13,941 research outputs found

    Frequency and voltage partitioning in presence of renewable energy resources for power system (example: North Chile power network)

    Get PDF
    This paper investigates techniques for frequency and voltage partitioning of power network based on the graph-theory. These methods divide the power system into distinguished regions to avoid the spread of disturbances and to minimize the interaction between these regions for frequency and voltage control of power system. In case of required active and reactive power for improving the performance of the power system, control can be performed regionally instead of a centralized controller. In this paper, renewable energy sources are connected to the power network to verify the effect of these sources on the power systems partitioning and performance. The number of regions is found based on the frequency sensitivity for frequency partitioning and bus voltage for voltage partitioning to disturbances being applied to loads in each region. The methodology is applied to the north part of Chile power network. The results show the performance and ability of graph frequency and voltage partitioning algorithm to divide large scale power systems to smaller regions for applying decentralized controllers.Peer ReviewedPostprint (published version

    A Policy Switching Approach to Consolidating Load Shedding and Islanding Protection Schemes

    Full text link
    In recent years there have been many improvements in the reliability of critical infrastructure systems. Despite these improvements, the power systems industry has seen relatively small advances in this regard. For instance, power quality deficiencies, a high number of localized contingencies, and large cascading outages are still too widespread. Though progress has been made in improving generation, transmission, and distribution infrastructure, remedial action schemes (RAS) remain non-standardized and are often not uniformly implemented across different utilities, ISOs, and RTOs. Traditionally, load shedding and islanding have been successful protection measures in restraining propagation of contingencies and large cascading outages. This paper proposes a novel, algorithmic approach to selecting RAS policies to optimize the operation of the power network during and after a contingency. Specifically, we use policy-switching to consolidate traditional load shedding and islanding schemes. In order to model and simulate the functionality of the proposed power systems protection algorithm, we conduct Monte-Carlo, time-domain simulations using Siemens PSS/E. The algorithm is tested via experiments on the IEEE-39 topology to demonstrate that the proposed approach achieves optimal power system performance during emergency situations, given a specific set of RAS policies.Comment: Full Paper Accepted to PSCC 2014 - IEEE Co-Sponsored Conference. 7 Pages, 2 Figures, 2 Table

    Distributed Generation and Resilience in Power Grids

    Full text link
    We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.Comment: proceedings of Critis 2012 http://critis12.hig.no

    Intentional Controlled Islanding in Wide Area Power Systems with Large Scale Renewable Power Generation to Prevent Blackout

    Get PDF
    Intentional controlled islanding is a solution to prevent blackouts following a large disturbance. This study focuses on determining island boundaries while maintaining the stability of formed islands and minimising load shedding. A new generator coherency identification framework based on the dynamic coupling of generators and Support Vector Clustering method is proposed to address this challenge. A Mixed Integer Linear Programming model is formulated to minimize power flow disruption and load shedding, and ensure the stability of islanding. The proposed algorithm was validated in 39-bus and 118-bus test systems

    Optimization Techniques for Modern Power Systems Planning, Operation and Control

    Get PDF
    Recent developments in computing, communication and improvements in optimization techniques have piqued interest in improving the current operational practices and in addressing the challenges of future power grids. This dissertation leverages these new developments for improved quasi-static analysis of power systems for applications in power system planning, operation and control. The premise of much of the work presented in this dissertation centers around development of better mathematical modeling for optimization problems which are then used to solve current and future challenges of power grid. To this end, the models developed in this research work contributes to the area of renewable integration, demand response, power grid resilience and constrained contiguous and non-contiguous partitioning of power networks. The emphasis of this dissertation is on finding solutions to system operator level problems in real-time. For instance, multi-period mixed integer linear programming problem for applications in demand response schemes involving more than million variables are solved to optimality in less than 20 seconds of computation time through tighter formulation. A balanced, constrained, contiguous partitioning scheme capable of partitioning 20,000 bus power system in under one minute is developed for use in time sensitive application area such as controlled islanding

    Modeling and Real-Time Scheduling of DC Platform Supply Vessel for Fuel Efficient Operation

    Full text link
    DC marine architecture integrated with variable speed diesel generators (DGs) has garnered the attention of the researchers primarily because of its ability to deliver fuel efficient operation. This paper aims in modeling and to autonomously perform real-time load scheduling of dc platform supply vessel (PSV) with an objective to minimize specific fuel oil consumption (SFOC) for better fuel efficiency. Focus has been on the modeling of various components and control routines, which are envisaged to be an integral part of dc PSVs. Integration with photovoltaic-based energy storage system (ESS) has been considered as an option to cater for the short time load transients. In this context, this paper proposes a real-time transient simulation scheme, which comprises of optimized generation scheduling of generators and ESS using dc optimal power flow algorithm. This framework considers real dynamics of dc PSV during various marine operations with possible contingency scenarios, such as outage of generation systems, abrupt load changes, and unavailability of ESS. The proposed modeling and control routines with real-time transient simulation scheme have been validated utilizing the real-time marine simulation platform. The results indicate that the coordinated treatment of renewable based ESS with DGs operating with optimized speed yields better fuel savings. This has been observed in improved SFOC operating trajectory for critical marine missions. Furthermore, SFOC minimization at multiple suboptimal points with its treatment in the real-time marine system is also highlighted

    Secondary Voltage Control using Singular Value Decomposition by Discovering Community Structures in Power Networks

    Get PDF
    Voltage and Frequency control are the two fundamental control problems in power systems. Unlike frequency control, voltage control is complicated by the fact that reactive power can\u27t travel far distances from its source of generation. Due to this distributed nature of reactive power, voltage control is usually performed in decentralized manner. Typically, voltage control problem is divided into a three-level hierarchical structure namely primary, secondary and tertiary voltage control.;The aim of this thesis is to present an optimal secondary voltage control by decomposing a large power system into small subsystems called voltage control areas (VCAs) using the fast community detection algorithm. Each VCA is self-sufficient in satisfying its reactive power demand. A load bus, called pilot point/bus, is selected in each VCA as a representative of the voltage profile of the whole area. Singular value decomposition of Fast Decoupled Load Flow (FDLF) Jacobian is used to optimally control the voltages of these pilot buses.;The presented approach is tested on two standard IEEE test power systems i.e. 9-Bus and 39-Bus systems. The computational time comparison of the fast community detection algorithm with another algorithm called original-GN algorithm is also presented. Through simulation results, it is shown that the presented optimal voltage control (Opt-VC) is a better approach compared to sensitivity based voltage control (Sen-VC)
    • …
    corecore