3,020 research outputs found

    Designing privacy for scalable electronic healthcare linkage

    Get PDF
    A unified electronic health record (EHR) has potentially immeasurable benefits to society, and the current healthcare industry drive to create a single EHR reflects this. However, adoption is slow due to two major factors: the disparate nature of data and storage facilities of current healthcare systems and the security ramifications of accessing and using that data and concerns about potential misuse of that data. To attempt to address these issues this paper presents the VANGUARD (Virtual ANonymisation Grid for Unified Access of Remote Data) system which supports adaptive security-oriented linkage of disparate clinical data-sets to support a variety of virtual EHRs avoiding the need for a single schematic standard and natural concerns of data owners and other stakeholders on data access and usage. VANGUARD has been designed explicit with security in mind and supports clear delineation of roles for data linkage and usage

    Data privacy by design: digital infrastructures for clinical collaborations

    Get PDF
    The clinical sciences have arguably the most stringent security demands on the adoption and roll-out of collaborative e-Infrastructure solutions such as those based upon Grid-based middleware. Experiences from the Medical Research Council (MRC) funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project and numerous other real world security driven projects at the UK e-Science National e-Science Centre (NeSC – www.nesc.ac.uk) have shown that whilst advanced Grid security and middleware solutions now offer capabilities to address many of the distributed data and security challenges in the clinical domain, the real clinical world as typified by organizations such as the National Health Service (NHS) in the UK are extremely wary of adoption of such technologies: firewalls; ethics; information governance, software validation, and the actual realities of existing infrastructures need to be considered from the outset. Based on these experiences we present a novel data linkage and anonymisation infrastructure that has been developed with close co-operation of the various stakeholders in the clinical domain (including the NHS) that addresses their concerns and satisfies the needs of the academic clinical research community. We demonstrate the implementation of this infrastructure through a representative clinical study on chronic diseases in Scotland

    Initial experiences in developing e-health solutions across Scotland

    Get PDF
    The MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project is a collaborative effort between e-Science, clinical and ethical research centres across the UK including the universities of Oxford, Glasgow, Imperial, Nottingham and Leicester. The project started in September 2005 and is due to run for 3 years. The primary goal of VOTES is to develop a reusable Grid framework through which a multitude of clinical trials and epidemiological studies can be supported. The National e-Science Centre (NeSC) at the University of Glasgow are looking at developing the Scottish components of this framework. This paper presents the initial experiences in developing this framework and in accessing and using existing data sets, services and software across the NHS in Scotland

    Stealth databases : ensuring user-controlled queries in untrusted cloud environments

    Get PDF
    Sensitive data is increasingly being hosted online in ubiquitous cloud storage services. Recent advances in multi-cloud service integration through provider multiplexing and data dispersion have alleviated most of the associated risks for hosting files which are retrieved by users for further processing. However, for structured data managed in databases, many issues remain, including the need to perform operations directly on the remote data to avoid costly transfers. In this paper, we motivate the need for distributed stealth databases which combine properties from structure-preserving dispersed file storage for capacity-saving increased availability with emerging work on structure-preserving encryption for on-demand increased confidentiality with controllable performance degradation. We contribute an analysis of operators executing in map-reduce or map-carry-reduce phases and derive performance statistics. Our prototype, StealthDB, demonstrates that for typical amounts of personal structured data, stealth databases are a convincing concept for taming untrusted and unsafe cloud environments

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    Heterogeneous data source integration for smart grid ecosystems based on metadata mining

    Get PDF
    The arrival of new technologies related to smart grids and the resulting ecosystem of applications andmanagement systems pose many new problems. The databases of the traditional grid and the variousinitiatives related to new technologies have given rise to many different management systems with several formats and different architectures. A heterogeneous data source integration system is necessary toupdate these systems for the new smart grid reality. Additionally, it is necessary to take advantage of theinformation smart grids provide. In this paper, the authors propose a heterogeneous data source integration based on IEC standards and metadata mining. Additionally, an automatic data mining framework isapplied to model the integrated information.Ministerio de EconomĂ­a y Competitividad TEC2013-40767-

    Privacy-preserving queries on encrypted databases

    Get PDF
    In today's Internet, with the advent of cloud computing, there is a natural desire for enterprises, organizations, and end users to outsource increasingly large amounts of data to a cloud provider. Therefore, ensuring security and privacy is becoming a significant challenge for cloud computing, especially for users with sensitive and valuable data. Recently, many efficient and scalable query processing methods over encrypted data have been proposed. Despite that, numerous challenges remain to be addressed due to the high complexity of many important queries on encrypted large-scale datasets. This thesis studies the problem of privacy-preserving database query processing on structured data (e.g., relational and graph databases). In particular, this thesis proposes several practical and provable secure structured encryption schemes that allow the data owner to encrypt data without losing the ability to query and retrieve it efficiently for authorized clients. This thesis includes two parts. The first part investigates graph encryption schemes. This thesis proposes a graph encryption scheme for approximate shortest distance queries. Such scheme allows the client to query the shortest distance between two nodes in an encrypted graph securely and efficiently. Moreover, this thesis also explores how the techniques can be applied to other graph queries. The second part of this thesis proposes secure top-k query processing schemes on encrypted relational databases. Furthermore, the thesis develops a scheme for the top-k join queries over multiple encrypted relations. Finally, this thesis demonstrates the practicality of the proposed encryption schemes by prototyping the encryption systems to perform queries on real-world encrypted datasets
    • 

    corecore