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ABSTRACT  

Recent advancements of manufacturing systems and supply networks towards Cyber-

Augmented Collaborative Physical System (CCPS) necessitate skill and knowledge sharing 

model in a human-robot collaborative e-Work environment. Previous research on skill and 

knowledge sharing has mostly ignored the need to share knowledge with skills. It was also 

limited on how such helpful, collaborative augmentation can be enabled by the huge amount 

of data availability, and collaborative intelligence analytics.  Such augmentation is further 

enabled by emerging, sophisticated computing resources, including machine learning, 

virtual/augmented reality, and hardware such as wearables, sensors, and IoT/IoS. This 

research aims to explore the state of the art of skill and knowledge sharing in manufacturing 

systems, and highlight the key areas and future research directions of the topic. A variety of 

case studies are also presented, particularly related to augmented reality and HUB-CI as the 

key enablers for skill and knowledge sharing. 

Keywords: Augmented Reality, Collaborative Intelligence Augmentation, Cyber-

Augmented Collaboration, Cyber Physical System, HUB-CI, Skill and Knowledge Sharing 

 

Table of Acronyms and their definitions 

No Abbreviation Definition 

1 AI Artificial Intelligence 

2 AR  Augmented Reality 

3 ARS Agricultural Robotics System 

4 CAD Computer-Aided Design  

5 CC-Management  Cyber-Augmented Collaborative Management 

6 CCPS Cyber-Augmented Collaborative (e-Work with) Physical System  

7 CCT Collaborative Control Theory 

8 CC-Work  Cyber-Augmented Collaborative Work 

9 CNC  Computer Numerical Control 

10 CPS Cyber-Physical System 

11 CRISP-DM Cross-Industry Standard Process for Data Mining 

12 CRP Collaboration Requirement Planning  

13 CTR Collaborative Telerobotics  

14 CSCD Computer-Supported Collaborative Design 

15 DCSP  Demand-Capacity Sharing Protocols 

16 ERP  Enterprise resource planning 

17 GUI Graphical User Interface  

18 HITL Human In The Loop perspective 

19 HITN Human In The Network perspective 
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No Abbreviation Definition 

20 HRI Human-Robot Interface 

21 HUB-CI  HUB of Collaborative Intelligence, or a network of such HUBs 

22 ICT Information and Communications Technology 

23 IoS Internet of Services which leverage data from IoT/IIoT 

24 IoT, IIoT Internet of Thinks, also known as Industrial Internet of Things 

25 TTC Time to Complete (collaborative tasks executed by humans and robots) 

 

1. Collaboration automation in a Cyber-Augmented Collaborative Physical System 

(CCPS) 

In the collaborative work and factories of the future (Moghaddam & Nof, 2015, 2017) multiple 

systems, including humans as participants and as clients, are designed to work together, and 

cooperate towards accomplishing given objectives, collaboration and integration are 

necessary. With highly variable job and task requirements in modern work, and highly variable 

levels of preparedness of workers and robots under such conditions, a major concern of 

researchers of future work and factories has been: How to share skills and knowledge, as 

soon as needed, with workers and robots dynamically. CCT, the Collaborative Control Theory, 

aims to optimize such collaboration and integration. The purpose of this research is to address 

the sharing of skills and knowledge among the human participants.  

What do we mean by skills and knowledge, and why it is necessary to share them online, just 

as needed and when they are needed? As an illustration, consider a baking work case: A 

baker needs skills of baking, e.g., best practice of ingredients preparation, measuring and 

mixing; and knowledge: details of the cake to bake, its ingredients, specifications of the mixer 

and oven available, and ongoing process status of the equipment and tools. While skill and 

knowledge sharing can be helpful to novice bakers, they become essential and mandatory for 

preparing and enabling human workers most effectively, when they work, or e-Work with a 

network of automation and robotics work agents.  

Four layers of e-Work CPS, which we define as cyber-augmented collaborative work with 

physical systems, or for short,  Cyber-Augmented Collaborative Physical Systems (CCPS), 

are defined as follows: 1. Cyber; 2. Physical items & systems; 3. Networking; and 4. CC-Work 

and CC-Management (CC: Cyber-Collaborative). Each layer is described as follows: 

• Cyber Layer: An interdependent network of information systems infrastructures, 

including the Internet, telecommunications networks, computer systems, embedded 

processors, and controllers. 

• Physical Items and Systems: The physical part of a CCPS includes sensors, 

actuators, radio-frequency modules for communication, and any other hardware to 

support CCPS function and provide the interface. 

• Networking: Interconnectivity between computational elements (data repository, 

algorithms, AI) and computerized physical entities (CNC machines, robots, sensors) in 

the CCPS. Networking includes the IoT/IoS. 

• CC-Work and CC-Management: Any task and management practices that are 

executed with cyber-augmented collaborative, or cyber-collaborative support means. 

 

2. Skill in Cyber-collaborative Physical System 

A widely acceptable taxonomy for objective assessment in the cognitive domain is termed 

Bloom’s Taxonomy (Bloom et al., 1964). The taxonomy is divided based on an ordinal scale 



of cognitive ability. The categories for the cognitive domain and illustrative action words for 

each level are presented in Table 1. 

Table 1 The Definition and Action Words of Bloom’s Taxonomy 

No Category Definition Illustrative Action Words 

1 Knowledge The ability to repeat information verbatim to list; to state;  

2 Comprehension 
The ability to demonstrate understanding of 

terms and concepts 

to explain; to interpret; to 

describe 

3 Application 
The ability to implement learned information 

to solve a problem 

to calculate; to solve; to 

utilize; to execute  

4 Analysis 

The ability to dismantle a structure into its 

elements and formulate explanations based 

on a theory, or mathematical or logical 

models for a certain observed phenomenon 

to derive; to explain; to 

interpret; to infer 

5 Synthesis 
The ability to create and combine elements 

with a high degree of novelty 

to formulate; to make up; 

to design; to integrate 

6 Evaluation 
The ability to select and justify a set of 

selections from other alternatives 

to determine; to select; to 

critique; to assess 

 

Different cognitive-based taxonomies have been developed following Bloom’s Taxonomy. 

RECAP model (Imrie, 1995) adopted Bloom's taxonomy and simplified it into a two-tier 

structure for both in-course and end-course assessments, related to two levels of learning, as 

presented in Table 2. 

Table 2 RECAP-based cognitive domain taxonomies 

Tier Skill Level Bloom’s Category Assessment Level  

1 

Recall; 

Comprehension; 

Application 

Knowledge; 

Comprehension;  

Application 

Essential skills are assessed by objective-

based, structured, short questions and 

answers survey 

2 
Problem-solving 

skills 

Analysis; Synthesis; 

Evaluation 

Advanced problem-solving skills are assessed 

by case-study questions and other criterion-

referenced or norm-referenced assessments 

 

For a cyber-physical manufacturing system, a taxonomy of job complexity, required skills, 

examples of role, and technical requirements has been developed (Krachtt, 2019). Their 

taxonomy is presented in Table 3: 

Table 3 Skill Taxonomy for a Cyber-Physical Manufacturing System 

Job 

Complexity 
Required Skill Roles Technical Knowledge Requirement 

Entry Level 

Resource 

management, 

social, and 

context skills 

Order Pickers AR devices, RFID, mobile ICT 

Sub Assemblers ERP Systems, AR devices 

Data Clerks Data Analytics in CPS 

Lift Operators Material handling, RFID, Mobile ICT 

Manual Operator AR Devices, RFID 

Mid Level 
Resource 

Management, 

Robotics Operator  Automation, AI, AR devices, CPS, SMOs 

Materials Lead  Data Analytics in CPS, AI, AR, simulations 



Job 

Complexity 
Required Skill Roles Technical Knowledge Requirement 

Social, Content, 

Cognitive, and 

Technical skills 

Machine Operators  Automation, AR devices, SMOs, IIoT*, ICT 

Welder  Automation, IIoT*, AR, ICT 

Production Analyst  
Data Analytics in CPS, SMOs, IIoT, CPS, 

ICT, simulations 

Advanced 

Level 

Resource 

Management, 

Social, Content, 

Cognitive, 

Technical, and 

Process, 

System skills 

Automation 

Technician  

Automation, AR devices, AI, CPS, SMOs, 

ICT 

Systems Tester  IIoT, IoT, AI, AR devices, CPS, ICT, SMOs 

Systems Integrator  CPS, IIoT*, AR devices, ICT, SMOs 

Machine 

Programmer  
SMOs, IIoT*, CPS, ICT, big data 

* We note that IIoT, Industrial Internet of Things, always requires an IoS, Internet of Services, 

that are designed to intelligently utilize the data and signals obtained by the IIoT; and 

international standards exist for both. 

 

3. Case studies of Skill Sharing to enable Collaboration automation 

3.1 AR-enabled Skill and Knowledge Sharing 

This section presents recent advances in augmented reality (AR), particularly on how it 

enables skill and knowledge sharing (see Acknowledgment). The first study (A. Villanueva et 

al., 2022), Collab-AR, is developed to facilitate and improve collaboration in Tangible AR 

(TAR) with a customized haptics feedback. In terms of time to complete the experiment: 

AR+Haptics (M=60.8 mins, SD=4.26), Zoom + Physical Components (M=81.2 mins, SD=4.71). 

The decrease in time (25.2%) was statistically significant between conditions (p<0.05), due to 

the combined use of haptics and voice, as opposed to voice-only. 

Another form of enabling technology is wearables. One study (Paredes et al., 2021) proposed 

a wearables taxonomy; a database of research, tutorials, aesthetic approaches, concepts, and 

patents; and CHIMERA, an online interface that provides visual and taxonomic connections 

to the growing database. The wearables taxonomy consists of categories, elements, and 

grouping types. There are 4 categories: function, fabrication, materials, and body zones; and 

5 grouping types: research, tutorials, aesthetic approaches, concept designs, and patents. 

The database consists of 842 resources which are published between the year 2010 and 2020. 

CHIMERA is validated across three groups: 24 participants conducting a multidisciplinary 

design task, a group of wearable experts, and students in a wearable class. In instances where 

the CCPS requires a highly-specific form of collaborative skill and knowledge sharing, 

wearables customization becomes essential. One study (Paredes, Reddy, et al., 2021) 

developed FabHandWear as a device capable of creating customized, functional, and 

manufacturable hand wearables. The system allows a user to fabricate functional prototype of 

wearables without special machinery, clean rooms, or tools. The system is validated by 

conducting wearable devices development by inexperienced users. The participants reported 

a mean NASA TLX score of 47.5 (SD=15.083), and a mean system usability score (SUS) of 

70.42 (SD = 16.61), ensuring the FabHandWear’s applicability.  

In a skill and knowledge sharing instance, the primary role of AR is to augment the capabilities 

of a human in the loop. One notable research (T. Wang, Qian, He, Hu, et al., 2021), GesturAR, 

studied the taxonomy of human hand gestures as an input in AR, and processed into a hand 

interaction model which maps the gesture inputs to the reactions of the AR contents. The 



trigger-action AR allows visual programming and instantaneous results in AR. Five scenarios 

are developed to justify the proposed model: creating interactive objects, humanoid and 

robotic agents, augmenting in-door environment with tangible AR games, making immersive 

AR presentations, and interacting with entertaining virtual contents. The hand detection 

network accuracy and usability are evaluated as the performance metrics of the proposed 

design. 

Skill and knowledge sharing also require object interaction and environmental manipulation. 

For instance, the integration of sensors, IoT devices, and human operators within a CCPS. 

One study (Chidambaram et al., 2021) proposed ProcessAR as an AR-based system capable 

of developing 2D/3D content that captures subject matter expert’s (SMEs) environment object 

interactions in situ. ProcessAR locates and identifies different tools/objects through computer 

vision within the workspace when the author looks at them, and could be featured with 2D 

videos of detected objects and user-adaptive triggers. Compared to the baseline scenario, 

ProcessAR has a lower task time, better usability, particularly for novice users, and statistically 

significant reduction of the perceived workload both for expert and novice users. 

In cases where object interaction and environmental manipulation occur on a physically small 

scale, one study (Adam et al., 2021)  proposed a robust and multifunctional micromanipulation 

system with 3D micro-force sensing capabilities. In this system, multiple probes are actuated 

to achieve and simplify more complex manipulation tasks while providing force feedback to 

the user. A graphical user interface (GUI) was developed as a robust and comprehensive 

platform to intuitively control the entire system and its many capabilities. Furthermore, a VR 

system has been implemented to provide intuitive manipulation, and with the use of the force 

sensing probes, the user is able to select a maximum threshold force to keep the manipulation 

process safe. In order to validate its capabilities, several experiments were conducted: 

automatic contact detection, simple and complex caging applications (manipulation/assembly), 

and the test of VR capabilities. In terms of accuracy, caging manipulation has an error of 

7.73% for polygonal parts and 8.78% for circular parts, in comparison with pushing application 

which has a 14.07% error. 

Table 4 summarizes other projects related to AR-enabled skill and knowledge sharing for 

cyber-collaborative physical system: 



Table 4 Summary of AR-enabled Skill and Knowledge Sharing in a CCPS 

Title 
Type of 

Augmented Reality 
Metrics and 

Measurement 
Features 

Skill and 
Knowledge 
Modeling 

Fields of 
Skill and 

Knowledge 

Skill and 
Knowledge 

Sharing Instances 

A Large-scale 
Annotated Mechanical 
Components 
Benchmark for 
Classification and 
Retrieval Tasks with 
Deep Neural Networks 
(Kim, Chi, et al., 2020) 

Mechanical 
Components 
Benchmark (MCB) 
for annotating, 
defining, and 
benchmarking deep 
learning shape 
classifiers 

mean accuracy 
over objects, 
average accuracy 
per class, F1-score 
and average 
precision (AP), and 
precision-recall 
curves 

7 shape classification 
algorithms from point 
cloud, multi-view, and 
voxel grids 3D shape 
representations 

The ability to view, 
annotate, classify 
and analyze the 
knowledge of 
mechanical 
components data 

Computer 
vision 

Could be 
implemented as 
AR-enabled 
knowledge-driven 
classification 
benchmark for 
mechanical parts 

AdapTutAR: An 
Adaptive Tutoring 
System for Machine 
Tasks in Augmented 
Reality (G. Huang et 
al., 2021) 

AR-based tutorial to 
better adapt to 
workers’ diverse 
experiences and 
learning behaviors, 
with different levels 
of details (LoDs) 

tutoring time, 
repeating times, 
testing time, and 
count of mistakes; 
user preference  

Unity3D, backend 
server running web 
framework in 
Pythonbased on 
Tensorfow (v2.1) and 
SVM. 

Skills are detailed  
into step- enabled 
Avatar, animated 
component, step 
expectation, and 
subtask 
description 

General; 
laser-cutting 
machine 

Tutors perform 
tasks; tasks are 
decoded by AR; AR 
is equipped by 
novice operators 

First-Person View Hand 
Segmentation of Multi-
Modal Hand Activity 
Video Dataset (Kim, 
Hu, et al., 2020)  

Multi-modal video 
dataset generation 
based on hand 
thermal information 

The mean 
Intersection over 
Union (IoU) 
between the two 
class based on 
manually-annotated 
labels 

Modification of 
DeepLabV3+ with 3 
modalities LWIR, RGB, 
and depth 

Knowledge of left 
and right hands 
segmentation is  
based on "hands 
using tools" videos 

Computer 
vision 

Accurate and faster 
hand segmentation 
allows better hand 
tracking for 
operators 

LightPaintAR: Assist 
Light Painting 
Photography with 

Augmented Reality (T. 
Wang, Qian, He, & 
Ramani, 2021) 

AR for spatial 
reference to enable 
precise light sources 
movement 

user evaluation 
(SUS) on accuracy 
and overall 
experience 

Hololens 2 spatial 
tracking function, Lume 
Cube LED, Canon EOS 
M6ii EF-M 11-22mm 
lens  

The skill to light-
paint the words 
"CHI 2021" using 
the LED light 

General 
Motoric Skill 

Could be 
implemented for 
vision-based light-
signal detection 



Title 
Type of 

Augmented Reality 
Metrics and 

Measurement 
Features 

Skill and 
Knowledge 
Modeling 

Fields of 
Skill and 

Knowledge 

Skill and 
Knowledge 

Sharing Instances 

Object Synthesis by 
Learning Part 
Geometry with Surface 
and Volumetric 
Representations (Kim 
et al., 2021) 

Part Geometry 
Network (PG-Net) to 
simulate realistic 
objects for a robust 
feature descriptor, 
object 
reconstruction, and 
classification.  

task convergence 
time, fitting time, 
and inference time; 
classification 
accuracy of PG-
Net; reconstruction 
measures 

TensorFlow deep 
learning framework on 
ModelNet datasets with 
a linear SVM for 3D 
classification 
benchmark 

Knowledge is 
modeled as object 
synthesis based 
on AR-enabled 
multi-task and part 
geometry learning  

3D object 
synthesis, 
and 
classification 

Knowledge sharing 
could be 
implemented for 
AR-enabled CAD 

RobotAR: An 
Augmented Reality 
Compatible 
Teleconsulting 
Robotics Toolkit for 
Augmented 
Makerspace 
Experiences (A. M. 
Villanueva et al., 2021) 

AR for assessment, 
teaching, and 
learning 

key competencies 
assessment and 
usability survey 

phone-mounted robot 
platform; Unity 3D for 
the software 

Skills are modeled 
as the ability to 
assemble 
electrical circuitry 
components kit 

Electronics 
and circuitry 

Skill sharing via AR 
and teleconsulting 
enables better 
students 
assessment and 
teaching  

Towards modeling of 
human skilling for 
electrical circuitry using 
augmented reality 
applications (A. 
Villanueva et al., 2021) 

AR-enabled 
assessment, 
teaching, and 
learning to 
implement an 
educational 
curriculum 

the attainment of 
learning outcome of 
micro-skills 

Micro-skills are aligned 
with the AR content 
using Q-matrix; they 
are classified into 
perceptual, cognitive, 
and motor types of skill 

Skills are modeled 
as micro-skills, 
which are mapped 
into learning 
outcome 

Electronics 
and circuitry 

The model allows a 
feedback loop 
between the micro-
skills, delivery 
method (full or 
partial), and 
learning outcomes 
attainment 

VRFromX: From 
Scanned Reality to 
Interactive Virtual 
Experience with 
Human-in-the-Loop 
(Ipsita et al., 2021) 

Do-It-Yourself (DIY) 
platform to create 
interactive virtual 
experiences 

time required to 
finish each task; 
System Usability 
Scale (SUS) 

Unity Engine in C# pre-
loaded back-end neural 
networks; object 
classification is 
achieved by a PointNet 

Skills are the VR-
based ability to 
retrieve object, 
model behavior of 
virtual objects, and 
interact (weld 
virtually). 

virtual Metal 
Inert Gas 
(MIG) 
Welding 
simulator 

VRFromX enables 
worker to train and 
simulate welding in-
situ  



3.2 HUB-enabled Skill and knowledge Sharing 

Multi-agent skill and knowledge sharing becomes critical in work and factories of the future. 
With an increasing degree of automation, remote operation, maintenance, reorganization and 
reconfiguration become objectives of the human-automation-robot skill sharing augmentation 
initiative. This section reviews previous research on the usage of hubs for collaborative 
intelligence (HUB-CI) for enabling skill and knowledge sharing in a CCPS.  

HUB-CI focuses on improving human collaboration through e-collaboration tools and services. 

It significantly enhances synthesis and integration of knowledge and discoveries, as well as 

their sharing and delivery in a timely manner (Seok & Nof, 2011). Additionally, HUB-CI 

connects humans and robots for collaborative control of physical automation and assembly in 

manufacturing (Zhong & Nof, 2013). Multiple HUB-CIs can operate in a hub-to hub and multi-

hub collaborations involving multiple networks. Recent advances of HUB-CI aim to optimize 

information flow, based on the current activity, physiological state, attained information, and 

unique attributes of each worker. The design framework is presented in the following diagram: 

 

Figure 1 AR design framework with HUB-CI protocol (Source: Moghaddam & Nof, 2022) 

3.2.1 Collaborative Telerobotics for Product Design and Testing 

A study in Collaborative Telerobotics (CTR) developed a model where humans (experienced 
and novices in the work tasks) and robot execute initial stages of skill and knowledge sharing 
based on a HUB-CI model (Zhong et al., 2013). Robot agents operating under collaboration 
protocols through the HUB-CI carry out their actions according to the aggregated command 
received. In turn, human agents acquire feedback from the robots from either a video stream, 
or 3D arrows which indicate the aggregated command (speed and direction) in spheres alpha-
blended in the video. The conceptual model and mathematical formulation are as follows: 



 

 

 

 

 

 

 
Figure 2 Collaborative Telerobotics Sequence Diagram and Co-tolerance of Error and Conflict Algorithm 

(Source: (Zhong et al., 2013)) 

 

Individual and collaborative experiments have been designed to evaluate the performance of 
CTR system implemented with HUB-CI model. Overall performance of the CTR system is 
determined by the time to complete (TTC) the given robotic task, the occurrence of 
conflict/error (CE) under each experiment, and its relationship to TTC. It is concluded that to 
achieve better performance, operators have to reduce errors and increase the frequency of 
error-free commands, as shown in Figure 2. The intuitive and logical observation can be 
achieved by more effective skill and knowledge sharing augmentation, provided by HUB-CI. 

 

 

 

 

Figure 3 Experimental Results in terms of e-Criteria and e-Measure of HUB-CI in CTR  

(Source: (Zhong et al., 2013) 



3.2.2 Computer-Supported Collaborative, Integrated Life-Cycle Product Design 

A second application of HUB-CI as an enabler for skill and knowledge sharing is described in 
a computer-supported collaborative design (CSCD) case study using CAD software (Zhong et 
al., 2014) . The HUB-CI environment is hosted on a server which can be accessed via Internet, 
and offers the following elements and capabilities to support CSCD:  

1. Defining the tasks and e-Work requirements;  
2. Storage in an online database;  
3. Collaborative coding and electronics CAD;  
4. Structured Co-Insights Management as an environment used for the conceptual 

design of the physical product;  
5. Capability to network, which is responsible for checking conflicts and errors throughout 

the development cycle of a new product;  
6. Electronic CAD as the tool that supports the required software development and 

hardware design;  
7. The physical development, testing, and validation, which are accomplished at the 

robotic prototyping cell;  
8. The telerobotic cell, which is built as one of the service resources available to 

designers through the HUB-CI environment;  
9. The designers working at the interaction tier of the HUB-CI environment; 
10. The coordinate system representation of collaboration which indicates the 

multidimensionality of the collaboration space. 

As a proof of concept, the study (Zhong et al., 2014)  implemented a pilot system for 
collaborative design and prototyping based on HUBzero package. The distributed designers 
were asked to build a digital voltmeter from ten LEDs, ten resistors, a potentiometer and an 
Arduino controller. The output voltage of this voltmeter should be understandable by human 
as a form of knowledge intelligence. The result of this study has shown that an integrated 
system with HUB-CI can effectively provide the functionality required during the product 
development lifecycle. 

3.2.3 Cyber-Physical Agricultural Robotic System 

A third implementation of HUB-CI is within the field of precision farming, specifically in 

Agricultural Robotics System (ARS). Automation systems for greenhouses deal with tasks 

such as climate control, seedling production, spraying, and harvesting, however, few research 

projects have been conducted to optimize human-robot collaboration in the ARS. The HUB-

CI for ARS (Nair et al., 2019) aims to develop an agricultural robotic system for early disease 

detection of pepper plants in greenhouses. The scope revolves around greenhouse monitoring, 

detection, and responding tasks, detailed in the system’s architecture (Figure 3 - Left) 

  
Figure 4 HUB-CI model for Greenhouse monitoring (Left) and Workflow diagram for HUB-CI Collaboration 

Strategy (Right) (Source: (Nair et al., 2019)) 



 

The workflow is presented in the diagram shown in Figure 3 (right). Specific CI tools developed 
for this purpose include: (1) spectral image segmentation for detecting and mapping to 
anomalies in growing pepper plants; (2) workflow/task administration protocols for 
managing/coordinating interactions between software, hardware, and human agents, 
engaged in the monitoring and detection, which would reliably lead to precise, responsive 
mitigation.  

The study (Nair et al., 2019)  experimented on how the HUB-CI improves human-robot skill 
sharing. Evidently, HUB CI yields significantly fewer errors and better early detection, 
improving the system efficiency by between 210% to 255% across 80 runs, compared to the 
system that does not implement decision support through HUB-CI. To simulate the remote 
operational nature of HUB-CI, commands were sent using Python and Robotic Operating 
System (ROS) programs via a Google Drive, between the PRISM lab in West Lafayette, 
Indiana, and the Volcani Institute agricultural robotic lab in Israel. Average lag time of remotely 
sent commands was 1.06 seconds across 2 different sets of runs of 30 minutes each. It is 
validated that HUB-CI yields significantly a higher quality of knowledge via collaborative 
workflow protocols, as indicated by fewer errors and better detection. The application enables 
precise monitoring for healthy growth of pepper plants in greenhouses. 

 

3.2.4 Cyber-Collaborative Factory of the Future with Humans and Robots 

The fourth case study (Dusadeerungsikul et al., 2019)  is based on the implementation of 

collaboration requirement planning (CRP) for a HUB-CI within factories of the future. HUB-CI 

has been designed to comprise algorithms and protocols to improve the productivity and 

efficiency of a distributed system of networked agents via augmented collaboration. Multi-

robot control in industry is a proven strategy of reducing production cost by having robots 

working faster and in parallel, with humans in the loop, leading to overall shorter processing 

time and higher flexibility. 

The study (Dusadeerungsikul et al., 2019)  developed and implemented two phases of CRP-

H collaboration protocol: CRP-I (task assignment optimization) and CRP-II (agents schedule 

harmonization), These protocols are developed and validated in two test scenarios: A two-

robot collaboration system with five tasks; and a two-robot-and-helper-robot collaboration 

system with 25 tasks. Simulation results indicate that under CRP-H, both operational cost and 

makespan of the production work are significantly reduced in both scenarios. The cost is 

slightly lower while average makespan of CRP-H is 45% less, compared to the baseline 

collaboration protocol scenario. 

  

Figure 5 Experimental Results of CRP-H 

 (Source: (Dusadeerungsikul et al., 2019)) 



It has been validated that the new CRP-H protocol delivers superior performance in terms of 

operational cost and makespan, when compared to a system logic that randomly assigns tasks 

to robots and instructs random scheduling. The better operational cost comes from CRP-I 

which optimally assigned tasks to robot(s). Moreover, makespan is minimized because of 

CRP-II which can updates schedule real-time from IoT/IoS devices’ information. 

 

3.3 Other Recently Researched Fields of Skill and Knowledge Sharing 

Other recent research projects related to skill and knowledge sharing are summarized in 

Table 5: 

Table 5 Summary of Other Related Research on Skill and Knowledge Sharing 

No Project Topic 
Summary of the 

Approach 

Relation to Skill and 

Knowledge Sharing 

1 

A novel social gamified 

collaboration platform enriched with 

shop-floor data and feedback for 

the improvement of the 

productivity, safety and 

engagement in factories 

(Lithoxoidou et al., 2020) 

Gamified collaboration 

platform allows positive 

mood, engagement, and 

satisfaction, and 

increased human contact 

Social enabler to skill 

sharing within a 

manufacturing enterprise 

2 

Affiliation/dissociation decision 

models in demand and capacity 

sharing collaborative network 

(Yoon & Nof, 2011) 

DCSP through affiliation 

and dissociation decision 

to ensure effective 

demand fulfilment 

through collaboration 

Collaborative resource 

sharing between 

collaborative network of 

enterprises 

3 

Automated assembly skill 

acquisition and implementation 

through human demonstration (Gu 

et al., 2018) 

Portable Assembly 

Demonstration (PAD) 

system to train robots for 

simple assembly tasks 

Human-robot skill sharing 

protocols 

4 

Big data analytics-based fault 

prediction for shop floor scheduling 

(Ji & Wang, 2017) 

Big data analytics-based 

fault prediction model for 

shop floor scheduling 

Knowledge sharing 

protocols for scheduling 

and maintenance 

operations 

5 

CausalWorld: A Robotic 

Manipulation Benchmark for 

Causal Structure and Transfer 

Learning (Ahmed et al., 2020) 

benchmarking platform 

for reinforcement learning 

for pushing, picking, pick-

and-place, and stacking 

Simulation-based skill 

sharing protocols for robot 

arm manipulation 

6 

Collaborative capacity sharing 

among manufacturers on the same 

supply network horizontal layer for 

sustainable and balanced returns 

(Ahmed et al., 2020) 

DCSP through horizontal 

(supplier) capacity 

sharing to ensure 

demand fulfilment 

through collaboration 

Resource sharing between 

collaborative network of 

enterprises 

7 

Consultation length and no-show 

prediction for improving 

appointment scheduling efficiency 

at a cardiology clinic: A data 

analytics approach (Srinivas & 

Salah, 2021) 

CRISP-DM data analytics 

for appointment 

scheduling optimization 

Knowledge sharing 

protocols for scheduling 

operations 

8 
Demand and capacity sharing 

decisions and protocols in a 

DCSP through 

information sharing to 

Collaborative resource 

sharing between 



No Project Topic 
Summary of the 

Approach 

Relation to Skill and 

Knowledge Sharing 

collaborative network of enterprises 

(Srinivas & Salah, 2021) 
ensure demand fulfilment 

through collaboration 

collaborative network of 

enterprises 

9 

Human-Robot Cross-Training: 

Computational Formulation, 

Modeling and Evaluation of a 

Human Team Training Strategy 

(Nikolaidis & Shah, 2013) 

The human-robot cross-

training uses mutual 

adaptation process for 

learning fluency in joint-

action 

Human-robot skill sharing 

protocols 

10 

Human-Robot Teaming using 

Shared Mental Models (Nikolaidis 

& Shah, 2012) 

Theoretical model of 

SMM, how it plans, 

assesses, and promotes 

HRI 

Human-robot knowledge 

sharing protocols  

11 

Improved Human-Robot Team 

Performance Using Chaski, A 

Human-Inspired Plan Execution 

System (Nikolaidis & Shah, 2012) 

A robot system capable 

of real-time workflow 

adaptation in a human-

robot environment 

Human-robot skill sharing 

protocols for a flexible 

collaborative workflow 

12 

Increasing Human Performance by 

Sharing Cognitive Load Using 

Brain-to-Brain Interface 

(Maksimenko et al., 2018) 

Brain-to-Brain Interface 

allows workload-sharing 

and redistribution 

depending on current 

cognitive performance 

based on electrical brain 

activity 

Human-to-human 

knowledge sharing 

protocols for a better 

teaming 

13 

Integrating representation learning 

and skill learning in a human-like 

intelligent agent (Li et al., 2015) 

Deep feature learning 

SimStudent with transfer 

learning and feature 

focus to solve problems 

Human-robot knowledge 

sharing protocols for a 

better tutoring system 

14 

Machine learning for predictive 

scheduling and resource allocation 

in large scale manufacturing 

systems (Morariu et al., 2020) 

Cloud computing and 

machine learning for 

combined scheduling and 

maintenance optimization 

Knowledge sharing 

protocols as an enabler of 

collaborative resource-

sharing 

15 

Quantifying Task Similarity for Skill 

Generalisation in the Context of 

Human Motor Control (Sebastian et 

al., 2016) 

Quantifying task 

similarity, learning, and 

transfer learning in 

motoric tasks 

Skill sharing protocols in a 

sequential task assignment 

16 

Skill transfer support model based 

on deep learning (K.-J. Wang et al., 

2021) 

Skill transfer model aids 

new operator to execute 

tasks based on expert 

operators data, modeled 

with RNN and CNN 

Human-to-human 

knowledge sharing 

protocols using machine 

learning 

17 

Towards Fully Autonomous 

Ultrasound Scanning Robot With 

Imitation Learning Based on 

Clinical Protocols (Y. Huang et al., 

2021) 

Imitation learning 

framework with One-Step 

Exploring (OSE) and 

Region of Attention 

(ROA) for Autonomous 

Ultrasound Scanning 

Robot 

Human-robot skill sharing 

protocols for procedure-

specified tasks 

18 

Virtual reality (VR) as a simulation 

modality for technical skills 

acquisition (Nassar et al., 2021) 

VR as an enabler of skill 

acquisition and surgical 

simulation 

Human-to-human skill 

sharing protocols for 

procedure-specified tasks 

 



3.4 Emerging Research Challenges of Skill and Knowledge Sharing 

3.4.1 Theoretical Research Challenges 

Skill and knowledge sharing in production systems and supply networks is accomplished 

through the four layers of the cyber-collaborative physical system (CCPS), as illustrated in the 

figure below. Skill and knowledge sharing is preceded by a preliminary phase of skill and 

knowledge acquisition and documentation. The expert system developed in the first phase 

becomes the foundation of the next stage, the execution phase. In this second phase, the four 

layers of CCPS are streamlined and optimized to support the instance of skill and knowledge 

sharing. The outcome of skill and knowledge sharing is measured based on a set of 

performance metrics in the last stage, the evaluation phase. 

 

Cyber-augmented Collaborative Physical 

Systems (CCPS)

Cyber Layer

Computing, Communication, Real-time control, 

Brain Model, including AI, learning protocols 

and algorithms

Physical Items and Systems Layer

IoS, IoT, Industrial Internet, Sensors, 

Connected Devices

Network Layer

Integration, Interoperability, Communication 

cc-Work and cc-Management Layer

Data Analytics, AI/Machine Learning, 

Augmented/Virtual Reality

Preliminary Phase Execution Phase Evaluation Phase

Skill and Knowledge

Expert System

Data and 
Information

Skill

Knowledge

Metrics of 

Skill Sharing

Learning 
rate and 
training 
duration

Degrees of 
task 

completion

Metrics of 

Knowledge 
Sharing

Information 
latency, 

response 
time

Accuracy 
and 

precision

Other Metrics 

in Production 
System

Utilization, 
throughput, 
fulfillment 

rate

Number of 
errors and 
conflicts

 

Figure 6 The Framework of Skill and Knowledge Sharing in CCPS  

• Previous research has mainly focused on generating preliminary working systems of 

skill and knowledge sharing models. Some common developments include teaching 

robots to perform procedural tasks; guiding novice operators to execute a particular 

task using augmentation and wearables; and other applications in which the focus is 

put on developing a contextualized system, where instances of skill and knowledge 

sharing occur. The key finding of the previous studies is that skill and knowledge 

sharing occurs in various case studies, and is enabled by a wide range of tools, varying 

from machine learning, data analytics, industrial internet of things (IIoT) and 

virtual/augmented reality (VR/AR/XR). 

• In terms of performance metrics, the effectivity of the working system is mostly 

measured by a usability survey, where human subjects are given a set of 

questionnaires to fill, and the options are formulated in Likert scale, or a similar scale. 

Despite their quantified nature, most of the surveys do not include objective 

assessments of the production system’s or supply network’s performance. Therefore, 

the framework defined here and shown in Fig. ?? above is able to measure the 

effectivity of skill and knowledge sharing into three different sub-metrics to deepen our 

understanding of the outcomes. The benefits of skill and knowledge sharing should be 

extended and related to general production systems and supply networks metrics, 

such as throughput, error reduction, conflict resolution, and on-time delivery. 

• Previous research has only partially, not fully addressed the dynamic execution of skill 

and knowledge sharing under integrated, operational system conditions. Recent 

advances of automation have modeled human as an integral element in a smart 



manufacturing systems and supply networks, which is the human in the loop (HITL) 

perspective. As key decision making participants in the systems’ network, human 

agents must be fully equipped and augmented with the necessary, timely skills and 

knowledge. The augmentation process should be streamlined so that the training and 

preparation duration is minimal. In cases where this time duration can be reduced, 

optimize and harmonized dynamic skill and knowledge sharing must be implemented.  

• Further research is needed to address the three above emerging challenges in order 

to enable concurrent, optimized, and harmonized intelligence sharing in a skill and 

knowledge sharing CCPS. For this purpose, the HITL focus will have to expand to the 

NITN, Human in the network scale. 

 

3.4.2 Future Research Plan 

The emerging areas of research and major open questions about challenges concerning the 

field of Skill and Knowledge Sharing can be summarized in the following directions: 

• HUB-CI for information flow optimization, which optimizes and harmonizes the 

collaborative intelligence of agents in a workflow by controlling data and information 

flow between them. This application of HUB-CI is particularly advantageous in cases 

where Augmented Reality (AR) and its variants are being used as tools for skill and 

knowledge sharing. 

• Learning protocols in the skill and knowledge sharing (SaKS), which streamline the 

data exchange process for faster transmission. As the latency and coherence are 

maintained, SaKS can be organized and managed dynamically. 

• Machine learning-based ontology for SaKS taxonomy, which provides an adaptive, 

interpretable definitions of basic concepts and the relationships between skill and 

knowledge. With the rising level of intelligence of computing resources, this subject will 

extend the classification that Bloom’s Taxonomy and its derivatives provide, and 

improve researchers’ understanding with contextual and iterative definitions of skill and 

knowledge.  

• Other collaborative augmentations, which are related to physical wearables, 

augmented/extended reality and online, and real-time analytic systems based on the 

collaborative intelligence. 

Several on-going PRISM and PGRN research projects are already addressing these 

challenging directions. 
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