concept of surrogate led

coalitions. An immediate next step is in implementing the coalition formation process with

other existing solvers. We chose the Distributed Stochastic Algorithm (DSA) in this work

due to the ease of integration. Other iterative approximate solvers, such as the Maximum

Gain Messaging (MGM) and Distributed Breakout (DBO) algorithm, should certainly gain

from an integration with any of the Virtual Structure Reduction (VSR), αVSR (Propensity-

based Virtual Structure Reduction), or Hedonic Game (HG) coalition formation techniques.

There may even be room for use of the coalition formation process to be integrated with

existing optimal solvers such as ADOPT. More so, new solvers specially designed to take

advantage of the coalition formation process itself could lead to enhancements of perfor-

mance for k-coloring and other DCOPs.

Another area for future work is the extension of coalition formation using the Markov

network-based propensity measures. As we pointed out in Chapter 4, the Markov network

can model relationships between agents in a DCOP that the propensity model currently

developed can not. Due to the strict reliance of the propensity model on the “not-equals”

relationship in k-coloring, in order to use our coalition formation technique, one would

have to develop a new propensity measure for each new kind of DCOP they are wishing

to solve. To avoid this, putting together a Markov network factor table which represents

all the possible relationships of a different problem (see Table 4.2) would be an easier task

and more general approach. The task then would be to identify particular shared structures

from the Markov network, using inference, that have high propensity relationships. Agents

could then utilize particular substructures with high propensities in the coalition formation

process.

The coalitions that form under our approach are additively separable, and therefore we

cannot guarantee a maximum bound on coalition size. This may not be either feasible or

desirable in many different problems. To bound coalition size, we would need to integrate



116

a new value function for coalition membership. One possible way of doing so is through

the use of fractional hedonic games [5]. A fractional hedonic game uses the average value

of coalition membership based on coalition size. Instead of using the additive separability

concept we have for the HG-DSA (vi(S) =
∑

j∈S vi(j)), a fractional game uses a value

function where vi(S) =
∑

j∈S vi(j)

|S| . This type of value function gives rise to a whole new set

of possible partitions for the coalition formation process. For solving DCOPs, we briefly

investigated the use of a fractional value function and found that coalitions became locally

bounded where agents only wanted to be in coalitions with others which that had common

frozen pair relationships. Unfortunately, the stability guarantees for fractional games have

only been shown to exist for tree structures with large girth and graphs with large cycles

[5]. This is not the case for general graphs and k-coloring problems which we investigated

in this research.

Another promising way of bounding coalition size under the use of propensity is by

implementing a value function that uses the Landscape Theory of Aggregation (LTA). LTA

was introduced by Axelrod [4] as a way of studying how political coalitions form in trade

agreements and during global conflicts. Axelrod’s model uses a frustration value that repre-

sents each agent’s level of satisfaction under a given configuration. Under a configuration,

X , each agent, i, determines how frustrated they are via

Fi(X) =
∑
j 6=i

sjpijdij(X)

where sj is the size (such as Gross Domestic Product, or size of country) of agent j, pij

is the propensity between agents i and j to “get along” together, and dij is the (travel) dis-

tance between i and j under configuration X . Then, the goal is to minimize the frustration

in the system. Although Axelrod was not looking at DCOPs, we can see a natural exten-

sion using his formulation of the problem where pij is our propensity measure, sj could be

modelled to represent the size of the coalition j is in, and dij could be the distance between

i and j’s preferences over values assigned to their variables (such as cosine similarity).
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A final area of investigation, which we have already begun, is in the development of a

better surrogate selection mechanism. In its current state, the VSR, αVSR, and HG coali-

tion formation techniques all use a lexicographical selection mechanism. Agents compare

IDs and independently determine which of them will be surrogate based on those IDs.

Some of our preliminary work suggests that using degree information to determine the

surrogate could be useful. In Figure 6.1, we find some gain in the solution quality when

agents with higher degree are chosen to represent the coalition. While interesting, it is still

undetermined as to why it occurs. Possible reasons for this? It could be that when search

terminates with the problem still unfinished, the coalitions with the highest degree, when

satisfied, have a larger number of satisfied constraints than we would find with smaller

coalitions. It could also be the case of “the rich get richer”, or something tied to the concept

of preferential attachment. It should also be considered that agents with higher degree have

more to gain in taking responsibility for agents with lesser degree as they have more con-

straints to satisfy. Under degree-based surrogate selection, we anticipate a non-cooperative

negotiation process should exist between agents vying for the surrogate position.

Fig. 6.1: Solution quality using degree-based surrogate selection for n = 100 using VSR-
DSA.
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[8] E. G. Boman, D. Bozdağ, U. Catalyurek, A. H. Gebremedhin, and F. Manne, “A scal-

able parallel graph coloring algorithm for distributed memory computers,” in Euro-

Par 2005 Parallel Processing. Springer, 2005, pp. 241–251.



119

[9] C. T. Cannon, R. N. Lass, E. A. Sultanik, W. C. Regli, D. Šišlák, and M. Pechoucek,

“Distributed scheduling using constraint optimization and multiagent path planning,”

in Proceedings of AAMAS 2010 The 12th International Workshop on Distributed Con-

straint Reasoning. ACM Press, 2010, pp. 22–34.

[10] A. C. Chapman, A. Rogers, N. R. Jennings, and D. S. Leslie, “A unifying framework

for iterative approximate best-response algorithms for distributed constraint optimiza-

tion problems,” Knowledge Engineering Review, vol. 26, no. 4, pp. 411–444, 2011.

[11] K. Chatterjee, B. Dutta, D. Ray, and K. Sengupta, “A noncooperative theory of coali-

tional bargaining,” The Review of Economic Studies, vol. 60, no. 2, pp. 463–477,

1993.

[12] A. Chechetka and K. Sycara, “No-commitment branch and bound search for dis-

tributed constraint optimization,” in Proceedings of the Fifth International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS). ACM, 2006, pp.

1427–1429.

[13] P. Cheeseman, B. Kanefsky, and W. Taylor, “Where the really hard problems are,”

in Proceedings of the 12th International Joint Conference on Aritificial Intelligence

(IJCAI), 1991, pp. 331–337.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms.

MIT press, 2001.

[15] J. Culberson and I. Gent, “Frozen development in graph coloring,” Theoretical Com-

puter Science, vol. 265, no. 1, pp. 227–264, 2001.

[16] J. H. Dreze and J. Greenberg, “Hedonic coalitions: Optimality and stability,” Econo-

metrica: Journal of the Econometric Society, pp. 987–1003, 1980.



120

[17] M. Dyer, A. Frieze, T. P. Hayes, and E. Vigoda, “Randomly coloring constant degree

graphs,” Random Structures & Algorithms, vol. 43, no. 2, pp. 181–200, 2013.

[18] S. Fitzpatrick and L. Meertens, “An experimental assessment of a stochastic, anytime,

decentralized, soft colourer for sparse graphs,” in Stochastic Algorithms: Foundations

and Applications. Springer, 2001, pp. 49–64.

[19] N. Gemelli, J. Hudack, S. Loscalzo, and J. Oh, “Using coalitions with stochastic

search to solve distributed constraint optimization problmes,” in The 7th International

Conference on Agents and Artificial Intelligence (ICAART), January 2015.

[20] N. Gemelli, J. Hudack, and J. Oh, “Virtual structure reduction on distributed k-

coloring problems,” in International Conference on Intelligent Agent Technology

(IAT-2013), November 2013.

[21] N. Gemelli, J. Hudack, and J. C. Oh, “Virtual structure reduction for distributed con-

straint problem solving,” in Workshops at the Twenty-Seventh AAAI Conference on

Artificial Intelligence, 2013.

[22] A. Gershman, A. Meisels, and R. Zivan, “Asynchronous forward bounding,” Journal

of Artificial Intelligence Research (JAIR), vol. 34, pp. 25–46, 2009.

[23] A. Gomes, “Multilateral contracting with externalities,” Econometrica, vol. 73, no. 4,

pp. 1329–1350, 2005.

[24] J. Hajduková et al., “Computational complexity of stable partitions with b-

preferences,” International Journal of Game Theory, vol. 31, no. 3, pp. 353–364,

2003.

[25] T. P. Hayes, “Local uniformity properties for glauber dynamics on graph colorings,”

Random Structures & Algorithms, vol. 43, no. 2, pp. 139–180, 2013.



121

[26] E. Ising, “Contribution to the theory of the ferromagnetism,” Journal of Physics,

Hadrons and Nuclei, vol. 31, no. 1, pp. 253–258, 1925.

[27] M. Jerrum, “A very simple algorithm for estimating the number of k-colorings of

a low-degree graph,” Random Structures & Algorithms, vol. 7, no. 2, pp. 157–165,

1995.

[28] E. Karmouch and A. Nayak, “A distributed constraint satisfaction problem approach

to virtual device composition,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 23, no. 11, pp. 1997–2009, Nov 2012.

[29] R. Karp, “Reducibility among combinatorial problems. complexity of computer com-

putations,(re miller and jm thatcher, eds.), 85–103,” 1972.

[30] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe, “Asynchronous algorithms for ap-

proximate distributed constraint optimization with quality bounds,” in Proceedings of

the 9th International Conference on Autonomous Agents and Multiagent Systems (AA-

MAS). International Foundation for Autonomous Agents and Multiagent Systems,

2010, pp. 133–140.

[31] D. Koller and N. Friedman, Probabilistic graphical models: principles and tech-

niques. MIT press, 2009.

[32] V. Lesser, C. L. Ortiz Jr, and M. Tambe, Distributed sensor networks: A multiagent

perspective. Springer, 2003, vol. 9.

[33] R. T. Maheswaran, J. P. Pearce, and M. Tambe, “Distributed algorithms for dcop: A

graphical-game-based approach,” Proc. Parallel and Distributed Computing Systems

PDCS, pp. 432–439, 2004.

[34] R. Mailler and V. Lesser, “Solving distributed constraint optimization problems using

cooperative mediation,” in Proceedings of the Third International Joint Conference



122

on Autonomous Agents and Multiagent Systems (AAMAS). IEEE Computer Society,

2004, pp. 438–445.

[35] R. T. Mailler, “A mediation-based approach to cooperative, distributed problem solv-

ing,” Ph.D. dissertation, University of Massachusetts Amherst, 2004.

[36] S. Minton, M. Johnston, A. Philips, and P. Laird, “Minimizing conflicts: a heuristic

repair method for constraint satisfaction and scheduling problems,” Artificial Intelli-

gence, vol. 58, no. 1, pp. 161–205, 1992.

[37] P. Modi, W. Shen, M. Tambe, and M. Yokoo, “Adopt: Asynchronous distributed con-

straint optimization with quality guarantees,” Artificial Intelligence, vol. 161, no. 1,

pp. 149–180, 2005.

[38] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “An asynchronous complete

method for distributed constraint optimization,” in AAMAS, vol. 3, 2003, pp. 161–

168.

[39] R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina, “Coloring random graphs,” Physi-

cal Review Letters, vol. 89, no. 26, p. 268701, 2002.

[40] M. E. Newman, “Random graphs as models of networks,” arXiv preprint cond-

mat/0202208, 2002.

[41] A. Okada, “A noncooperative coalitional bargaining game with random proposers,”

Games and Economic Behavior, vol. 16, no. 1, pp. 97–108, 1996.

[42] M. Olsen, “On defining and computing communities,” in Eighteenth Computing: The

Australasian Theory Symposium (CATS 2012), Melbourne, Australia, 31 January – 3

February 2012, p. 97.



123

[43] J. Pearce, R. Maheswaran, and M. Tambe, “Solution sets for dcops and graphical

games,” in Proceedings of the Fifth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS). ACM, 2006, pp. 577–584.

[44] J. P. Pearce, Local optimization in cooperative agent networks. ProQuest, 2007.

[45] J. P. Pearce, R. T. Maheswaran, and M. Tambe, “How local is that optimum? k-

optimality for dcop,” in Proceedings of the Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems. ACM, 2005, pp. 1303–1304.

[46] J. P. Pearce and M. Tambe, “Quality guarantees on k-optimal solutions for distributed

constraint optimization problems.” in International Joint Conference on Artificial In-

telligence (IJCAI), 2007, pp. 1446–1451.

[47] A. Pectu and B. Faltings, “Odpop: an algorithm for open/distributed constraint op-

timization,” in Proceedings of the National Conference on Artificial Intelligence,

vol. 21, no. 1. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;

1999, 2006, p. 703.

[48] A. Petcu, A class of algorithms for distributed constraint optimization. IOS Press,

2009, vol. 194.

[49] A. Petcu and B. Faltings, “A scalable method for multiagent constraint optimization,”

in International Joint Conference on Artificial Intelligence (IJCAI), vol. 5, 2005, pp.

266–271.

[50] A. Petcu, B. Faltings, and R. Mailler, “Pc-dpop: A new partial centralization algo-

rithm for distributed optimization.” in International Joint Conference on Artificial

Intelligence (IJCAI), vol. 7, 2007, pp. 167–172.

[51] A. Petcu, B. Faltings, and D. C. Parkes, “Mdpop: Faithful distributed implementation

of efficient social choice problems,” in Proceedings of the Fifth International Joint



124

Conference on Autonomous Agents and Multiagent Systems (AAMAS). ACM, 2006,

pp. 1397–1404.

[52] C. Portway and E. H. Durfee, “The multi variable multi constrained distributed con-

straint optimization framework,” in Proceedings of the 9th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS). International Foundation

for Autonomous Agents and Multiagent Systems, 2010, pp. 1385–1386.

[53] C. J. Preston, Gibbs states on countable sets. Cambridge University Press London,

1974, vol. 96.

[54] P. Prosser, “An empirical study of phase transitions in binary constraint satisfaction

problems,” Artificial Intelligence, vol. 81, no. 1, pp. 81–109, 1996.

[55] T. Rahwan and N. R. Jennings, “Coalition structure generation: Dynamic program-

ming meets anytime optimization.” in AAAI, vol. 8, 2008, pp. 156–161.

[56] T. Rahwan, T. P. Michalak, E. Elkind, P. Faliszewski, J. Sroka, M. Wooldridge, and

N. R. Jennings, “Constrained coalition formation.” in AAAI, vol. 11, 2011, pp. 719–

725.

[57] T. Rahwan, S. D. Ramchurn, V. D. Dang, A. Giovannucci, and N. R. Jennings, “Any-

time optimal coalition structure generation,” in AAAI, vol. 7, 2007, pp. 1184–1190.

[58] D. Ray and R. Vohra, “Coalition formation,” New York University, Tech. Rep., 2013.

[59] A. Romero-Medina et al., “Stability in coalition formation games,” International

Journal of Game Theory, vol. 29, no. 4, pp. 487–494, 2001.

[60] Y. Ruan, H. Kautz, and E. Horvitz, “The backdoor key: A path to understanding

problem hardness,” in Proceedings of the National Conference on Artificial Intelli-

gence. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;, 2004,

pp. 124–130.



125

[61] S. Russell, P. Norvig, and E. Davis, Artificial intelligence: a modern approach. Pren-

tice hall Upper Saddle River, NJ, 2010.

[62] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé, “Coalition struc-

ture generation with worst case guarantees,” Artificial Intelligence, vol. 111, no. 1,

pp. 209–238, 1999.

[63] V. Schuppan, “Towards a notion of unsatisfiable cores for ltl,” in Fundamentals of

Software Engineering, ser. Lecture Notes in Computer Science, F. Arbab and M. Sir-

jani, Eds. Springer Berlin Heidelberg, 2010, vol. 5961, pp. 129–145.

[64] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for improving local search,”

in AAAI, vol. 94, 1994, pp. 337–343.

[65] M. C. Silaghi and M. Yokoo, “Nogood based asynchronous distributed optimiza-

tion (adopt ng),” in Proceedings of the Fifth International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS). ACM, 2006, pp. 1389–1396.

[66] B. Smith and M. Dyer, “Locating the phase transition in binary constraint satisfaction

problems,” Artificial Intelligence, vol. 81, no. 1, pp. 155–181, 1996.

[67] C. Theocharopoulou, I. Partsakoulakis, G. A. Vouros, and K. Stergiou, “Overlay net-

works for task allocation and coordination in dynamic large-scale networks of co-

operative agents,” in Proceedings of the 6th International Joint Conference on Au-

tonomous Agents and Multiagent Systems. ACM, 2007, p. 55.

[68] S. Ueda, A. Iwasaki, M. Yokoo, M. C. Silaghi, K. Hirayama, and T. Matsui, “Coalition

structure generation based on distributed constraint optimization,” in AAAI, vol. 10,

2010, pp. 197–203.

[69] M. Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar, Z. Yin, M. Tambe, and

E. Bowring, “Quality guarantees for region optimal dcop algorithms,” in The 10th



126

International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

International Foundation for Autonomous Agents and Multiagent Systems, 2011, pp.

133–140.

[70] R. Williams, C. Gomes, and B. Selman, “On the connections between backdoors,

restarts, and heavy-tailedness in combinatorial search,” Structure, vol. 23, p. 4, 2003.

[71] R. Williams, C. P. Gomes, and B. Selman, “Backdoors to typical case complexity,” in

International Joint Conference on Artificial Intelligence (IJCAI), vol. 18. Citeseer,

2003, pp. 1173–1178.

[72] D. Y. Yeh, “A dynamic programming approach to the complete set partitioning prob-

lem,” BIT Numerical Mathematics, vol. 26, no. 4, pp. 467–474, 1986.

[73] W. Yeoh, A. Felner, and S. Koenig, “Bnb-adopt: An asynchronous branch-and-bound

dcop algorithm,” in Proceedings of the 7th International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS). International Foundation for

Autonomous Agents and Multiagent Systems, 2008, pp. 591–598.

[74] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara, “The distributed constraint satis-

faction problem: Formalization and algorithms,” Knowledge and Data Engineering,

IEEE Transactions on, vol. 10, no. 5, pp. 673–685, 1998.

[75] M. Yokoo and K. Hirayama, “Algorithms for distributed constraint satisfaction: A

review,” Autonomous Agents and Multi-Agent Systems (AAMAS), vol. 3, no. 2, pp.

185–207, 2000.

[76] M. Yokoo, Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-

agent Systems, 1st ed. Springer Publishing Company, Incorporated, 2012.



127

[77] M. Yokoo and K. Hirayama, “Distributed breakout algorithm for solving distributed

constraint satisfaction problems,” in Proceedings of the Second International Confer-

ence on Multi-Agent Systems, 1996, pp. 401–408.

[78] W. Zhang, G. Wang, and L. Wittenburg, “Distributed stochastic search for constraint

satisfaction and optimization: Parallelism, phase transitions and performance,” in

Proceedings of AAAI Workshop on Probabilistic Approaches in Search, 2002.

[79] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg, “An analysis and application of

distributed constraint satisfaction and optimization algorithms in sensor networks,” in

Proceedings of the Second International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS), vol. 14, no. 18, 2003, pp. 185–192.



VITA

NAME OF AUTHOR: Nathaniel Gemelli

PLACE OF BIRTH: Kailua, HI, USA

DATE OF BIRTH: September 19, 1978

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

• State University of New York at Oswego, USA

• Syracuse University, USA

DEGREES AWARDED:

• Computer Science BS, 2001, SUNY Oswego, USA

• Computer Science MS, 2006, Syracuse University, USA

PROFESSIONAL EXPERIENCE:

• June 2000 to August 2000 - Mathematician Aid, Air Force Research Lab-

oratory, Information Directorate - Rome, N.Y.

• June 2001 to present - Computer Scientist, Air Force Research Laboratory,

Information Directorate - Rome, N.Y.



GRANTS:

• AFRL LRIR (Laboratory Research Initiation Request) Grant from Air

Force Research Laboratory of Scientific Research (AFOSR), 2014-2016, 3

years, $630k

• AFRL LRIR (Laboratory Research Initiation Request) Grant from Air

Force Research Laboratory of Scientific Research (AFOSR) in 2009, 1 year,

$100k

PUBLICATIONS:

• Proceedings

N. Gemelli, J. Hudack, S. Loscalzo, and J.C. Oh. Using coalitions with

stochastic search to solve distributed constraint optimization prob-

lems. In International Conference on Agents and Artificial Intelligence

(ICAART-2015), January 2015.

N. Gemelli, J. Hudack, and J.C. Oh. Virtual structure reduction on dis-

tributed k-coloring problems. In International Conference on Intelli-

gent Agent Technology (IAT-2013), November 2013.

J. Hudack, N. Gemelli, and J.C. Oh. Modeling spatial information dif-

fusion with self-interested agents. In IEEE/WIC/ACM International

Conference on Web Intelligence, November 2013.

N. Gemelli, J. Hudack, and J.C. Oh. Virtual structure reduction for dis-

tributed constraint problem solving. In The Twenty-Seventh AAAI

Conference on Artificial Intelligence (AAAI), July 2013.

J. Hudack, N. Gemelli, and J.C. Oh. Evolution of cooperation in packet

forwarding with the random waypoint model. In International Confer-

ence on Agents and Artificial Intelligence (ICAART), February 2013.



N. Gemelli, J. Hudack, and J.C. Oh. Adopting a risk-aware utility model

for repeated games of chance. In Proceedings of The Sixth Starting

Artificial Intelligence Research Symposium (STAIRS 2012), August

2012.

R. Wright and N. Gemelli. Adaptive state space abstraction using neu-

roevolution. Agents and Artificial Intelligence, 67:84–96, 2010.

R. Wright and N. Gemelli. State aggregation for reinforcement learn-

ing using neuroevolution. In International Conference on Agents and

Artificial Intelligence (ICAART), pages 45–52, 2009.

M. Tavana, N. Gemelli, and R. Wright. A vehicle-target simulation model

for network-centric joint air operations. In Industrial Engineering and

Engineering Management, 2007 IEEE International Conference on,

pages 1767–1771. IEEE, 2007.

N. Gemelli, R. Wright, J. Lawton, and A. Boes. Asynchronous chess com-

petition. In Proceedings of the Fifth International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 1445–1446. ACM,

2006.

N. Gemelli, R. Wright, and R. Mailer. Asynchronous chess. In Proceedings

of The 2005 AAAI Fall Symposium Workshop on Coevolutionary and

Coadaptive Systems, November 2005.

J.C. Oh, N. Gemelli, and R. Wright. A rationality-based modeling for

coalition support. In Fourth International Conference on Hybrid In-

telligent Systems, pages 172–177. IEEE, 2004.

• Technical Reports



S. Loscalzo, N. Gemelli, and R. Wright. Machine intelligence in-house final

technical report. Technical report, Air Force Research Laboratory,

2013.

J. Hudack, N. Gemelli, and M. Scalzo. Local utility estimation in model-

free, multi-agent environments. Technical report, Air Force Research

Laboratory, 2010. AFRL-IF-RS-TP-2011-42.

R. Wright, J. Hudack, N. Gemelli, S. Loscalzo, and T.K. Lue. Agents

technology research. Technical report, Air Force Research Laboratory,

2010. AFRL-RI-RS-TR-2010-057.

N. Gemelli, J. Lawton, R. Wright, and A. Boes. Asynchronous chess:

A real-time, adversarial research environment. Technical report, Air

Force Research Laboratory, 2006. AFRL-IF-RS-RT-2006-116.


	Coalition Formation For Distributed Constraint Optimization Problems
	Recommended Citation

	tmp.1704222363.pdf.Q9iVl

