7 research outputs found

    Generalized topological simplification of scalar fields on surfaces

    Get PDF
    pre-printWe present a combinatorial algorithm for the general topological simplification of scalar fields on surfaces. Given a scalar field f, our algorithm generates a simplified field g that provably admits only critical points from a constrained subset of the singularities of f, while guaranteeing a small distance ||f - g||∞ for data-fitting purpose. In contrast to previous algorithms, our approach is oblivious to the strategy used for selecting features of interest and allows critical points to be removed arbitrarily. When topological persistence is used to select the features of interest, our algorithm produces a standard Ï”-simplification. Our approach is based on a new iterative algorithm for the constrained reconstruction of sub- and sur-level sets. Extensive experiments show that the number of iterations required for our algorithm to converge is rarely greater than 2 and never greater than 5, yielding O(n log(n)) practical time performances. The algorithm handles triangulated surfaces with or without boundary and is robust to the presence of multi-saddles in the input. It is simple to implement, fast in practice and more general than previous techniques. Practically, our approach allows a user to arbitrarily simplify the topology of an input function and robustly generate the corresponding simplified function. An appealing application area of our algorithm is in scalar field design since it enables, without any threshold parameter, the robust pruning of topological noise as selected by the user. This is needed for example to get rid of inaccuracies introduced by numerical solvers, thereby providing topological guarantees needed for certified geometry processing. Experiments show this ability to eliminate numerical noise as well as validate the time efficiency and accuracy of our algorithm. We provide a lightweight C++ implementation as supplemental material that can be used for topological cleaning on surface meshes

    Toward Controllable and Robust Surface Reconstruction from Spatial Curves

    Get PDF
    Reconstructing surface from a set of spatial curves is a fundamental problem in computer graphics and computational geometry. It often arises in many applications across various disciplines, such as industrial prototyping, artistic design and biomedical imaging. While the problem has been widely studied for years, challenges remain for handling different type of curve inputs while satisfying various constraints. We study studied three related computational tasks in this thesis. First, we propose an algorithm for reconstructing multi-labeled material interfaces from cross-sectional curves that allows for explicit topology control. Second, we addressed the consistency restoration, a critical but overlooked problem in applying algorithms of surface reconstruction to real-world cross-sections data. Lastly, we propose the Variational Implicit Point Set Surface which allows us to robustly handle noisy, sparse and non-uniform inputs, such as samples from spatial curves

    Topological analysis of discrete scalar data

    Get PDF
    This thesis presents a novel computational framework that allows for a robust extraction and quantification of the Morse-Smale complex of a scalar field given on a 2- or 3- dimensional manifold. The proposed framework is based on Forman\u27s discrete Morse theory, which guarantees the topological consistency of the computed complex. Using a graph theoretical formulation of this theory, we present an algorithmic library that computes the Morse-Smale complex combinatorially with an optimal complexity of O(n2)O(n^2) and efficiently creates a multi-level representation of it. We explore the discrete nature of this complex, and relate it to the smooth counterpart. It is often necessary to estimate the feature strength of the individual components of the Morse-Smale complex -- the critical points and separatrices. To do so, we propose a novel output-sensitive strategy to compute the persistence of the critical points. We also extend this wellfounded concept to separatrices by introducing a novel measure of feature strength called separatrix persistence. We evaluate the applicability of our methods in a wide variety of application areas ranging from computer graphics to planetary science to computer and electron tomography.In dieser Dissertation prĂ€sentieren wir ein neues System zur robusten Berechnung des Morse-Smale Komplexes auf 2- oder 3-dimensionalen Mannigfaltigkeiten. Das vorgestellte System basiert auf Forman’s diskreter Morsetheorie und garantiert damit die topologische Konsistenz des berechneten Komplexes. Basierend auf einer graphentheoretischer Formulierung prĂ€esentieren wir eine Bibliothek von Algorithmen, die es erlaubt, den Morse-Smale Komplex mit einer optimalen KompliztĂ€t von O(n2)O(n^2) kombinatorisch zu berechnen und effizient eine mehrskalige ReprĂ€sentation davon erstellt. Wir untersuchen die diskrete Natur dieses Komplexes und vergleichen ihn zu seinem kontinuierlichen GegenstĂŒck. Es ist hĂ€ufig notwendig, die MerkmalsstĂ€rke einzelner Bestandteile des Komplexes -- der kritischen Punkte und Separatrizen -- abzuschĂ€tzen. HierfĂŒr stellen wir eine neue outputsensitive Strategie vor, um die Persistenz von kritischen Punkten zu berechen. Wir erweitern dieses fundierte Konzept auf Separatrizen durch die EinfĂŒhrung des Wichtigkeitsmaßes Separatrixpersistenz. Wir evaluieren die Anwendbarkeit unserer Methoden anhand vielfĂ€ltiger Anwendungen aus den Gebieten der Computergrafik, Planetologie, Computer- und Elektronentomographie

    Génération et édition de textures géométriques représentées par des ensembles de points

    Full text link
    ThÚse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

    Abstract Controlled-Topology Filtering

    No full text
    Many applications require the extraction of isolines and isosurfaces from scalar functions defined on regular grids. These scalar functions may have many different origins: from MRI and CT scan data to terrain data or results of a simulation. As a result of noise and other artifacts, curves and surfaces obtained by standard extraction algorithms often suffer from topological irregularities and geometric noise. While it is possible to remove topological and geometric noise as a post-processing step, in the case when a large number of isolines are of interest there is a considerable advantage in filtering the scalar function directly. While most smoothing filters result in gradual simplification of the topological structure of contours, new topological features typically emerge and disappear during the smoothing process. In this paper, we describe an algorithm for filtering functions defined on regular 2D grids with controlled topology changes, which ensures that the topological structure of the set of contour lines of the function is progressively simplified
    corecore