
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Privacy-preserving queries on
encrypted databases

https://hdl.handle.net/2144/19739
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/142073950?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

PRIVACY-PRESERVING QUERIES ON ENCRYPTED DATABASES

by

XIANRUI MENG

B.S., Bloomsburg University of Pennsylvania, 2010
M.S., Boston University, 2013

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

c© Copyright by
XIANRUI MENG
2016

Approved by

First Reader

George Kollios, Ph.D.
Professor of Computer Science

Second Reader

Seny Kamara, Ph.D.
Associate Professor of Computer Science
Brown University, Computer Science Department

Third Reader

Steven Homer, Ph.D.
Professor of Computer Science

To my lovely grandmother

iv

Acknowledgments

Getting a Ph.D. is a wonderful occasion to thank the numerous people who have taught,

helped, supported, and inspired me. It is, of course, impossible to thank every one of them,

and I am sure I am inadvertently leaving someone out, for which I apologize in advance.

It was my pleasure and an honor to work with George Kollios these past years. As an

advisor, he patiently and skillfully guided me, always recommending the relevant papers

to read and the appropriate problems on which to focus. He has always given me the

freedom to pursue my own ideas, all the while making sure I stayed productive. I will

unquestionably miss those late nights that we were working on the research papers.

I am very grateful to my mentor and friend Seny Kamara, who has kindly agreed to

be a reader for this thesis. I still remembered the day when Seny and I were sitting in a

caf shop, trying to figure out a research project, which eventually leaded to a great paper.

At Microsoft Research, I missed the days that we were watching the World Cup. I also

would like to thank Steve Homer for agreeing to be another reader for this thesis, and

for providing valuable career advice. I very much enjoyed having both academic and non-

academic conversations with him and feasting on the delicious and authentic Thai food he

and his wife served at his house. Special thanks to Alina Oprea and Evimaria Terzi for

serving on my thesis committee and for helping me make this dissertation more accessible

to a wider audience.

I am lucky to work with many outstanding coauthors and researchers that constantly

surprise and impress me with their creativity and originality. I enjoyed all of those fruitful

conversations with Ran Canetti, Benjamin Fuller, Kobbi Nissim, Leo Reyzin. Graduate

school would not have been nearly as rewarding without my peers and my time at Boston

would not have been the same without my friends at BU’s CS department and its visi-

tors: Qinxun Bai, Yilei Chen, Dora Erdos, Benjamin Fuller, Kun He, Ye Li, Shugao Ma,

Charalampos Mavroforakis, Dimitris Papadopoulos, Davide Proserpio, Natali Runchasky,

Mehrnoosh Sameki, Larissa Spinelli, Yuefeng Wang, Zheng Wu, Haohan Zhu, and many

v

others. I will miss your laugh and smile.

I would like to thank my dear, Snow, for her unconditionally love during my Ph.D.

studies. Thank you for your delicious food, your beautiful smile, and your incomparable

support. Lastly, thank you my Mom and Dad. There’s no way that I can concisely

articulate how supportive and caring you are. I would not have been where I am without

your invaluable truly and deeply love and encouragement!

vi

PRIVACY-PRESERVING QUERIES ON ENCRYPTED DATABASES

XIANRUI MENG

Boston University, Graduate School of Arts and Sciences, 2016

Major Professor: George Kollios, Professor of Computer Science

ABSTRACT

In today’s Internet, with the advent of cloud computing, there is a natural desire for enter-

prises, organizations, and end users to outsource increasingly large amounts of data to a

cloud provider. Therefore, ensuring security and privacy is becoming a significant challenge

for cloud computing, especially for users with sensitive and valuable data. Recently, many

efficient and scalable query processing methods over encrypted data have been proposed.

Despite that, numerous challenges remain to be addressed due to the high complexity of

many important queries on encrypted large-scale datasets. This thesis studies the problem

of privacy-preserving database query processing on structured data (e.g., relational and

graph databases). In particular, this thesis proposes several practical and provable secure

structured encryption schemes that allow the data owner to encrypt data without losing

the ability to query and retrieve it efficiently for authorized clients. This thesis includes

two parts. The first part investigates graph encryption schemes. This thesis proposes a

graph encryption scheme for approximate shortest distance queries. Such scheme allows

the client to query the shortest distance between two nodes in an encrypted graph securely

and efficiently. Moreover, this thesis also explores how the techniques can be applied to

other graph queries. The second part of this thesis proposes secure top-k query processing

schemes on encrypted relational databases. Furthermore, the thesis develops a scheme for

the top-k join queries over multiple encrypted relations. Finally, this thesis demonstrates

the practicality of the proposed encryption schemes by prototyping the encryption systems

to perform queries on real-world encrypted datasets.

vii

Contents

1 Introduction 1

2 Notation and Preliminaries 6

2.1 Notations . 6

2.2 Cryptographic Tools . 7

2.2.1 Encryption . 7

2.2.2 Pseudo-random functions . 10

3 Graph Encryption for Approximate Shortest Distance Queries 11

3.1 Graph Encryption . 11

3.2 Related Work . 13

3.2.1 Graph privacy . 13

3.2.2 Distance oracles . 15

3.3 Distance Oracles for Shortest Distance Computation 15

3.3.1 Sketch-based oracles. 16

3.3.2 The Das Sarma et al. oracle. 16

3.3.3 The Cohen et al. oracle . 17

3.3.4 Shortest distance queries . 17

3.4 Distance Oracle Encryption . 17

3.4.1 Security . 18

3.4.2 Leakage . 20

3.4.3 Efficiency . 22

3.5 GRECS Constructions . 22

viii

3.5.1 A Computationally-Efficient Scheme 22

3.5.2 Security and efficiency. 23

3.5.3 A Communication-Efficient Scheme 24

3.5.4 Error Detection . 30

3.5.5 A Space-Efficient Construction . 32

3.6 Experimental Evaluation . 37

3.6.1 Datasets . 38

3.6.2 Overview . 39

3.6.3 Performance of GraphEnc1 . 39

3.6.4 Performance of GraphEnc2 . 40

3.6.5 Performance of GraphEnc3 . 41

3.6.6 Approximation errors . 44

3.7 Application to Other Graph Queries . 46

3.7.1 All-Distance Sketches . 46

3.7.2 Graph Similarity Queries using All-Distance Sketches 47

3.7.3 Graph Encryption based on ADS . 48

4 Top-k Query Processing on Encrypted Relational Databases 52

4.1 Introduction . 52

4.2 Related Works and Background . 55

4.3 Preliminaries . 56

4.3.1 Problem Definition . 56

4.3.2 The Architecture . 57

4.3.3 Cryptographic Tools . 58

4.3.4 No-Random-Access (NRA) Algorithm 59

4.4 Scheme Overview . 61

4.5 Encrypted Hash List (EHL) . 62

4.6 Database Encryption . 66

ix

4.7 Query Token . 67

4.8 Top-k Query Processing . 67

4.8.1 Query Processing: SecQuery . 68

4.8.2 Building Blocks . 70

4.9 Security Discussion . 79

4.10 Query Optimization . 80

4.10.1 Efficient SecDupElim . 80

4.10.2 Batch Processing for SecQuery . 81

4.10.3 Efficiency . 82

4.11 Experiments . 82

4.11.1 Evaluation of the Encryption Setup 84

4.11.2 Query Processing Performance . 84

4.12 Top-k Join . 90

4.12.1 Secure Top-k Join . 91

4.12.2 Encryption Setup for Multiple databases 91

4.12.3 Query Token . 92

4.12.4 Query Processing for top-k join . 92

4.12.5 Related works on Secure Join . 98

4.13 Top-k Query Processing Conclusion . 99

5 Conclusions 100

5.1 Future Directions . 101

List of Journal Abbreviations 104

Bibliography 107

Curriculum Vitae of Xianrui Meng 114

x

List of Tables

3.1 The graph datasets used in our experiments 38

3.2 The space, setup, communication, and query complexities of our construc-

tions (α is set to be in O(log n)). 39

3.3 A full performance summary for GraphEnc1, GraphEnc2, and GraphEnc3 . . . 40

4.1 Encrypted patients Heart-Disease Data . 53

4.2 Notation Summarization . 60

4.3 Total Communication Network Latency for each dataset when k = 20, m = 4 90

xi

List of Figures

3.1 Two sketches for nodes u and v. The approximate shortest distance d = 5. . 17

3.2 One node’s encrypted hash table. 25

3.3 Example of encrypting Sku = {(a, d1), (b, d2), (c, d3)}. 35

3.4 Collision probabilities for different datasets 41

3.5 Construction time and size overhead (DO1) 43

3.6 Construction time and size overhead (DO2) 43

3.7 Average Query time . 44

3.8 Mean of Estimated Error with Standard Deviation 45

3.9 Absolute error histogram DO2 and ρ = 3 46

4.1 An overview of our model . 58

4.2 Encrypted Hash List for the object o. 63

4.3 Overview of the SecDedup protocol . 77

4.4 Encryption using EHL vs. EHL+. 83

4.5 Encryption EHL vs. EHL+ on real data . 83

4.6 Qry F query performance . 86

4.7 Qry E query optimization performance . 86

4.8 Qry Ba query optimization performance . 87

4.9 Comparisons (k = 5, m = 2, and p = 500) . 88

4.10 Communication bandwidth evaluation . 89

4.11 Top-k join: ./sec . 98

xii

List of Abbreviations

ADS All Distance Sketch

BFS Breath First Search

BGN Boneh Goh Nissim Encryption Scheme

CPA Chosen Plaintext Attack

CQA Chosen Query Attack

DJ Damg̊ard-Jurik Cryptosystem

DO Distance Oracle

DP Differential Privacy

EHL Encrypted Hash List

EO Oralce Encryption

FHE Fully Homomorphic Encryption

FPR False Positive Rate

GraphEnc Graph Encryption

GRECS Graph Encryption for approximate shortest distance queries

HMAC Keyed-hash Message Authentication Code

kNN k Nearest Neighbor

MPC Multiparty Computation

NRA No Random Access Algorithm

ORAM Oblivious RAM

PAMAP Physical Activity Monitoring Dataset

PIR Private Information Retrieval

xiii

PRF Pseudo-random Function

PRP Pseudo-random Permutation

QP Query Pattern

RDF Resource Description Framework

SE Structured Encryption

SecBest Secure Best Score Protocol

SecDedup Secure Deduplication Protocol

SecJoin Secure Join Protocol

SecUpdate Secure Update Protocol

SecWorst Secure Worse Score Protocol

SSE Searchable Symmetric Encryption

SWHE Somewhat Homomorphic Encryption

xiv

List of Symbols

G = (V,E) An undirected graph with node set V and edge set E.

dist(u, v) Shortest Distance between u and v.

DX A dictionary.

SKE A symmetric key encryption scheme.

pk, sk Public key and secret key.

Skv A sketch for node v.

ΩG A distance oracle data structure for graph G.

DO A distance oracle.

σ Sampling parameter for the distance oracle.

α Approximation factor for the distance oracle.

ε Error parameter.

EO An encrypted graph

S The maximum sketch size.

ρ The ranking parameter for ADS.

LSetup Setup leakage.

LQuery Query leakage.

Ideal The Ideal world of the execution.

Real The Real world of the execution.

GraphEnc1 The computation-efficient GE.

GraphEnc2 The communication-efficient GE.

GraphEnc3 The computation and communication-efficient GE.

xv

LSP The Sketch pattern leakage.

ESkv Encrypted sketch for node v.

H Universal hash family.

Collv Hash collision for node v.

XCollu,v Inter-hash collision between node v and u.

J∗ Dijkstra Rank Closeness.

Enc(m) Paillier encryption of m.

Dec(c) Paillier decryption of c.

E2
(
m
)

. Damg̊ard-Jurik (DJ) encryption of m.

E(x) ∼ E(y) Denotes x = y, i.e. Dec(E(x)) = Dec(E(y)).

EHL(o) Encrypted Hash List of the object o.

EHL+(o) Efficient Encrypted Hash List of the object o

	, � EHL and EHL+ operations.

Idi The data item in the ith sorted list Li at depth d.

E(Idi) Encrypted data item Idi

FW (o) Cost function in the query token

Bd(o) The best score (upper bound) of o at depth d

W d(o) The worst score (lower bound) of o at depth d

E(I) The encrypted item that contains (EHL(o),Enc(W),Enc(B))

xvi

Chapter 1

Introduction

As remote storage and cloud computing services emerge, such as Amazon’s EC2, Google

AppEngine, and Microsoft’s Azure, many enterprises, organizations, and end users may

outsource their data to those cloud service providers for reliable maintenance, lower cost,

and better performance. In fact, a number of database systems on the cloud have been

developed recently that offer high availability and flexibility at relatively low costs.

However, despite these benefits, there are still a number of reasons that make many

users to refrain from using these services, especially users with sensitive and valuable

data. Undoubtedly, the main issue for this is related to security and privacy con-

cerns [Agrawal et al., 2011]. Indeed, data owner and clients may not fully trust a public

cloud since the hackers, or the cloud’s administrators with root privilege can fully access all

data for any purpose. Sometimes the cloud provider may sell its business to an untrusted

company, which will have full access to the data. Therefore, ensuring security and privacy

is becoming a significant challenge for cloud computing, especially for users with sensitive

and valuable data. In addition, the benefits of big data - including advances in machine

learning, e-commerce, social sciences, and marketing - are well-publicized, but the various

privacy and security problems it presents have received less attention from the public at

large.

One approach to address these issues is to encrypt the data before outsourcing them

to the cloud. For example, electronic health records (EHRs) should be encrypted before

outsourcing in compliance with regulations like HIPAA1. Encrypted data can bring an en-

1HIPAA is the federal Health Insurance Portability and Accountability Act of 1996.

2

hanced security into the Database-As-Service environment [Hacigümüs et al., 2002]. How-

ever, it also introduces significant difficulties in querying and computing over these data.

In recent years, many works have been proposed for computing over encrypted data. In

general, the main technical difficulty is to query an encrypted database without ever having

to decrypt it. A number of techniques related to practical query processing over encrypted

data have been proposed recently, including keyword search queries [Song et al., 2000,

Cash et al., 2013b, Curtmola et al., 2011], range queries [Shi et al., 2007, Hore et al., 2012,

Li et al., 2014], k-nearest neighbor queries [Wong et al., 2009, Elmehdwi et al., 2014,

Yao et al., 2013, Choi et al., 2014], as well as other aggregate queries.

This thesis proposes practical and scalable encryption schemes for a number of impor-

tant database queries. All of the encryption schemes are practical and provably secure.

In particular, these encryption schemes allow the data owner to encrypt data without

losing the ability to query and retrieve it efficiently for authorized clients. This thesis

mainly focuses on two different type of real-world databases: graph databases and rela-

tional databases.

The first part of this thesis focuses on the problem of designing graph encryption

schemes that support one of the most fundamental and important graph operations: find-

ing the shortest distance between two nodes. Shortest distance queries are a basic operation

in many graph algorithms but also have applications of their own. For instance, on a social

network, shortest distance queries return the shortest number of introductions necessary

for one person to meet another. In protein-protein interaction networks they can be used

to find the functional correlations among proteins [Przulj et al., 2004] and on a phone call

graph (i.e., a graph that consists of phone numbers as vertices and calls as edges) they re-

turn the shortest number of calls connecting two nodes. The thesis develops graph encryp-

tion schemes that efficiently support approximate shortest distance queries on large-scale

encrypted graphs. Shortest distance queries are one of the most fundamental graph opera-

tions and have a wide range of applications. Using such graph encryption schemes, a client

can outsource large-scale privacy-sensitive graphs to an untrusted server without losing the

3

ability to query it. Other applications include encrypted graph databases and controlled

disclosure systems. In particular, the thesis proposes GRECS (stands for GRaph En-

Cryption for approximate Shortest distance queries) which includes three schemes that are

provably secure against any semi-honest server. Furthermore, this thesis also shows that

the building blocks in GRECS can be used for other graph queries.

The second part focuses on relational databases. In particular, this thesis proposes se-

cure and efficient processing protocols of top-k queries over outsourced relational databases

under the non-colluding semi-honest clouds model. The thesis also formulates and con-

structs several novel secure sub-protocols, such as secure best/worst score and secure de-

duplication, which can be adapted as stand-alone building blocks for many other applica-

tions. In particular, during the querying phase the computation performed by the client is

very small. The client only needs to compute a simple token for the server and all of the

relatively heavier computations are performed by the cloud side. The schemes are imple-

mented and have been demonstrated to be very efficient by running a set of experiments

on a number of real-world databases. Furthermore, the thesis shows that the techniques

can be adopted for handling top-k join on multiple encrypted databases, as well as general

join queries.

Contributions. To summarize, the contributions of this thesis are listed below:

• This thesis proposes three graph encryption schemes for approximate shortest dis-

tance queries (GRECS). In particular,

– The first scheme only makes use of symmetric-key operations and, as such, is

computationally-efficient.

– The second scheme makes use of somewhat-homomorphic encryption and

achieves optimal communication complexity.

– The third scheme is computationally-efficient, achieves optimal communication

complexity and produces compact encrypted oracles at the cost of some extra

4

leakage.

• All of the proposed constructions are adaptively semantically-secure with reasonable

leakage functions.

• The encryption schemes are implemented and evaluated over real large-scale graphs

and it is demonstrated that the constructions are practical and scalable.

• The thesis proposes a new practical protocol designed to answer top-k queries over

encrypted relational databases.

• The thesis proposes two encrypted data structures called EHL and EHL+ which allow

the servers to homomorphically evaluate the equality relations between two objects.

• The thesis proposes several independent sub-protocols such that the cloud can se-

curely computes the best/worst scores and de-duplicate replicated encrypted objects

with the use of another non-colluding server. These protocols are building blocks

when computing the top-k queries.

• The thesis proposes schemes for secure top-k join queries and generic join queries.

• All of the schemes are experimentally evaluated using real-world datasets and result

shows that the scheme is efficient and practical.

The thesis is organized as follows:

• Chapter 2 introduces the preliminaries and notation we used.

• Chapter 3 proposes GRECS which includes three schemes. This chapter first discusses

the formal security definitions for the graph encryption scheme and distance oracle

data structures. It then describes the three schemes in details and demonstrates the

experimental results. In addition, it also briefly introduces other graph queries on

encrypted graphs.

5

• Chapter 4 discusses secure top-k query processing on encrypted relations and de-

scribes the scheme in detail. This chapter also proposes the top-k join query process-

ing on multiple encrypted relations, and briefly introduces the protocol for generic

secure join queries.

• Chapter 5 concludes the thesis.

Chapter 2

Notation and Preliminaries

2.1 Notations

Let S be a set, then |S| refers to its cardinality. The notation {Ii} represents a set of

items with the same form of the item Ii. The notation [n] represents the set of integers

{1, . . . , n}. We write x ← χ to represent an element x being sampled from a distribution

χ. We write x
$←− X to represent an element x being uniformly sampled at random from

a set X. The output x of a probabilistic algorithm A is denoted by x ← A and that

of a deterministic algorithm B by x := B. Given a sequence of elements v, we define

its ith element either as vi or v[i] and its total number of elements as |v|. Throughout,

λ ∈ N will denote the security parameter and we assume all algorithms take λ implicitly

as input. A function ν : N → N is negligible in λ if for every positive polynomial p(·)

and all sufficiently large λ, ν(λ) < 1/p(λ). We write f(λ) = poly(λ) to mean that there

exists a polynomial p(·) such that f(λ) ≤ p(λ) for all sufficiently large λ ∈ N; and we

similarly write f(λ) = negl(λ) to mean that there exists a negligible function ν(·) such that

f(λ) ≤ ν(λ) for all sufficiently large λ. A dictionary DX is a data structure that stores

label/value pairs (`i, vi)
n
i=1. Dictionaries support insert and lookup operations defined as

follows: an insert operation takes as input a dictionary DX and a label/value pair (`, v) and

adds the pair to DX. We denote this as DX[`] := v. A lookup operation takes as input a

dictionary DX a label `i and returns the associated value vi. We denote this as vi := DX[`i].

Dictionaries can be instantiated using hash tables and various kinds of search trees. Given

an undirected graph G = (V,E), we denote its total number of nodes as n = |V | and its

7

number of edges as m = |E|. A shortest distance query q = (u, v) asks for the length of

the shortest path between u and v which we denote dist(u, v).

2.2 Cryptographic Tools

2.2.1 Encryption

In this work, we make use of several kinds of encryption schemes including standard

symmetric-key encryption and homomorphic encryption. A symmetric-key encryption

scheme SKE = (Gen,Enc,Dec) is a set of three polynomial-time algorithms that work

as follows. Gen is a probabilistic algorithm that takes a security parameter k as input

and returns a secret key K; Enc is a probabilistic algorithm that takes as input a key K

and a message m and returns a ciphertext c; Dec is a deterministic algorithm that takes

as input a key K and a ciphertext c and returns m if K was the key under which c was

produced. A public-key encryption scheme PKE = (Gen,Enc,Dec) is similarly defined ex-

cept that Gen outputs a public/private key pair (pk, sk) and Enc encrypts messages with

the public key pk. Informally, an encryption scheme is CPA-secure (Chosen-Plaintext-

Attack-secure) if the ciphertexts it outputs do not reveal any partial information about the

messages even to an adversary that can adaptively query an encryption oracle. We refer

the reader to [Katz and Lindell, 2008] for formal definitions of symmetric-key encryption

and CPA-security.

A public-key encryption scheme SWHE is homomorphic if, in addition to the three al-

gorithms (Gen,Enc,Dec), it also includes an evaluation algorithm Eval that takes as input a

function f and a set of ciphertexts c1 ← SWHE.Encpk(m1) through cn ← SWHE.Encpk(mn)

and returns a ciphertext c such that Decsk(c) = f(m1, . . . ,mn). If a homomorphic en-

cryption scheme supports the evaluation of any polynomial-time function, then it is a

fully-homomorphic encryption (FHE) scheme [Rivest et al., 1978, Gentry, 2009b] other-

wise it is a somewhat homomorphic encryption (SWHE) scheme. In this dissertation,

we make use of only “low degree” homomorphic encryption. In particular, in Chap-

8

ter 3, we require the encryption scheme support the evaluation of quadratic polynomi-

als, In particular, we need the evaluation algorithm to support any number of additions:

SWHE.Encpk(m1 + m2) = SWHE.Eval
(
+,Encpk(m1),Encpk(m2)

)
; and a single multiplica-

tion: SWHE.Encpk(m1 ·m2) = SWHE.Eval(×,Encpk(m1),Encpk(m2)), that is, a ciphertext

that results from a homomorphic multiplication cannot be used in another homomorphic

multiplication. Concrete instantiations of such schemes include the scheme of Boneh, Goh

and Nissim (BGN) [Boneh et al., 2005] based on bilinear maps and the scheme of Gentry,

Halevi and Vaikuntanathan [Gentry et al., 2010] based on lattices. In Chapter 4, as we

only require the encryption scheme to be additively homomorphic, we choose the Paillier

encryption scheme. Below we describe the two encryption schemes, Paillier encryption and

Boneh-Goh-Nissim encryption.

Paillier Crypotsystem The Paillier cryptosystem is a semantically secure public key en-

cryption scheme based on the Decisional Composite Residuosity assumption. More specif-

ically, the Paillier cryptosystem is defined as follows:

• Key Generation. To construct the public key, set an RSA modulus n = pq of k bits where

p and q large primes such that gcd(pq, (p−1)(q−1)) = 1. Let K = lcm((p−1)(q−1))

and pick generator g ∈ Z∗n. The public key is the pair pk = (n, g) and the secret is

sk = K.

• Encryption. To encrypt a message m ∈ Zn: choose r
$←− Z∗n and compute Encpk(m) =

gmrn mod n2.

• Decryption. To decrypt a ciphertext c = Enc(m) compute:

m =
L(csk) mod n2

L(gsk) mod n2
mod n, whereL(u) =

u− 1

n

Boneh-Goh-Nissim (BGN) Crypotsystem The cryptosystem devised by Boneh,

Goh, and Nissim [Boneh et al., 2005] was the first to allow both additions and multiplica-

9

tions with a constant-size ciphertext. The encryption uses pairings on elliptic curves. The

scheme makes use of certain finite groups of composite order that support a bilinear map.

We use the following notation

• G and G1 are two (multiplicative) cyclic groups of finite order n.

• g is a generator of G.

• e is a bilinear map e : G×G→ G1. In other words, for all u, v ∈ G and a, b ∈ Z, we

have e(ua, vb) = e(u, v)ab. We also require that e(g, g) is a generator of G1.

We say that G is a bilinear group if there exists a group G1 and a bilinear map as above.

In the next section we also add the requirement that the group action in G, G1, and the

bilinear map can be computed in polynomial time. We refer to [Boneh et al., 2005] on how

to generate the public parameters (q1, q2, G,G1, e), where q1 and q2 are two primes with

k-bit. We now describe the three key algorithm that makes up the system:

• Key Generation. Generate the parameters (q1, q2, G,G1, e) as described in

[Boneh et al., 2005], where q1 and q2 are two primes with k-bit. Let n = q1q2. Pick

two random generators g, u
$←− G and set h = uq2. Then h is a random generator of

the subgroup of G of order q1. The public key is pk = (n,G,G1, e, g, h). The private

key is sk = q1.

• Encryption. We assume the message space consists of integers in the set {0, 1, ..., T} with

T < q2. To encrypt a message m: choose r
$←− Zn and compute Encpk(m) = gmhr

mod n2.

• Decryption. To decrypt a ciphertext C using the private key sk = q1, observe that

Cq1 = (gmhr)q1 = (gq1)m

Let g′ = gq1 . To recover m, it suffices to compute the discrete log of Cq1 base g′.

10

Since 0 ≤ m ≤ T this takes expected time Õ(
√
T) using Pollards lambda method

(see [Menezes et al., 1996], p.128).

2.2.2 Pseudo-random functions

A pseudo-random function (PRF) from domain D to co-domain R is a function family

that is computationally indistinguishable from a random function. In other words, no

computationally-bounded adversary can distinguish between oracle access to a function

that is chosen uniformly at random in the family and oracle access to a function chosen

uniformly at random from the space of all functions from D to R . A pseudo-random

permutation (PRP) is a pseudo-random family of permutations over D. We refer the

reader to [Katz and Lindell, 2008] for formal definitions of PRFs and PRPs.

Chapter 3

Graph Encryption for Approximate Shortest

Distance Queries

3.1 Graph Encryption

Graph databases that store, manage, and query large graphs have received increased inter-

est recently due to many large-scale database applications that can be modeled as graph

problems. Example applications include storing and querying large Web graphs, online

social networks, biological networks, RDF datasets, and communication networks. As a re-

sult, a number of systems have been proposed to manage, query, and analyze massive graphs

both in academia (e.g., Pregel [Malewicz et al., 2010], GraphLab [Low et al., 2010], Hor-

ton [Sarwat et al., 2012], Trinity [Shao et al., 2013], TurboGraph [Han et al., 2013], and

GraphChi-DB [Kyrola and Guestrin, 2014]) and industry (e.g., Neo4j, Titan, DEX, and

GraphBase). Furthermore, with the advent of cloud computing, there is a natural desire

for enterprises and startups to outsource the storage and management of their databases

to a cloud provider. Like any large-scale database, as cloud computing has emerged as

important infrastructure, a lot of graph dataset has been outsourced to the cloud provider

from the user/client. Graph database contains very sensitive information about the entities

in the graph, therefore, one would like to protect those information against the adversarial

cloud service provider. Increasing concerns about data security and privacy in the cloud,

however, have curbed many data owners’ enthusiasm about storing their databases in the

cloud.

12

To address this, Chase and Kamara [Chase and Kamara, 2010] introduced the notion

of graph encryption. Roughly speaking, a graph encryption scheme encrypts a graph in

such a way that it can be privately queried. Using such a scheme, an organization can

safely outsource its encrypted graph to an untrusted cloud provider without losing the

ability to query it. Several constructions were described in [Chase and Kamara, 2010]

including schemes that support adjacency queries (i.e., given two nodes, do they have

an edge in common?), neighbor queries (i.e., given a node, return all its neighbors)

and focused subgraph queries on web graphs (a complex query used to do ranked

web searches). Graph encryption is a special case of structured encryption, which

are schemes that encrypt data structures in such a way that they can be privately

queried. The most well-studied class of structured encryption schemes are searchable

symmetric encryption (SSE) schemes [Song et al., 2000, Chang and Mitzenmacher, 2005,

Goh, 2003, Curtmola et al., 2006, Kamara et al., 2012, Kamara and Papamanthou, 2013,

Cash et al., 2013a, Cash et al., 2014, Naveed et al., 2014, Stefanov et al., 2014] which,

roughly speaking, encrypt search structures (e.g., indexes or search trees) for the purpose

of efficiently searching on encrypted data.

In this work, we focus on the problem of designing graph encryption schemes that

support one of the most fundamental and important graph operations: finding the shortest

distance between two nodes. Shortest distance queries are a basic operation in many graph

algorithms but also have applications of their own. For instance, on a social network,

shortest distance queries return the shortest number of introductions necessary for one

person to meet another. In protein-protein interaction networks they can be used to find

the functional correlations among proteins [Przulj et al., 2004] and on a phone call graph

(i.e., a graph that consists of phone numbers as vertices and calls as edges) they return the

shortest number of calls connecting two nodes.

The techniques Computing shortest distance queries on massive graphs (e.g., the

Web graph, online social networks or a country’s call graph) can be very expensive.

13

For example, it takes O(|E| + |V | log |V |)to compute the shortest distance using Di-

jkstra’s algorithm. Therefore, in practice, one typically pre-computes a data struc-

ture from the graph called a distance oracle that answers shortest distance queries ap-

proximately [Thorup and Zwick, 2005, Das Sarma et al., 2010, Cohen et al., 2013]; that

is, given two vertices v1 and v2, the structure returns a distance d that is at most

α · dist(v1, v2) + β, where α, β > 1 and dist(v1, v2) is the exact distance between v1 and v2.

In this work, we focus on designing structured encryption schemes for a certain class of

distance oracles referred to as sketch-based oracles. Below we summarize our contributions:

• We propose three distance oracle encryption schemes. Our first scheme only makes

use of symmetric-key operations and, as such, is very computationally-efficient. Our

second scheme makes use of somewhat-homomorphic encryption and achieves optimal

communication complexity. Our third scheme is computationally-efficient, achieves

optimal communication complexity and produces compact encrypted oracles at the

cost of some leakage.

• We show that all our constructions are adaptively semantically-secure with reasonable

leakage functions.

• We implement and evaluate our solutions on real large-scale graphs and show that

our constructions are practical.

3.2 Related Work

3.2.1 Graph privacy

Privacy-preserving graph processing has been considered in the past. Most of the work

in this area, however, focuses on privacy models that are different than ours. Some of

the proposed approaches include structural anonymization to protect neighborhood in-

formation [Gao et al., 2011, Liu and Terzi, 2008, Cheng et al., 2010], use differential pri-

vacy [Dwork et al., 2006] to query graph statistics privately [Kasiviswanathan et al., 2013,

14

Shen and Yu, 2013], or use private information retrieval (PIR) [Mouratidis and Yiu, 2012]

to privately recover shortest paths. We note that none of these approaches are appropri-

ate in our context where the graph itself stores sensitive information (and therefore must

be hidden unlike in the PIR scenario) and is stored remotely (unlike the differential pri-

vacy and anonymization scenarios). Structured and graph encryption was introduced by

Chase and Kamara in [Chase and Kamara, 2010]. Structured encryption is a generaliza-

tion of searchable symmetric encryption (SSE) which was first proposed by Song, Wagner

and Perrig [Song et al., 2000]. The notion of adaptive semantic security was introduced

by Curtmola, Garay, Kamara and Ostrovsky in [Curtmola et al., 2006] and generalized to

the setting of structured encryption in [Chase and Kamara, 2010]. One could also encrypt

and outsource the graph using fully homomorphic encryption [Gentry, 2009b], which sup-

ports arbitrary computations on encrypted data, but this would be prohibitively slow in

practice. Another approach is to execute graph algorithms over encrypted and outsourced

graphs is to use Oblivious RAM [Goldreich and Ostrovsky, 1996] over the adjacency ma-

trix of the graph. This approach, however, is inefficient and not practical even for small

graphs since it requires storage that is quadratic in the number of nodes in the graph

and a large number of costly oblivious operations. Recent work by [Wang et al., 2014]

presents an oblivious data structure for computing shortest paths on planar graphs us-

ing ORAM. For a sparse planar graph with O(n) edges, their approach requires O(n1.5)

space complexity at the cost of O(
√
n log n) online query time. Recent works based on

ORAM, such as [Liu et al., 2014, Liu et al., 2015b], also propose oblivious secure compu-

tation frameworks that can be used to compute single source shortest paths. However, these

are general purpose frameworks and are not optimized to answer shortest distance queries.

Note that these works solve more generic problems on oblivious secure computation rather

than just shortest path distance queries. Other techniques, such as those developed by

Blanton, Steele and Aliasgari [Blanton et al., 2013] and by Aly et al. [Aly et al., 2013] do

not seem to scale to sparse graphs with millions of nodes due to the quadratic complexity

of the underlying operations which are instantiated with secure multi-party computation

15

protocols.

3.2.2 Distance oracles

Computing shortest distances on large graphs using Dijkstra’s algorithm or breadth first

search is very expensive. Alternatively, it is not practical to store all-pairs-shortest-

distances since it requires O(n2) space for n nodes. To address this, in practice,

one pre-computes a data structure called a distance oracle that supports approximate

shortest distance queries between two nodes with logarithmic query time. Solutions

such as [Das Sarma et al., 2010, Potamias et al., 2009, Qi et al., 2013, Cohen et al., 2013,

Chechik, 2014, Cohen, 2014, Cohen et al., 2003] carefully select seed nodes (also known as

landmarks) and store the shortest distances from all the nodes to the seeds. The advantage

of using such a data structure is that they are compact and the query time is very fast. For

example, the distance oracle construction of Das Sarma, Gollapudi, Najork and Panigrahy

[Das Sarma et al., 2010] requires Õ(n1/c) work to return a (2c − 1)-approximation of the

shortest distance for some constant c.

3.3 Distance Oracles for Shortest Distance Computation

At a high-level, our approach to designing graph encryption schemes for shortest distance

queries consists of encrypting a distance oracle in such a way that it can be queried privately.

A distance oracle is a data structure that supports approximate shortest distance queries. A

trivial construction consists of pre-computing and storing all the pairwise shortest distances

between nodes in the graph. The query complexity of such a solution is O(1) but the storage

complexity is O(n2) which is not practical for large graphs.

We consider two practical distance oracle constructions. Both solutions are sketch-

based which means that they assign a sketch Skv to each node v ∈ V in such a way

that the approximate distance between two nodes u and v can be efficiently (sublinear)

computed from the sketches Sku and Skv. The first construction is by Das Sarma et

16

al. [Das Sarma et al., 2010] which is itself based on a construction of Thorup and Zwick

[Thorup and Zwick, 2005] and the second is by Cohen et al. [Cohen et al., 2013]. The two

solutions produce sketches of the same form and distance queries are answered using the

same operation.

3.3.1 Sketch-based oracles.

More formally, a sketch-based distance oracle DO = (Setup,Query) is a pair of efficient

algorithms that work as follows. Setup takes as input a graph G, an approximation factor

α and an error bound ε and outputs an oracle ΩG = {Skv}v∈V . Query takes as input an

oracle ΩG and a shortest distance query q = (u, v). We say that DO is (α, ε)-correct if for

all graphs G and all queries q = (u, v), Pr [dist(u, v) ≤ d ≤ α · dist(u, v)] ≥ 1 − ε, where

d := Query(ΩG, u, v). The probability is over the randomness of algorithm Setup.

3.3.2 The Das Sarma et al. oracle.

The Setup algorithm makes σ = Θ̃(n2/(α+1)) calls to a Sketch sub-routine with the graph

G. Throughout, we refer to σ as the oracle’s sampling parameter and we note that it affects

the size of the sketches. During the ith call, the Sketch routine generates and returns a

collection of sketches (Skiv1 , . . . ,Sk
i
vn), one for every node vj ∈ V . Each sketch Skivj is a

set constructed as follows. During the ith call to Sketch, it samples uniformly at random

ζ = log n sets of nodes S0, . . . , Sζ−1 of progressively larger sizes. In particular, for all

0 ≤ z ≤ ζ − 1, set Sz is of size 2z. Skivj then consists of ζ pairs {(wz, δz)}0≤z≤ζ−1 such that

wz is the closest node to vj among the nodes in Sz and δz = dist(vj , wz). Having computed

σ collections of sketches (Skiv1 , . . . ,Sk
i
vn)i∈[σ], Setup then generates, for each node vj ∈ V , a

final sketch Skvj =
⋃σ
i=1 Sk

i
vj . Finally, it outputs a distance oracle ΩG = (Skv1 , . . . ,Skvn).

Throughout, we refer to the uniformly sampled nodes stored in the node/distance pairs of

the sketches as seeds.

17

3.3.3 The Cohen et al. oracle

The Setup algorithm assigns to each node v ∈ V a sketch Skv that includes pairs (w, δ)

chosen as follows. It first chooses a random rank function rk : V → [0, 1]; that is, a function

that assigns to each v ∈ V a value distributed uniformly at random from [0, 1]. Let Nd(v)

be the set of nodes within distance d − 1 of v and let ρ = Θ(n2/(α+1)). Throughout, we

refer to ρ as the oracle’s rank parameter and note that it affects the size of the sketches.

For each node v ∈ V , the sketch Skv includes pairs (w, δ) such that rk(w) is less than the

ρth value in the sorted set {rk(y) : y ∈ Ndist(u,v)(v)}. Finally it outputs a distance oracle

ΩG = (Skv1 , . . . ,Skvn). Like above, we refer to the nodes stored in the node/distance pairs

of the sketches as seeds.

3.3.4 Shortest distance queries

The two oracle constructions share the same Query algorithm which works as follows. Given

a query q = (u, v), it finds the set of nodes I in common between Sku and Skv and returns

the minimum over s ∈ I of dist(u, s) + dist(s, v). If there are no nodes in common, then it

returns ⊥.

Sk(u): {(a, 3), (b, 3), (e, 6), (g, 3), (h, 4)}
Sk(v): {(b, 2), (d, 1), (e, 3), (h, 3), (f, 7)}

Figure 3.1: Two sketches for nodes u and v. The approximate shortest distance d = 5.

3.4 Distance Oracle Encryption

In this section we present the syntax and security definition for our oracle encryption

schemes. There are many variants of structured encryption, including interactive and non-

interactive, response-revealing and response-hiding. We consider interactive and response-

hiding schemes which denote the fact that the scheme’s query operation requires at least

two messages (one from client and a response from server) and that queries output no

18

information to the server.

Definition 3.4.1 (Oracle Encryption). A distance oracle encryption scheme Graph =

(Setup, distQuery) consists of a polynomial-time algorithm and a polynomial-time two-party

protocol that work as follows:

• (K,EO)← Setup(1λ,Ω, α, ε): is a probabilistic algorithm that takes as input a security

parameter λ, a distance oracle Ω, an approximation factor α, and an error parameter

ε. It outputs a secret key K and an encrypted oracle EO.

• (d,⊥) ← distQueryC,S
(
(K, q),EO

)
: is a two-party protocol between a client C that

holds a key K and a shortest distance query q = (u, v) ∈ V 2 and a server S that

holds an encrypted oracle EO. After executing the protocol, the client receives a

distance d ≥ 0 and the server receives ⊥. We sometimes omit the subscripts C and

S when the parties are clear from the context.

For α ≥ 1 and ε < 1, we say that Graph is (α, ε)-correct if for all k ∈ N, for all Ω and for

all q = (u, v) ∈ V 2,

Pr [d ≤ α · dist(u, v)] ≥ 1− ε,

where the probability is over the randomness in computing (K,EO) ← Setup(1λ,Ω, α, ε)

and then (d,⊥)← distQuery
(
(K, q),EO

)
.

3.4.1 Security

At a high level, the security guarantee we require from an oracle encryption scheme is

that: (1) given an encrypted oracle, no adversary can learn any information about the

underlying oracle; and (2) given the view of a polynomial number of distQuery executions

for an adaptively generated sequence of queries q = (q1, . . . , qn), no adversary can learn

any partial information about either ΩG or q.

Such a security notion can be difficult to achieve efficiently, so often one allows for

some form of leakage. Following [Curtmola et al., 2006, Chase and Kamara, 2010], this

19

is usually formalized by parameterizing the security definition with leakage functions for

each operation of the scheme which in this case include the Setup algorithm and distQuery

protocol.

We adapt the notion of adaptive semantic security from [Curtmola et al., 2006,

Chase and Kamara, 2010] to our setting to the case of distance oracle encryption.

Definition 3.4.2. Let Graph = (Setup, distQuery) be an oracle encryption scheme and

consider the following probabilistic experiments where A is a semi-honest adversary, C is

a challenger, S is a simulator and LSetup and LQuery are (stateful) leakage functions:

IdealA,S(1λ):

• A outputs an oracle Ω, its approximation factor α and its error parameter ε.

• Given LSetup(Ω), 1λ, α and ε, S generates and sends an encrypted graph EO to A.

• A generates a polynomial number of adaptively chosen queries (q1, . . . , qm). For each

qi, S is given LQuery(Ω, qi) and A and S execute a simulation of distQuery with A

playing the role of the server and S playing the role of the client.

• A computes a bit b that is output by the experiment.

RealA(1λ):

• A outputs an oracle Ω, its approximation factor α and its error parameter ε.

• C computes (K,EO)← Setup(1λ,Ω, α, ε) and sends the encrypted graph EO to A.

• A generates a polynomial number of adaptively chosen queries (q1, . . . , qm). For each

query qi, A and C execute distQueryC,A
(
(K, q),EO

)
.

• A computes a bit b that is output by the experiment.

We say that Graph is adaptively (LSetup,LQuery)-semantically secure if for all ppt ad-

versaries A, there exists a ppt simulator S such that

∣∣∣Pr
[
RealA(1λ) = 1

]
− Pr

[
IdealA,S(1λ)

]
= 1
∣∣∣ = negl(k).

20

The definition above captures the fact that, given the encrypted oracle and its view of

the query protocol, an adversarial server cannot learn any information about the oracle

beyond the leakage.

3.4.2 Leakage

All the distance oracle encryption schemes we discuss in this work leak information. We

describe and formalize these leakages below.

3.4.2.1 Setup leakage

The setup leakage of our first and second constructions, GraphEnc1 and GraphEnc2 in

Sections 3.5.1 and 3.5.3, includes the total number of nodes in the underlying graph n,

the maximum sketch size S = maxv∈V |Skv| and the maximum distance over all seeds

D = maxv∈V max(w,δ)∈Skv δ. The setup leakage of our third construction, GraphEnc3 in

Section 3.5.5, includes n, S, D and the total number of seeds Z =
∑

v∈V |Skv|.

3.4.2.2 Query pattern leakage

The query leakage of our first two constructions, GraphEnc1 and GraphEnc2, reveals whether

the nodes in the query have appeared before. We refer to this as the query pattern leakage

and formalize it below.

Definition 3.4.3 (Query pattern). For two queries q, q′ define Sim(q, q′) = (u = u′,u =

v′,v = u′, v = v′), i.e., whether each of the nodes q = (u, v) matches each of the nodes

of q′ = (u′, v′). Let q = (q1, . . . , qm) be a non-empty sequence of queries. Every query

qi ∈ q specifies a pair of nodes ui, vi. The query pattern leakage function LQP (q) returns

an m ×m (symmetric) matrix with entry i, j equals Sim(qi, qj). Note that LQP does not

leak the identities of the queried nodes.

We do not claim that it is always reasonable for a graph encryption scheme to leak

the query pattern - it may convey sensitive information in some settings. Furthermore,

21

Definition 3.4.2 does not attempt to capture all possible leakages. As with many similar

definitions, it does not capture side channels, and, furthermore, it does not capture leak-

age resulting from the client’s behavior given the query answers, which, in turn may be

affected by the choice of an approximation algorithm (see also [Feigenbaum et al., 2006,

Halevi et al., 2001] for a discussion of privacy of approximation algorithms).

3.4.2.3 Sketch pattern leakage

Our third construction, GraphEnc3, leaks the query pattern and an additional pattern we

refer to as the sketch pattern. The sketch pattern reveals which seeds are shared between

the different sketches of the oracle and the size of the sketches. We formalize this below

by revealing randomized “pseudo-ids” of the seeds in each sketch.

Definition 3.4.4 (Sketch pattern leakage). The sketch pattern leakage function LSP (ΩG, q)

for a graph G and a query q = (u, v) is a pair (X,Y), where X = {f(w) : (w, δ) ∈ Sku}

and Y = {f(w) : (w, δ) ∈ Skv} are multi-sets and f is a uniformly random from the family

of functions: {0, 1}logn → {0, 1}logn.

It is not clear what this leakage implies in practice but we note that the

leakage is not (directly) over the graph but over the sketches which contain

a random subset of nodes. Therefore, it may be possible to add some form

of noise in the sketches (e.g., using fake sketch elements) to guarantee some

level of privacy to the original graph. We note that leakage is revealed in

all SSE constructions such as [Song et al., 2000, Chang and Mitzenmacher, 2005,

Goh, 2003, Curtmola et al., 2006, Chase and Kamara, 2010, Kamara et al., 2012,

Kurosawa and Ohtaki, 2012, Kamara and Papamanthou, 2013, Cash et al., 2013a,

Naveed et al., 2014, Cash et al., 2014]. However, in all these constructions the leakage is

over a data structure (e.g., an inverted index) that holds all of the original data (i.e., all

the keywords and documents). In our case, the leakage is over a structure that holds only

a random subset of the data. This could provide additional help with respect to privacy

22

but this is a topic for future work and is not the main focus of this paper.

3.4.3 Efficiency

We evaluate the efficiency and practicality of our constructions according to the following

criteria:

• Setup time: the time for the client to pre-process and encrypt the graph;

• Space complexity: the size of the encrypted graph;

• Query time: The time to execute a shortest distance query on the encrypted graph;

• Communication complexity: the number of bits exchanged during a query operation.

3.5 GRECS Constructions

In this section, we describe our three oracle encryption schemes. The first scheme,

GraphEnc1, is computationally efficient, but has high communication overhead. Our sec-

ond scheme, GraphEnc2, is communication efficient but has high space overhead. Our third

scheme, GraphEnc3, is computationally efficient with optimal communication complexity.

GraphEnc1 and GraphEnc2 do not leak anything besides the Query Pattern, and GraphEnc3

also leaks the Sketch Pattern.

3.5.1 A Computationally-Efficient Scheme

We now describe our first scheme which is quite practical. The scheme, described below,

makes use of symmetric-key primitives which results in a simple and very efficient construc-

tion. The scheme GraphEnc1 = (Setup, distQuery) makes use of a symmetric-key encryption

scheme SKE = (Gen,Enc,Dec) and a PRP P . The Setup algorithm works as follows. Given

a 1λ,ΩG, α and ε:

• It pads each sketch to the maximum sketch size S by filling them with dummy values

(S can be determined after all the sketches are computed).

23

• It then generates keys K1,K2 for the encryption scheme and PRP respectively and

sets K = (K1,K2). For all v ∈ V , it computes a label PK2(v) and creates an

encrypted sketch ESkv = (c1, ..., cλ), where ci ← EncK1(wi‖δi) is a symmetric-key

encryption of the ith pair (wi, δi) in Skv.

• It then sets up a dictionary DX in which it stores, for all v ∈ V , the pairs

(PK2(v),ESkv), ordered by the labels. The encrypted graph is then simply EO = DX.

The distQuery protocol works as follows. To query EO on q = (u, v), the client sends

a token tk = (tk1, tk2) = (PK2(u), PK2(v)) to the server which returns the pair ESku :=

DX[tk1] and ESkv := DX[tk2]. The client then decrypts each encrypted sketch and computes

mins∈I dist(u, s) + dist(s, v) (note that the algorithm only needs the sketches of the nodes

in the query).

3.5.2 Security and efficiency.

It is straightforward to see that the scheme is adaptively (L,LQP)-semantically secure,

where L is the function that returns n, S and D. Proof Sketch: Consider the simulator S

that works as follows. Given leakage LSetup(ΩG) = (S,D), it starts by generating (pk, sk)←

SWHE.Gen(1λ). For all 1 ≤ i ≤ n, it then samples `i
$← {0, 1}logn without repetition

and sets DX[`i] := Ti, where Ti is an array that holds t = 2 · S2
m · ε−1 homomorphic

encryptions of 0 ∈ 2N , where N = 2 · D + 1. It outputs EO = DX. Given leakage

LQuery(ΩG, q) = LQP (ΩG, q) it checks if either of the query nodes u or v appeared in any

previous query. If u appeared previously, S sets tk1 to the value that was previously used.

If not, it sets tk1 := `i for some previously unused `i. It does the same for the query node

v; that is, it sets tk2 to be the previously used value if v was previously queried or to an

unused `i if it was not. The theorem follows from the pseudo-randomness of P and the

CPA-security of the symmetric encryption scheme. �

The communication complexity of the distQuery protocol is linear in S, where S is the

maximum sketch size. Note that even though S is sub-linear in n, it could still be large

24

in practice. For example, in the Das Sarma et al. construction S = O(n2/α · log n). Also,

in the case of multiple concurrent queries, this could be a significant bottleneck for the

scheme.

In the following Section, we show how to achieve a solution with O(1) communication

complexity and in Section 3.6 we experimentally show that it scales to graphs with millions

of nodes.

3.5.3 A Communication-Efficient Scheme

We now describe our second scheme GraphEnc2 = (Setup, distQuery) which is less compu-

tationally efficient than our first but is optimal with respect to communication complexity.

Algorithm 1: Setup algorithm for GraphEnc2

Input : 1λ,ΩG, α, ε
Output: EO

1 begin Setup

2 Sample K
$← {0, 1}k;

3 Initialize a dictionary DX;

4 Generate a key pair (pk, sk)← SWHE.Gen(1λ);
5 Set S := maxv∈V |Skv|;
6 Set D := maxv∈V

{
max(w,δ)∈Skv δ

}
;

7 Set N := 2 ·D + 1 and t = 2 · S2 · ε−1;
8 Sample a hash function h : V → [t] from H;
9 foreach v ∈ V do

10 compute `v := PK(v);
11 initialize an array Tv of size t;
12 foreach (wi, δi) ∈ Skv do
13 set Tv[h(wi)]← SWHE.Encpk(2

N−δi);
14 fill remaining cells of Tv with encryptions of 0; set DX[`v] := Tv;

15 Output K and EO = DX

The details of the construction are given in Algorithms 1 and 2. It makes use of

a SWHE scheme SWHE = (Gen,Enc,Dec,Eval), a pseudo-random permutation P and a

family of universal hash functions H.

The Setup algorithm works as follows. Given 1λ, ΩG, α, and ε as inputs, it generates

25

a public/secret-key pair (pk, sk) for SWHE. Let D be the maximum distance over all the

sketches and S be the maximum sketch size. Setup sets N := 2 ·D+ 1 and samples a hash

function h
$← H with domain V and co-domain [t], where t = 2 · S2 · ε−1.

It then creates a hash table for each node v ∈ V . More precisely, for each node v, it

processes each pair (wi, δi) ∈ Skv and stores Encpk(2
N−δi) at location h(wi) of a t-size array

Tv. In other words, for all v ∈ V , it creates an array Tv such that for all (wi, δi) ∈ Skv,

Tv[h(wi)]← Encpk(2
N−δi). It then fills the empty cells of Tv with homomorphic encryptions

of 0 and stores each hash table Tv1 through Tvn in a dictionary DX by setting, for all v ∈ V ,

DX[PK(v)] := Tv. Finally, it outputs DX as the encrypted oracle EO.

Fig. 3.2 below provides an example of one of the hash tables Tv generated from a

sketch Skv = {(w1, δ1), . . . , (ws, δs)}, where s is the size of the sketch. For all i ∈ [s], the

ciphertext Encpk(2
N−δi) is stored at location h(wi) of the table Tv. For example, we place

Encpk(2
2−δj) to Tv[h(wj)] since h(wj) = 1. Finally, all remaining locations of Tv are filled

with SWHE encryptions of 0. Notice that, since we are using probabilistic encryption, the

encryptions of 0 are different, and are indistinguishable from the encryptions of the other

values.

!! …!…!Tv Encpk (2
N−δi) Encpk (2

N−δk)Encpk (2
N−δ j) Encpk (0)Encpk (0)Encpk (0)

0� h(wi)� h(wj)� h(wk)�2� t-1�

Figure 3.2: One node’s encrypted hash table.

The distQuery protocol works as follows. Given a query q = (u, v), the client sends

tokens (tk1, tk2) = (PK(u), PK(v)) to the server which uses them to retrieve the hash

tables of nodes u and v by computing Tu := DX[tk1] and Tv := DX[tk2]. The server

then homomorphically evaluates an inner product over the hash tables. More precisely, it

computes c :=
∑t

i=1 Tu[i] · Tv[i], where
∑

and · refer to the homomorphic addition and

multiplication operations of of the SWHE scheme. Finally, the server returns only c to the

client who decrypts it and outputs 2N − log2 (Decsk(c)).

Note that the storage complexity at the server is O(n · t) and the communication

26

Algorithm 2: DistQuery algorithm for GraphEnc2
Input : Client’s input is (K, q) and server’s input is EO.
Output: Client’s output is distq and server’s output is ⊥.

1 begin distQuery
2 C: client parses q as (u, v);
3 C ⇒ S: client sends tk = (tk1, tk2) = (PK(u), PK(v));
4 S: server retrieves T1 := DX[tk1] and T2 := DX[tk2];
5 foreach i ∈ [t] do
6 Server computes ci ← SWHE.Eval(×,T1[i],T2[i]);

7 S ⇒ C: server sends c← SWHE.Eval(+, c1, . . . , ct);
8 C: client computes m← SWHE.Decsk(c);
9 C: client outputs dist = 2N − logm.

complexity of distQuery is O(1) since the server only returns a single ciphertext. In Section

3.5.3.1, we analyze the correctness and security of the scheme.

Remark. The reason we encrypt 2N−δi as opposed to δi is to make sure we can get the

minimum sum over the distances from the sketches of both u and v. Our observation is

that 2x+2y is bounded by 2max(x,y)+1. As we show Theorem 3.5.2, this approach does not,

with high probability, affect the approximation factor from what the underlying distance

oracle give us.

Instantiating & optimizing the SWHE scheme. For our experiments (see Section

3.6) we instantiate the SWHE scheme with the BGN construction of [Boneh et al., 2005].

We choose BGN due to the efficiency of its encryption algorithm and the compact-

ness of its ciphertexts and keys (as compared to the lattice-based construction of

[Gentry et al., 2010]). Unfortunately, the BGN decryption algorithm is expensive as it

requires computations of discrete logarithms. To improve this, we make use of various

optimizations. In particular, we compute discrete logs during decryption using the Baby

step Giant step algorithm [Shanks, 1971] and use a pre-computed table to speed up the

computation. More precisely, recall that decryption in BGN requires solving an equation of

the form csk = (gsk)m, where c is the ciphertext, sk is the secret key and g is the generator

27

of the underlying group. The messages m we need to decrypt are from a bounded domain

[22N]. Here, the value of N corresponds, roughly, to the diameter of the graph. During

the pre-computation phase, we set x = d
√

22Ne and pre-compute gj for all j ∈ [x], storing

them in a lookup-table. During decryption, we first compute c · g−ix for all i ∈ [x] and

store them in another table. We then compare it with each element of the first look-up

table (i.e., for all j ∈ [x]). We set m = ix+ j if there is a match, otherwise we return ⊥.

3.5.3.1 Correctness

Here, we analyze the correctness of GraphEnc2. We first bound the collision probability of

our construction and then proceed to prove correctness in Theorem 3.5.2 below.

Lemma 3.5.1. Let q = (u, v) be a shortest distance query and let Eq be the event that

a collision occurred in the Setup algorithm while constructing the hash tables Tu and Tv.

Then, Pr [Eq] ≤ 2 · S2

t .

Proof Sketch: Let Collv be the event that at least one collision occurs while creating v’s

hash table Tv (i.e., in Algorithm 1 Setup Line 13). Also, let XCollu,v be the event that there

exists at least one pair of distinct nodes wu ∈ Sku and wv ∈ Skv such that h(wu) = h(wv).

For any q = (u, v), we have

Pr [Eq] ≤ Pr [Collu] + Pr [Collv] + Pr [XCollu,v]. (3.1)

Let su be the size of Sku an sv be the size of Skv. Since there are
(
su
2

)
and

(sv
2

)
node

pairs in Sku and Skv, respectively, and each pair collides under h with probability at most

1/t, Pr [Collu] ≤ s2u
2·t and Pr [Collv] ≤ s2v

2·t . On the other hand, if I is the set of common

nodes in Sku and Skv, then

Pr [XCollu,v] ≤ (su − |I|)(sv − |I|)
t

Recall that su = sv ≤ S, so by combining with Eq. 3.1, we have Pr [Eq] ≤ 2 · S2

t . �

28

Note that in practice “intra-sketch” collision events Collu and Collv may or may not

affect the correctness of the scheme. This is because the collisions could map the SWHE

encryptions to locations that hold encryptions of 0 in other sketches. This means that at

query time, these SWHE encryptions will not affect the inner product operation since they

will be canceled out. Inter-sketch collision events XCollu,v, however, may affect the results

since they will cause different nodes to appear in the intersection of the two sketches and

lead to an incorrect sum.

Theorem 3.5.2. Let G = (V,E), α ≥ 1 and ε < 1. For all q = (u, v) ∈ V 2 with u 6= v,

Pr [α · dist(u, v)− log |I| ≤ d ≤ α · dist(u, v)] ≥ 1− ε,

where (d,⊥) := GraphEnc2.distQuery
(
(K, q),EO

)
, (K,EO) ←

GraphEnc2.Setup(1λ,ΩG, α, ε), and I is the number of common nodes between Sku

and Skv.

Proof Sketch: Let I be the set of nodes in common between Sku and Skv and let

mindist = minwi∈I{δui + δvi }, where for all 0 ≤ i ≤ |I|, δui ∈ Sku and δvi ∈ Skv. Note that at

line 7 in Algorithm 2 distQuery, the server returns to the client c =
∑t

i=1 Tu[i] · Tv[i].

Let Eq be the event a collision occurred during Setup in the construction of the hash

tables Tu and Tv of u and v respectively. Conditioned on Eq, we therefore have that

c =

|I|∑
i=1

Encpk(2
N−δui) · Encpk(2N−δ

v
i)

= Encpk
(
22N · Σ|I|i=12

−(δui +δvi)
)
,

where the first equality holds since for any node wi 6∈ I, one of the homomorphic encryptions

Tu[i] or Tv[i] is an encryption of 0. It follows then that (conditioned on Eq) at Step 9 the

client outputs

d = 2N − log
(
22N · Σ|I|i=12

−(δui +δvi)
)

29

≤ 2N − log
(
22N−mindist

)
≤ mindist,

where the first inequality holds since mindist ≤ (δui + δvi) for all i ∈ |I|. Towards showing a

lower bound on d note that

d = 2N − log
(
22N · Σ|I|i=12

−(δui +δvi)
)

≥ 2N − log
(
22N−mindist + |I|

)
≥ mindist− log |I|,

where the first inequality also holds from mindist ≤ (δui + δvi) for all i ∈ |I|. Now, by

the (α, ε)-correctness of DO, we have that mindist ≤ α · dist(u, v) with probability at least

(1− ε) over the coins of DO.Setup. So, conditioned on Eq,

mindist− log |I| ≤ d ≤ α · dist(u, v).

The Theorem follows by combining this with Lemma 3.5.1 which bounds the probability

of Eq and noting that Setup sets t = 2 · S2 · ε−1. �

Space complexity. Note that to achieve (α, ε)-correctness, our construction produces

encrypted sketches that are larger than the original sketches. More precisely, if the max-

imum sketch size of the underlying distance oracle is S, then the size of every encrypted

sketch is t = 2 · S2 · ε−1, which is considerably larger. In Section 3.5.5, we describe a third

construction which achieves better space efficiency at the cost of more leakage.

Remark on the approximation. Note that Theorem 3.5.2 also provides a lower bound

of α · dist(u, v) − log |I| for the approximate distance. In particular, the bound depends

on the set of common nodes |I| which varies for different queries but is small in practice.

Furthermore, if log |I| is larger than mindist, the approximate distance returned could be

30

negative (we indeed observe a few occurrences of this in our experiments).

To improve the accuracy of the approximation, one could increase the base in the homo-

morphic encryptions. More precisely, instead of using encryptions of the form Encpk(2
N−δ)

we could use Encpk(B
N−δ) for B = 3 or B = 4. This would result in an improved lower

bound of mindist− logB |I| but would also increase the homomorphic decryption time since

this increases the message space which in turn adds overhead to the decryption algorithm.

We leave it as an open problem to further improve this lower bound without increasing the

message space.

Remark on error rate. Given the above analysis, a client that makes γ queries will

have an error ratio of ε · γ. In our experiments we found that, in practice, when using the

Das Sarma et al. oracle, setting σ ≈ 3 results in a good approximation. So if we fix σ = 3

and set t = O(
√
n), then the error rate is O

(
γ · log2(n)/

√
n
)

which decreases significantly

as n grows. In the case of the Cohen et al. all-distance sketch, if we fix ρ = 4 and set

t = O(
√
n), then we achieve about the same error rate O

(
γ · ln2(n)/

√
n
)
. We provide in

Section 3.6 detailed experimental result on the error rate.

3.5.4 Error Detection

We provide a method to detect those inter-collisions. In general, the collisions caused by

the hash functions can be detected by associating with each encryption of a node a random

value and its inverse value that are unique for each node. If two different nodes collide,

the product of these values will be a random value, whereas if the same node is mapped to

the same entry the product will give 1. More discussion about this technique will appear

in the full version of this work. Speficically, for each node, we create two copies of the

hash table, say DX and DX′. For each node v ∈ V , we produce the unique random value

and it inverse for each wi in v’s sketch. This can be done by computing the PRF F under

a different key K ′
$←− {0, 1}λ, i.e. FK(wi). Specifically, for each (wi, δi) ∈ Skv, initialize

two arrays Tv and T′v of size t. Next, we place Tv[h(wi)] ← Π.Enc(FK(wi) · 2N−δi) and

31

T′v[h(wi)]← Π.Enc(F−1K (wi) ·2N−δi). In DistQuery, if two different nodes collide due to the

hash function then the product of these values will produce some random values, where if

the same node is mapped to the same entry the product will give the correct result.

3.5.4.1 Security

In the following theorem, we analyze the security of GraphEnc2.

Theorem 3.5.3. If P is pseudo-random and SWHE is CPA-secure then GraphEnc2, as

described above, is adaptively (LSetup,LQuery)-semantically secure, where LSetup(ΩG) =

(n, S,D) and LQuery(ΩG, q) = LQP (ΩG, q).

Proof Sketch: Consider the simulator S that works as follows. Given leakage LSetup = n,

for all 1 ≤ i ≤ n, it samples `i
$← {0, 1}logn (without repetition) and creates an array Ti

of size t filled with homomorphic encryption of 0. It then creates a dictionary DX and sets

DX[`i] = Ti for all 1 ≤ i ≤ n. Finally, it outputs EO = DX. Given leakage LQP (q), S first

checks whether any of the two query nodes appeared in an earlier query. If the first query

node appeared in a previous query, S sets tk1 to its stored token. Otherwise S chooses a

fresh token tk1
$← {0, 1}logn and stores it. S proceeds similarly with token tk2 and then

sends tk = (tk1, tk2).

It now remains to show that the RealA(1λ) and IdealA,S(1λ) experiments will output

1 with negligibly-close probability. This can be done using the following sequence of 3

games:

• Game0: this game corresponds exactly to a RealA(1λ) experiment.

• Game1: is the same as Game0 except that the output of P is replaced with random

(log n)-bit strings. Clearly, the pseudo-randomness of P guarantees that

|Pr[Game0 = 1]− Pr[Game1 = 1]| ≤ negl(k).

• Game2: is the same as Game1 except that all the HE encryptions are replaced with

32

HE encryptions of 0. Clearly, it follows by the CPA-security of SWHE that

|Pr[Game1 = 1]− Pr[Game2 = 1]| ≤ negl(k).

Note that, by construction, Game2 corresponds exactly to an IdealA,S(1λ) experiment so

we have ∣∣∣Pr
[

RealA(1λ) = 1
]
− Pr

[
IdealA,S(1λ) = 1

]∣∣∣ ≤ negl(k)

from which the Theorem follows. The Theorem follows from the pseudo-randomness of P

and the CPA-security of SWHE. �

3.5.5 A Space-Efficient Construction

Although our second construction, GraphEnc2, achieves optimal communication complexity,

it has two limitations. The first is that it is less computationally-efficient than our first

construction GraphEnc1 both with respect to constructing the encrypted graph and to

querying it. The second limitation is that its storage complexity is relatively high; that is,

it produces encrypted graphs that are larger than the ones produced by GraphEnc1 by a

factor of 2 · S · ε−1. These limitations are mainly due to the need to fill the hash tables

with many homomorphic encryptions of 0. This also slows down the query algorithm since

it has to homomorphically evaluate an inner product on two large tables.

To address this, we propose a third construction GraphEnc3 = (Setup, distQuery) which

is both space-efficient and achieves O(1) communication complexity. The only trade-off is

that it leaks more than the two previous constructions.

The details of the scheme are given in Algorithms 3 and 4. At a high-level, the scheme

works similarly to GraphEnc2 with the exception that the encrypted sketches do not store

encryptions of 0’s, i.e., they only store the node/distance pairs of the sketches constructed

by the underlying distance oracle. Implementing this high-level idea is not straightforward,

however, because simply removing the encryptions of 0’s from the encrypted sketches/hash

33

Algorithm 3: Setup algorithm for GraphEnc3

Input : 1λ,ΩG, α, ε
Output: EO

1 begin Setup

2 Sample K1,K2
$← {0, 1}λ;

3 Initialize a counter ctr = 1;
4 Let Z =

∑
v∈V |Skv|;

5 Sample a random permutation π over [Z];
6 Initialize an array Arr of size Z;
7 Initialize a dictionary DX of size n;

8 Generate (pk, sk)← SWHE.Gen(1λ);
9 Set S := maxv∈V |Skv|;

10 Set D := maxv∈V
{

max(w,δ)∈Skv δ
}

;

11 Set N := 2 ·D + 1 and t = 2 · S2 · ε−1;
12 Initialize collision-resistant hash function h : V → [t];
13 foreach v ∈ V do
14 sample Kv ← {0, 1}λ;
15 foreach (wi, δi) ∈ Skv do
16 compute ci ← SWHE.Encpk(2

N−δi);
17 if i 6= |Skv| then
18 Set Ni = 〈h(wi)‖ci‖π(ctr + 1)〉;
19 else
20 Set Ni = 〈h(wi)‖ci‖NULL〉;

21 Sample ri
$← {0, 1}λ;

22 Set Arr[π(ctr)] := 〈Ni ⊕H(Kv‖ri), ri〉;
23 Set ctr = ctr + 1 ;

24 foreach v ∈ V (in random order) do
25 Set DX[PK1(v)] := 〈addrArr(hv)‖Kv〉 ⊕ FK2(v)

26 Output K = (K1,K2, pk, sk) and EO = (DX, Arr);

tables reveals the size of the underlying sketches to the server which, in turn, leaks struc-

tural information about the graph. We overcome this technical difficulty by adapting a

technique from [Curtmola et al., 2006] to our setting. Intuitively, we view the seed/distance

pairs in each sketch Skv as a linked-list where each node stores a seed/distance pair. We

then randomly shuffle all the nodes and place them in an array; that is, we place each

node of each list at a random location in the array while updating the pointers so that the

“logical” integrity of the lists are preserved (i.e., given a pointer to the head of a list we

34

can still find all its nodes). We then encrypt all the nodes with a per-list secret key.

The scheme makes use of a SWHE scheme SWHE = (Gen,Enc,Eval,Dec), a pseudo-

random permutation P , a pseudo-random function F , a random oracle H and a collision-

resistant hash function h modeled as a random function

The Setup algorithm takes as input a security parameter k, an oracle ΩG , an ap-

proximation factor α, and an error parameter ε < 1. As shown in Algorithm 3, it first

initializes a counter ctr = 1 and samples a random permutation π over the domain [Z],

where Z =
∑

v∈V |Skv|. It then initializes an Z-size array Arr. It proceeds to create an

encrypted sketch ESkv from each sketch Skv as follows. It first samples a symmetric key Kv

for this sketch. Then for each seed/distance pair (wi, δi) in Skv, it creates a linked-list node

Ni = 〈h(wi)‖ci‖π(ctr + 1)〉, where ci ← Encpk(2
N−δi), and stores an H-based encryption

〈Ni ⊕H(Kv‖rv), rv〉 of the node at location π(ctr) in Arr. For the last seed/distance pair,

it uses instead a linked-list node of the form Ni = 〈h(wi)‖ci‖NULL〉, it then increments ctr.

Setup then creates a dictionary DX where it stores for each node v ∈ V , the pair

(PK1(v), 〈addrArr(hv)‖Kv〉⊕FK2(v)), where addrArr(hv) is the location in Arr of the head of

v’s linked-list. Figure 3.3 provides a detailed example for how we encrypt the sketch. Sup-

pose node u’s sketch Sku has the element (a, d1), (b, d2), (c, d3). The locations ind1, ind2, ind3

in Arr are computed according the random permutation π.

The distQuery protocol, which is shown in Algorithm 4, works as follows. Given a query

q = (u, v), the client sends tokens (tk1, tk2, tk3, tk4) = (PK1(u), PK1(v), FK2(u), FK2(v)) to

the server which uses them to retrieve the values γ1 := DX[tk1] and γ2 := DX[tk2]. The

server computes 〈a1||Ku〉 := γ1 ⊕ tk3 and 〈b1||Kv〉 := γ2 ⊕ tk4. Next, it recovers the lists

pointed to by a1 and b1. More precisely, starting with i = 1, it parses Arr[a1] as 〈σu, ru〉

and decrypts σu by computing 〈hi‖ci‖ai+1〉 := σu ⊕ H(Ku‖ru) while ai+1 6= NULL. And

starting with j = 1, it does the same to recover 〈h′j‖c′j‖bj+1〉 while bj+1 6= NULL.

The server then homomorphically computes an inner product over the ciphertexts with

the same hashes. More precisely, it computes ans :=
∑

(i,j):hi=h′j
ci · c′j , where

∑
and ·

refer to the homomorphic addition and multiplication operations of the SWHE scheme.

35

ind3%

ind2%

ind1%

…
%

…
%

…
%
…
%

…
%

Arr%

…% …% Kv||ind1 FK2(v) …%DX:

(a,%d1)�
(b,%d2)�
(c,%d3)�

v� :� <h(b)||SWHE.Enc(2N-d2))||ind3%%%%%H(Kv||r2), r2>�

<(h(c)||SWHE.Enc(2N-d3))||NULL%%%%%H(Kv||r3), r3>�

<h(a)||SWHE.Enc(2N-d1))||ind2%%%%%%H(Kv||r1), r1>�

Figure 3.3: Example of encrypting Sku = {(a, d1), (b, d2), (c, d3)}.

Finally, the server returns only ans to the client which decrypts it and outputs 2N −

log2 (SWHE.Decsk(ans)).

Note that the storage complexity at the server is O(m + |V |) and the communication

complexity of distQuery is still O(1) since the server only returns a single ciphertext.

3.5.5.1 Correctness and Security

The correctness of GraphEnc3 follows directly from the correctness of GraphEnc2. To see

why, observe that: (1) the homomorphic encryptions stored in the encrypted graph of

GraphEnc3 are the same as those in the encrypted graph produced by GraphEnc2 with the

exception of the encryptions of 0; and (2) the output d of the client results from executing

the same homomorphic operations as in GraphEnc2, with the exception of the homomorphic

sums with 0-encryptions.

We note that GraphEnc3 leaks only a little more than the previous constructions. With

respect to setup leakage it reveals, in addition to (n, S,D), the total number of seeds Z.

Intuitively, for a query q = (u, v), the query leakage consists the query pattern leakage in

addition to: (1) which seed/distance pairs in the sketches Sku and Skv are the same; and

(2) the size of these sketches. This is formalized in Definition 3.4.4 as the sketch pattern

36

Algorithm 4: The protocol distQueryC,S .

Input : Client’s input is K, q = (u, v) and server’s input is EO
Output: Client’s output is d and server’s output is ⊥

1 begin distQuery
2 C: computes (tk1, tk2, tk3, tk4) = (PK1(u), PK1(v), FK2(u), FK2(v));
3 C ⇒ S: sends tk = (tk1, tk2, tk3, tk4);
4 S: computes γ1 ← DX[tk1] and γ2 ← DX[tk2];
5 if γ1 = ⊥ or γ2 = ⊥ then
6 exit and return ⊥ to the client

7 S: compute 〈a1||Ku〉 := γ1 ⊕ tk3;
8 S: parse Arr[a1] as 〈σu, ru〉;
9 S: compute N1 := σu ⊕H(Ku‖ru);

10 repeat
11 parse Ni as 〈hi‖ci‖ai+1〉;
12 parse Arr[ai+1] as 〈σi+1, ri+1〉;
13 compute Ni+1 := σi+1 ⊕H(Ku‖ri+1);
14 set i = i+ 1;

15 until ai+1 = NULL;
16 S: compute 〈b1||Kv〉 := γ2 ⊕ tk4;
17 S: parse Arr[b1] as 〈σv, rv〉;
18 S: compute N′1 := σv ⊕H(Kv‖rv);
19 repeat
20 parse N′j as 〈h′j‖c′j‖bj+1〉;
21 parse Arr[bj+1] as 〈σj+1, rj+1〉;
22 compute N′j+1 := σj+1 ⊕H(Kv‖rj+1);

23 set j = j + 1;

24 until bj+1 = NULL;
25 S: set s := SWHE.Encpk(0);
26 foreach (Ni, N

′
j) do

27 if hi = h′j then

28 compute p := SWHE.Eval(×, ci, c′j);
29 compute s := SWHE.Eval(+, s, p);

30 S ⇒ C: send s;
31 C: compute d := SWHE.Decsk(s)

leakage LSP (ΩG, q). In the following Theorem, we summarize the security of GraphEnc3.

Theorem 3.5.4. If P and F are pseudo-random, if SWHE is CPA-secure then GraphEnc3,

as described above, is adaptively (LSetup,LQuery)-semantically secure in the random oracle

model, where LSetup(ΩG) = (n, S,D,Z) and LQuery(ΩG, q) = (LQP (ΩG, q),LSP (ΩG, q)).

37

Proof Sketch: Consider the simulator S that works as follows. Given leakage LSetup =

(n, S,D,Z), for all 1 ≤ i ≤ Z it samples Γi
$← {0, 1}log t+g(N)+logZ+λ, where g(·) is the

ciphertext expansion of SWHE, t = 2 ·S2 · ε−1 and N = 2 ·D+ 1. It then stores all the Γi’s

in a Z-element array Arr. For all 1 ≤ i ≤ n, it samples `i
$← {0, 1}logn without repetition

and sets DX[`i]
$← {0, 1}logZ+k. Finally, it outputs EO = (DX, Arr).

Given leakage LQuery(G, q) = (LQP (G, q),LSP (G, q)) such that LSP (G, q) = (X,Y),

S first checks if either of the query nodes u or v appeared in any previous query. If u

appeared previously, S sets tk1 and tk3 to the values that were previously used. If not,

it sets tk1 := `i for some previously unused `i and tk3 as follows. It chooses a previously

unused α ∈ [Z] at random, a key Ku
$← {0, 1}k and sets tk3 := DX[tk1]⊕ 〈α‖Ku〉. It then

remembers the association between Ku and X and the sketch size |Sku|. It does the same

for the query node v, sets tk2 and tk4 analogously and associates |Skv| and Y with the key

Kv it chooses.

It simulates the random oracle H as follows. Given (K, r) as input, it checks to see

if: (1) K has been queried before (in the random oracle); and (2) if any entry in Arr has

the form 〈s, r〉 where s is a (log t + g(N) + logZ)-bit string. If K has not been queried

before, it initializes a counter ctrK := 0. If an appropriate entry exists in Arr, it returns

s ⊕ 〈γ, c, p〉, where γ is the ctrth element of the multi-set X or Y associated with K, c

is a SWHE encryption of 0 and p is an unused address in Arr chosen at random or ∅ if

ctr = |Sk|, where |Sk| is the sketch size associated with K. If no appropriate entry exists

in Arr, S returns a random value. The Theorem then follows from the pseudo-randomness

of P and F and the CPA-security of SWHE. �

3.6 Experimental Evaluation

In this section, we present experimental evaluations of our schemes on a number of large-

scale graphs. We implement the Das Sarma et al. distance oracle (DO1) and Cohen et al.

distance oracle (DO2) and all three of our graph encryption schemes. We use AES-128 in

38

CBC mode for symmetric encryption and instantiate SWHE with the Boneh-Goh-Nissim

(BGN) scheme, implemented in C++ with the Stanford Pairing-Based Library PBC1. We

use OpenSSL2 for all basic cryptographic primitives and use 128-bit security for all the

encryptions. We use HMAC for PRFs and instantiate the hash function in GraphEnc3 with

HMAC-SHA-256. All experiments were run on a 24-core 2.9GHz Intel Xeon, with 512 GBs

of RAM running Linux.

3.6.1 Datasets

We use real-world graph datasets publicly available from the Stanford SNAP website3. In

particular, we use as-skitter, a large Internet topology graph; com-Youtube, a large so-

cial network based on the Youtube web site; loc-Gowalla, a location-based social network;

email-Enron, an email communication network; and ca-CondMat, a collaboration network

for scientific collaborations between authors of papers related to Condensed Matter re-

search. Table 3.1 summarizes the main characteristics of these datasets.

Dataset Nodes Edges Diameter Storage

as-skitter 1,696,415 11,095,298 25 143MB

com-Youtube 1,134,890 2,987,624 20 37MB

loc-Gowalla 196,591 950,327 14 11MB

email-Enron 36,692 367,662 11 1.84MB

ca-CondMat 23,133 186,936 14 158KB

Table 3.1: The graph datasets used in our experiments

Notice that some of these datasets contain millions of nodes and edges and that the

diameters of these graphs are small. This is something that has been observed in many real-

life graphs [Leskovec et al., 2005] and is true for expander and small-world graphs, which

are known to model many real-life graphs. The implication of this, is that the maximum

distance D in the sketches generated by the distance oracles is, in practice, small and

therefore the value N that we use in GraphEnc2 and GraphEnc3 (see Algorithm 1 and 3) is

1http://crypto.stanford.edu/pbc/
2https://www.openssl.org/
3https://snap.stanford.edu/data/

http://crypto.stanford.edu/pbc/
https://www.openssl.org/
https://snap.stanford.edu/data/

39

typically small.

3.6.2 Overview

For a graph G = (V,E) with n nodes, we summarize in Table 3.2 our constructions’ space,

setup, and communication complexities as well as the complexities for both the server and

client during the query phase. Note that the complexities for each scheme also depend

on α, however, in practice, since setting σ for DO1 (ρ for DO2) to some small numbers

resulted good approximations, therefore, it makes α = O(log n). In our experiments, we

test different σ and ρ’s and the sketch size, |Skv|, for each node is sublinear in the size of

the graph, i.e. O(log n).

Scheme GraphEnc1 GraphEnc2 GraphEnc3

Space O(n log n) O(n log2 n/ε) O(n log n)

Setup Time O(n log n) O(n log2 n/ε) O(n log n)

Communication O(log n) O(1) O(1)

Server Query Comp. O(1) O(log2 n/ε) O(log n)

Client Query Comp. O(log n) O(diameter) O(diameter)

Table 3.2: The space, setup, communication, and query complexities of our constructions
(α is set to be in O(log n)).

Table 3.3 summarizes our experimental results. Compared to existing schemes, such

as [Aly et al., 2013], our experiments shows that the constructions are very efficient and

scalable for large real dataset. For example, in [Aly et al., 2013], it takes several minutes

to securely compute the shortest path distance for graph with only tens to hundreds of

nodes, whereas it takes only seconds for our scheme to query the encrypted graph up to

1.6 million nodes.

3.6.3 Performance of GraphEnc1

We evaluate the performance of GraphEnc1 using both the Das Sarma et al. and Cohen et

al. distance oracles. For the Das Sarma et al. oracle (DO1), we set the sampling parameter

σ = 3 and for the Cohen et al. oracle (DO2) we set the rank parameter ρ = 4. We choose

40

GraphEnc1 GraphEnc2 GraphEnc3

Dataset
sketch Graph Comm. Setup Time Size Comm. Setup Time Size Comm. Setup Time Size

size Sketching per query per node per node T per query per node per node per query per node per node
S Scheme (in bytes) (in ms) (in KBs) size (in bytes) (in secs) (in MBs) (in bytes) (in ms) (in KBs)

As-skitter
80 DO1 3,840 16.7 1.94 11K 34 7.3 1.1 34 20.1 1.91
71 DO2 3,120 14 1.63 8.4K 34 6.59 0.76 34 16 1.83

Youtube
80 DO1 3,840 16.5 1.94 10K 34 8 1.1 34 18.2 1.91
68 DO2 3,120 14.5 1.63 8.5K 34 6.57 0.76 34 17.3 1.7

Gowalla
70 DO1 3360 14.9 1.7 7.5K 34 7.4 0.82 34 15.6 1.71
53 DO2 2544 12 1.29 7K 34 5 0.62 34 14.7 1.41

Enron
60 DO1 2880 12.5 1.44 7K 34 5.6 0.76 34 14 1.48
45 DO2 2160 9.39 1.11 6.5K 34 4.81 0.53 34 10 1.25

CondMat
55 DO1 2640 11.8 1.34 5.5K 34 4.65 0.65 34 13.2 1.31
42 DO2 2016 7.8 1.03 5K 34 3.8 0.49 34 8.2 1.21

Table 3.3: A full performance summary for GraphEnc1, GraphEnc2, and GraphEnc3

these parameters because they resulted in good approximation ratios and the maximum

sketch sizes (i.e., S) of roughly the same amount. Note that, the approximation factor α

in those then is in O(log n) for GraphEnc1, therefore, the communication complexity (see

Table 3.2) in GraphEnc1 is O(log n). We can see from Table 3.3 that the time to setup an

encrypted graph with GraphEnc1 is practical—even for large graphs. For example, it takes

only 8 hours to setup an encryption of the as-skitter graph which includes 1.6 million nodes.

Since the GraphEnc1.Setup is highly-parallelizable, we could speed setup time considerably

by using a cluster. A cluster of 10 machines would be enough to bring the setup time down

to less than an hour. Furthermore, the size of the encrypted sketches range from 1KB for

CondMat to 1.94KB for as-skitter per node. The main limitation of this construction is

that the communication is proportional to the size of the sketches. We tested for various

sketch sizes, and the communication per query went up to 3.8KB for as-skitter when we

set S = 80. This can become quite significant if the server is interacting with multiple

clients.

3.6.4 Performance of GraphEnc2

The first column in Table 3.3 of the GraphEnc2 experiments gives the size the encrypted

hash tables Tv constructed during GraphEnc2.Setup. Table sizes range from 5K for ca-

CondMat to 11K for as-skitter.

The Time column gives the time to create an encrypted hash-table/sketch per node.

This includes generating the BGN encryptions of the distances and the 0-encryptions. Note

41

that this makes GraphEnc2.Setup quite costly, about 3 orders of magnitude more expensive

than GraphEnc1.Setup. This is mostly due to generating the 0-encryptions. Note, however,

that similarly to GraphEnc1, we can use extensive parallelization to speed up the setup.

For example, using a cluster of 100 machines, we can setup the encrypted graph on the

order of hours, even for as-skitter which includes 1.6 million nodes. The space overhead per

node is also large, but the encrypted graph itself can be distributed in a cluster since every

encrypted sketch is independent of the other. Finally, as shown in Table 3.3, GraphEnc2

achieves a constant communication cost of 34B.

In Fig. 3.4, we report on the intra- and inter-collisions that we observed when executing

over 10K different queries over our data sets. The collision probability ranges between 1%

and 3.5%. As we can see from the results, the oracle DO2 has less collisions than DO1.

Figure 3.4: Collision probabilities for different datasets

3.6.5 Performance of GraphEnc3

The GraphEnc3 columns in Table 3.3 show that GraphEnc3 is as efficient as GraphEnc1 in

terms of setup time and encrypted sketch size. Moreover, it achieves O(1) communication

of 34B like GraphEnc2. Using a single machine, GraphEnc3.Setup took less than 10 hours

to encrypt as-skitter, but like the other schemes, it is highly parallelizable, and this could

be brought down to an hour using 10 machines. We instantiated the hash function h using

a cryptographic keyed hash function HMAC-SHA-256.

42

3.6.5.1 Construction time & encrypted sketch size

Since the performance of GraphEnc3 depends only on the size of the underlying sketches we

investigate the relationship between the performance of GraphEnc3.Setup and the sampling

and rank parameters of the Das Sarma et al. and Cohen et al. oracles, respectively. We

use values of σ and ρ ranging from 3 to 6 in each case which resulted in maximum sketch

sizes S ranging from 43 to 80. Figure 3.5 and Figure 3.6 give the construction time and

size overhead of an encrypted sketch when using the Das Sarma et al. oracle and Cohen

et al. oracle respectively.

In each case, the construction time scales linearly when σ and ρ increase. Also, unlike

the previous schemes, GraphEnc3 produces encrypted sketches that are compact since it

does not use 0-encryptions for padding purposes.

3.6.5.2 Query Time

We measured the time to query an encrypted graph as a function of the oracle sam-

pling/rank parameter. The average time at the server (taken over 10K random queries)

is given in Figure 3.7 for all our graphs and using both distance oracles. The variance of

the queries is within 0.5 ms. In general, the results show that query time is very fast and

practical. For as-skitter, the query time ranges from 6.1 to 10 milliseconds with the Das

Sarma et al. oracle and from 5.6 to 10 milliseconds with the Cohen et al. oracle. Query

time is dominated by the homomorphic multiplication operation of the BGN scheme. But

the number of multiplications only depends on the number of common seeds from the

two encrypted sketches and, furthermore, these operations are independent so they can

be parallelized. We note that we use mostly un-optimized implementations of all the un-

derlying primitives and we believe that a more careful implementation (e.g., faster pairing

library) would reduce the query time even further. We also measure the decryption time

at the client. As pointed out previously, decryption time depends on N which itself is a

function of the diameter of the graph. Since all our graphs have small diameter, client de-

43

Construction Time (in ms)

Size Overhead (in KB)

Figure 3.5: Construction time and size overhead (DO1)

Construction Time (in ms)

Size Overhead (in KB)

Figure 3.6: Construction time and size overhead (DO2)

44

3

6

9

12

3 4 5 6
ρ

A
ve

ra
g
e
 Q

u
e
ry

 T
im

e
 (

in
 m

s
)

As−skitter condmat enron gowalla youtube

(a) Query Time (in ms) using DO1

3

6

9

12

3 4 5 6
ρ

A
ve

ra
g
e
 Q

u
e
ry

 T
im

e
 (

in
 m

s
)

As−skitter condmat enron gowalla youtube

(b) Query Time (in ms) DO2

Figure 3.7: Average Query time

cryption time—which itself consists of a BGN decryption— was performed very efficiently.

In particular, the average decryption time was less than 4 seconds and in most cases the

decryption ranged between 1 and 3 seconds.

Finally, we would like to mention that there is some additional information that is

leaked. In our construction, we leak the parameter ρ and σ that are related to the size

of the encrypted graph and this may leak some information about how “hard” it is to

approximate the shortest distance values for the particular graph at hand. Also, the time

that it takes to estimate the final result at the client may reveal the diameter of the graph,

since it is related to the N and the max distance in the sketches.

3.6.6 Approximation errors

We investigate the approximation errors produced by our schemes. We generate 10K

random queries and run the QueryC,S protocol. For client decryption, we recover 2N−logm

45

0.0

0.2

0.4

0.6

3 4 5 6
σ

m
e
a
n
 o

f
re

la
ti
v
e
 e

rr
o
r

w
it
h
 s

d

as−skitter condmat enron gowalla youtube

DO1

0.0

0.1

0.2

0.3

0.4

0.5

3 4 5 6
ρ

m
e
a
n
 o

f
re

la
ti
v
e
 e

rr
o
r

w
it
h
 s

d

as−skitter condmat enron gowalla youtube

DO2

Figure 3.8: Mean of Estimated Error with Standard Deviation

and round it to its floor value. We used breadth-first search (BFS) to compute the exact

distances between each pair of nodes and we compare the approximate distance returned

by our construction to exact distances obtained with BFS. We report the mean and the

standard deviation of the relative error for each dataset. We used both oracles to compute

the sketches. We present our results in Figure 3.8, which shows that our approximations

are quite good. Indeed, our experiments show that our constructions could report better

approximations than the underlying oracles. This is due to the fact that both oracles

overestimate the distance so subtracting log |I| can improve the approximation. For the

Gowalla dataset, the mean of the relative error ranges from 0.36 to 0.13 when using the

Das Sarma et al. oracle DO1. For as-skitter, it ranges from 0.45 to 0.22. The mean error

and the variance decreases as we increase the size of each sketch. In addition, we note that

DO2 performs better in all datasets. Also, half of the distances returned are exact and

most of the distances returned are at most 2 away from the real distance. Figure 3.9 shows

the histogram for the absolute error when using DO2 with ρ = 3. All the other datasets

46

are very similar to them, so we omit them due to space limitations.

Figure 3.9: Absolute error histogram DO2 and ρ = 3

We note that a very small number of distances were negative and we removed them

from the experiments. Negative distances result from the intersection size |I| being very

large. Indeed, when the client decrypts the SWHE ciphertext returned by the server, it

recovers d ≥ mindist− log |I|. If |I| is large and mindist is small (say, 1 or 2) then it is very

likely that d is negative. However, in the experiments, the number of removed negative

values were very small (i.e., 80 out of 10000 queries).

3.7 Application to Other Graph Queries

3.7.1 All-Distance Sketches

All-distances sketch (ADS) proposed by [Cohen et al., 2013, Cohen, 2014] can be used to

estimate the shortest distance as well. As defined in [Cohen et al., 2013], for the weighted

graph G, the all-distance sketch (ADS) of the node v, denote ADS(v), is the set of node

ID and distance pairs. The included nodes are sample of the nodes reachable from v

and with each included node u ∈ ADS(v) the corresponding distance duv is also stored.

Formally, followed by the notation from [Cohen, 2014, Cohen et al., 2013], let πvu denote

the Dijkstra rank of u with respect to v, defined as its position in the list of nodes ordered

by increasing distance from v. For any two nodes u, v, let Φ<u(v) = {j|πvj < πvu} for

47

the set of nodes that are closer to v than u is. For a numeric function r : X → [0, 1] over

a set X, the function kthr (X) returns the k-th smallest value in the range of r on X. If

|X| < k then we define kthr (X) = 1. Finally, all-distance sketch(ADS) labels are defined

with respect to a random rank assignment to nodes such that for all v, r(v) ∼ U [0, 1], i.e,

they are independently drawn from the uniform distribution on [0, 1]:

ADS(v) = {(u, dvu)|r(u) < kthr (Φ<u(v))}

In other words, a node u belongs to ADS(v) if u is among the k nodes with lowest rank r

within the ball of radius dvu around v. (For simplicity, we abuse notation and often interpret

ADS(v) as a set of nodes, even though it is actually a set of pairs , each consisting of a

node and a distance.) Since the inclusion probability of a node is inversely proportional

to its Dijkstra rank, the expected size of ADS(v) is E|ADS(v)| ≤ k lnn, where n is the

number of nodes reachable from v.

It has been proved that one can use the ADS to estimate the distance between u and v.

The estimated distance d̃uv have the approximation factor (2d lognlog k e − 1) and the querying

algorithm is very similar to the distance oracle (see [Cohen et al., 2013] for details).

3.7.2 Graph Similarity Queries using All-Distance Sketches

The closeness similarity measures the similarity of two nodes based on their views of the

full graph. More precisely, we consider the distance from each of these two nodes to all

other nodes in the graph and measure how much these two distance vectors differ. This

is computationally expensive, but ADSs allow an efficient estimation of this measurement.

It has also been shown that the ADS can be used to measure the closeness between two

nodes. The following theorem show that it can be used to estimate the Dijkstra Rank

Closness (denote by J∗). The Dijkstra rank of node vj with respect to vi is vj ’s position

in the nearest neighbors list of vi when running the Dijkstra shortest path for the node vi.

Roughly speaking, closeness similarity is specified with respect to a distance function δij

48

between two nodes, a distance decay function α′(d) (a monotone non-increasing function

of distances), and a weight function β(i) of node IDs. The basic expression for closeness

similarity is

Sα′,β(u, v) =
∑
i

α′(max{δu,iδv,i})β(i), (3.2)

By setting k to be the parameter h in the decay function in the Dijkstra ranks, the

following estimator can give a good estimation of J∗,

Ĵ∗(u, v) =
|ADS(u) ∩ADS(v)|
|ADS(u) ∪ADS(v)|

We refer the reader to [Cohen et al., 2013, Cohen, 2014] for details of how to set up the

parameter of the ADS and its applications.

3.7.3 Graph Encryption based on ADS

We can easily apply the techniques of section 3.5.1 and 3.5.3 to the ADS data structure. For

the approach in GraphEnc1, we generate the ADS for each node, the labels are computed

by applying the PRF to each node, then apply similar approach as in GraphEnc1 using

symmetric encryption. The Token and the Query algorithm are similarly defined. By

retrieving the encryptions of the sketches, the client can use the ADS to measure the

shortest distance and the estimation of the closeness. We will focus on the communication

efficient construction based on GraphEnc2.

In order to to support the approximate shortest distance queries, we construct the graph

encryption as GraphEnc2 except that during the GraphEnc2.Setup step (4) we generate the

ADS for each node instead of using the distance oracle approach. The rest of the steps

remains the same.

On the other hand, to measure J∗(u, v) between u and v, we will construct a graph

encryption scheme slightly different than the GraphEnc2 in Section 3.5.3. In Figure 5, we

present the construction for closeness queries. During the Setup in GraphEnc2, instead of

generating the sketches using the distance oracle, we generate the ADS for all the nodes,

49

then apply the same method using SWHE. In addition, as stated in [Cohen et al., 2013],

ADS can be used to evaluate the similarity and closeness queries as well. Here we briefly

mention the method of measuring the Dijkstra Rank Closeness based all-distance sketch.

In the Setup, we first generate the ADS for each node. Next, for each v ∈ V , we compute

the label `v := PK(v) and initialize the array Tv of size t. For each (wi, δi) ∈ ADS, the only

changes is that we now set Tv[h(wi)] ← Π.Encpk(1) and fill the remaining the cells of the

Tv with encryption of 0. Next, in DistQuery(u, v), the client generates the token for u and

v by compute tk1 := PK(u) and tk2 := PK(v). When the server retrieves T1 := DX[tk1] and

T2 := DX[tk2], we can homomorphically evaluate the |ADS(u)| by computing the following:

ψ1 ← Π.Eval(+,T1[1], . . . ,T1[t]) (3.3)

Similarly, for |ADS(v)|, we can compute ψ2 ← Π.Eval(+,T2[1], . . . ,T2[t]). We can

alsohomomorphically evaluate the |ADS(u) ∩ ADS(v)|: for all i ∈ [t], the server computes

ci ← Π.Eval(×,T1[i],T2[i]), then the server computes ψ3 ← Π.Eval(+, c1, . . . , ct). Then

by sending all of those to the client, the client decrypts ψ1, ψ2, and ψ3, furthermore, the

client can get the |ADS(u) ∩ ADS(v)| by computing β := ψ1 + ψ2 − ψ3 due to the fact

|ADS(u) ∪ ADS(v)| = |ADS(u)| + |ADS(u)| − |ADS(u) ∩ ADS(v)|. Finally, the Dijkstra

Rank Closeness J∗(u, v) can be estimated by ψ3

β .

The correctness of above simply follows the fact that the bit we place into the encryption

in Setup indicates the existence of whether the particular node hashes into the table T for

each node. The equation 3.3 homomorphically computes the size of the sketch. The inner

product between the two Ts gives the intersection size between ADS(u) and ADS(v).

The security proof of the scheme above is quite similar to the proof of GraphEnc2. The

simulator just has to simulate the appropriate size of list of the encryptions. The query

simulation is just like the simulation in GraphEnc2.

Our method ‘hash-and-encrypt’ techniques can be useful for many hop-based graph

queries. We want to point out that the estimation for particular queries under different

50

Algorithm 5: Graph Encryption with Dijkstra Closeness Query with O(1) commu-
nication complexity

1 Let SWHE = (Gen,Enc,Dec,Eval) be a homomorphic encryption scheme,

P : V × {0, 1}k → {0, 1}log |V | be a pseudo-random permutation and H be a family
of universal hash functions. Consider the graph encryption scheme
GraphEnc3 = (Setup,DistQuery) that works as follows:

• Setup(1k, G, α, ε):

1. sample K
$← {0, 1}k and generate a key pair (pk, sk)← SWHE.Gen(1k);

2. set r = Θ̃
(
n2/(α+1)

)
and t = 2 · (r log n)2 · ε−1;

3. sample a hash function h : V → t from H;

4. Construct the ADS:

(a) compute ADS(v) for each v ∈ V .

5. Produce hash tables:

(a) For each node v ∈ V ,

i. compute `v := PK(v);

ii. initialize an array Tv of size t;

iii. for each (wi, δi) ∈ ADS(v), set Tv[h(wi)]← SWHE.Encpk(1);

iv. fill remaining cells of Tv with encryptions of 0;

v. set DX[`v] := Tv;

6. output EO = DX.

• DistQuery
(
(K, q),EO

)
:

1. the client parses q as (u, v) and sends a token tk = (tk1, tk2) = (PK(u), PK(v))
to the server;

2. the server retrieves T1 := DX[tk1] and T2 := DX[tk2];

3. R1 ← SWHE.Eval(+,T1[1], ...,T1[N]).

4. R2 ← SWHE.Eval(+,T2[1], ...,T2[N])

5. for all i ∈ [t], the server computes ci ← SWHE.Eval(×,T1[i],T2[i]);

6. the server computes and sends to the client R3 ← SWHE.Eval(+, c1, . . . , ct);

7. the client computes m← SWHE.Decsk(c) and computes Ĵ = R3
R1+R2−R3

.

Finally, output Ĵ .

graph sketches mainly depends on the underlying sketch structure. Our method provide

a generic framework of encrypting the sketches. As shown in the previous section, our

51

constructions, which incorporate the hash and SWHE, do not affect the bound estimation

much (in the case of measuring the closeness, the construction does not affect it at all).

Chapter 4

Top-k Query Processing on Encrypted Relational

Databases

4.1 Introduction

Although top-k queries are important query types in many database applica-

tions [Ilyas et al., 2008], to the best of our knowledge, none of the existing works handle

the top-k queries securely and efficiently. Vaiyda et. al. [Vaidya and Clifton, 2005] stud-

ied privacy-preserving top-k queries in which the data are vertically partitioned instead of

encrypting the data. Wong et. al. [Wong et al., 2009] proposed an encryption scheme for

knn queries and mentioned a method of transforming their scheme to solve top-k queries,

however, as shown in [Yao et al., 2013], their encryption scheme is not secure and is vul-

nerable to chosen plaintext attacks. Vaiyda et. al. [Vaidya and Clifton, 2005] also studied

privacy-preserving top-k queries in which the data are vertically partitioned instead of

encrypting the data.

We assume that the data owner and the clients are trusted, but not the cloud server.

Therefore, the data owner encrypts each database relation R using some probabilistic

encryption scheme before outsourcing it to the cloud. An authorized user specifies a query

q and generates a token to query the server. Our objective is to allow the cloud to securely

compute the top-k results based on a user-defined ranking function over R, and, more

importantly, the cloud should not learn anything about R or q. Consider a real world

example for a health medical database below:

53

Example 4.1.1. An authorized doctor, Alice, wants to get the top-k results based on

some ranking criteria from the encrypted electronic health record database patients (see

Table 4.1). The encrypted patients database may contain several attributes; here we only

list a few in Table 4.1: patient name, age, id number, trestbps 1, chol2, thalach3.

patient name age id trestbps chol thalach

E(Bob) E(38) E(121) E(110) E(196) E(166)

E(Celvin) E(43) E(222) E(120) E(201) E(160)

E(David) E(60) E(285) E(100) E(248) E(142)

E(Emma) E(36) E(956) E(120) E(267) E(112)

E(Flora) E(43) E(756) E(100) E(223) E(127)

Table 4.1: Encrypted patients Heart-Disease Data

One example of a top-k query (in the form of a SQL query) can be: SELECT * FROM

patients ORDERED BY chol+thalach STOP AFTER k. That is, the doctor wants to get the

top-2 results based the score chol+thalach from all the patient records. However, since this

table contains very sensitive information about the patients, the data owner first encrypts

the table and then delegates it to the cloud. So, Alice requests a key from the data owner

and generates a query token based on the query. Then the cloud searches and computes

on the encrypted table to find out the top-k results. In this case, the top-2 results are the

records of patients David and Emma.

Our protocol extends the No-Random-Access (NRA) [Fagin et al., 2001] algorithm for

computing top-k queries over a probabilistically encrypted relational database. Moreover,

our query processing model assumes that two non-colluding semi-honest clouds, which is the

model that has been showed working well (see [Elmehdwi et al., 2014, Bugiel et al., 2011,

Liu et al., 2015a, Baldimtsi and Ohrimenko, 2014, Bost et al., 2015]). We encrypt the

database in such a way that the server can obliviously execute NRA over the encrypted

database without learning the underlying data. This is accomplished with the help of a

secondary independent cloud server (or Crypto Cloud). However, the encrypted database

1trestbps: resting blood pressure (in mm Hg)
2chol: serum cholestoral in mg/dl
3maximum heart rate achieved

54

resides only in the primary cloud. We adopt two efficient state-of-art secure protocols,

EncSort [Baldimtsi and Ohrimenko, 2014] and EncCompare [Bost et al., 2015], which are

the two essential building block we need in our top-k secure construction. We choose these

two building blocks mainly because of their efficiency.

During the query processing, we propose several novel sub-routines that can securely

compute the best/worst score and de-duplicate replicated data items over the encrypted

database. Notice that our proposed sub-protocols can also be used as stand-alone building

blocks for other applications as well. We also would like to point out that during the

querying phase the computation performed by the client is very small. The client only needs

to compute a simple token for the server and all of the relatively heavier computations are

performed by the cloud side. Moreover, we also explore the problem of top-k join queries

over multiple encrypted relations.

We also design a secure top-k join operator, denote as ./sec, to securely join the tables

based on equi-join condition. The cloud homomorphically computes the top-k join on the

top of joined results and reports the encrypted top-k results. Below we summarize our

main contributions:

• We propose a new practical protocol designed to answer top-k queries over encrypted

relational databases.

• We propose two encrypted data structures called EHL and EHL+ which allow the

servers to homomorphically evaluate the equality relations between two objects.

• We propose several independent sub-protocols such that the clouds can securely com-

pute the best/worst scores and de-duplicate replicated encrypted objects with the use

of another non-colluding server.

• We also extend our techniques to answer top-k join queries over multiple encrypted

relations.

• The scheme is experimentally evaluated using real-world datasets and result shows

that our scheme is efficient and practical.

55

4.2 Related Works and Background

The problem of processing queries over the outsourced encrypted databases is not new.

The work [Hacigümüs et al., 2002] proposed executing SQL queries over encrypted data

in the database-service-provider model using bucketization. Since then, a number of

works have appeared on executing various queries over encrypted data. One of the

relevant problem related to top-k queries is the kNN (k Nearest Neighbor) queries.

Note that top-k queries should not be confused with similarity search, such as kNN

queries. For the kNN queries, one is interested in retrieving the k most similar objects

over the database to a query object, where the similarity between two objects is mea-

sured over some metric space, for example the L2 metric. Many works have been pro-

posed to specifically handle kNN queries on encrypted data, such as [Wong et al., 2009,

Elmehdwi et al., 2014, Yao et al., 2013, Choi et al., 2014]. A significant amount of

works have been done for privacy preserving keyword search queries or boolean

queries, such as [Song et al., 2000, Curtmola et al., 2011, Cash et al., 2013b]. Recent

work [Samanthula et al., 2014] proposed a general framework for boolean queries of disjunc-

tive normal form queries on encrypted data. In addition, many works have been proposed

for range queries [Shi et al., 2007, Hore et al., 2012, Li et al., 2014]. Other relevant works

include privacy-preserving data mining [Lindell and Pinkas, 2000, Vaidya et al., 2008,

Aggarwal and Yu, 2008, Jaideep Vaidya, 2008, Murat Kantarcioglu, 2004].

Recent works in the cryptography community have shown that it is possible to

perform arbitrary computations over encrypted data, using fully homomorphic encryp-

tion (FHE) [Gentry, 2009a], or Oblivious RAM [Goldreich and Ostrovsky, 1996]. How-

ever, the performance overheads of such constructions are very high in practice, thus

they’re not suitable for practical database queries. Some recent advancements in ORAM

schemes [Ren et al., 2015] show promise and can be potentially used in certain environ-

ments. As mentioned, [Vaidya and Clifton, 2005] is the only work that studied privacy

preserving execution of top-k queries. However, their approach is mainly based on the

56

k-anonymity privacy policies, therefore, it cannot extended to encrypted databases. Re-

cently, differential privacy [Dwork and Nissim, 2004] has emerged as a powerful model to

protect against unknown adversaries with guaranteed probabilistic accuracy. However,

here we consider encrypted data in the outsourced model; moreover, we do not want

our query answer to be perturbed by noise, but we want our query result to be exact.

Kuzu et. al. [Kuzu et al., 2014] proposed a scheme that leverages DP and leaks obfus-

cated access statistics to enable efficient searching. Another approach has been extensively

studied is order-preserving encryption (OPE) [Agrawal et al., 2004, Popa et al., 2011,

Boldyreva et al., 2011a, Aggarwal and Yu, 2008, Lindell and Pinkas, 2000], which pre-

serves the order of the message. We note that, by definition, OPE directly reveals the

order of the objects’ ranks, thus does not satisfy our data privacy guarantee. Furthermore,

[Hang et al., 2015] proposed a prototype for access control using deterministic proxy en-

cryption, and other secure database systems have been proposed by using embedded secure

hardware, such as TrustedDB [Bajaj and Sion, 2011] and Cipherbase [Arasu et al., 2015].

4.3 Preliminaries

4.3.1 Problem Definition

Consider a data owner that has a database relation R of n objects, denoted by o1, . . . , on,

and each object oi has M attributes. For simplicity, we assume that all M attributes

take numerical values. Thus, the relation R is an n ×M matrix. The data owner would

like to outsource R to a third-party cloud S1 that is completely untrusted. Therefore,

data owner encrypts R and sends the encrypted relation ER to the cloud. After that, any

authorized client should be able to get the results of the top-k query over this encrypted

relation directly from S1, by specifying k and a score function over the M (encrypted)

attributes. We consider the monotone scoring (ranking) functions that are weighted linear

combinations over all attributes, that is FW (o) =
∑
wi×xi(o), where each wi ≥ 0 is a user-

specified weight for the i-th attribute and xi(o) is the local score (value) of the i-th attribute

57

for object o. Note that we consider the monotone linear function mainly because it is the

most important and widely used score function on top-k queries [Ilyas et al., 2008]. The

results of a top-k query are the objects with the highest k scores of FW values. For example,

consider an authorized client, Alice, who wants to run a top-k query over the encrypted

relation ER. Consider the following query: q = SELECT * FROM ER ORDER BY FW (·) STOP

AFTER k; That is, Alice wants to get the top-k results based on her scoring function FW ,

for a specified set of weights. Alice first has to request the keys from the data owner, then

generates a query token tk. Alice sends the tk to the cloud server. The cloud server storing

the encrypted database ER processes the top-k query and sends the encrypted results back

to Alice. In the real world scenarios, the authorized clients can locally store the keys for

generating the token.

4.3.2 The Architecture

We consider the secure computation on the cloud under the semi-honest (or honest-but-

curious) adversarial model. Furthermore, our model assumes the existence of two differ-

ent non-colluding semi-honest cloud providers, S1 and S2, where S1 stores the encrypted

database ER and S2 holds the secret keys and provides the crypto services. We refer to

the server S2 as the Crypto Cloud and assume S2 resides in the cloud environment and is

isolated from S1. The two parties S1 and S2 do not trust each other, and therefore, they

have to execute secure computations on encrypted data.

This model is not new and has already been widely used in related

work, such as [Elmehdwi et al., 2014, Bugiel et al., 2011, Liu et al., 2015a,

Baldimtsi and Ohrimenko, 2014, Bost et al., 2015]. As pointed out by these works,

we emphasize that these cloud services are typically provided by some large companies,

such as Amazon, Microsoft Azure, and Google, who have also commercial interests not to

collude. The Crypto Cloud S2 is equipped with a cryptographic processor, which stores

the decryption key. The cryptographic processor has been built and used in real life (e.g.,

58

the IBM PCIe4 or the Freescale C29x5). When the server S1 receives the query token, S1

initiates the secure computation protocol with the Crypto Cloud S2. Figure 4.1 shows an

overview of the architecture.

Figure 4.1: An overview of our model

4.3.3 Cryptographic Tools

In Table 4.2 we summarize the notation. In the following, we present the cryptographic

primitives used in our construction.

Paillier Cryptosystem The Paillier cryptosystem [Paillier, 1999] is a semantically se-

cure public key encryption scheme. We describe the algorithm in Chapter 2 The message

space M for the encryption is ZN , where N is a product of two large prime numbers p

and q. For a message m ∈ ZN , we denote Encpk(m) ∈ ZN2 to be the encryption of m with

the public key pk. When the key is clear in the text, we simply use Enc(m) to denote the

encryption of m and Decsk(c) to denote the decryption of a ciphertext c. The details of

encryption and decryption algorithm can be found in [Paillier, 1999]. It has the following

homomorphic properties:

• Addition: ∀x, y ∈ ZN , Enc(x) · Enc(y) = Enc(x+ y)

4http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
5http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=C29x

http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=C29x

59

• Scalar Multiplication: ∀x, a ∈ ZN , Enc(x)a = Enc(a · x)

Generalized Paillier Our construction also relies on Damg̊ard-Jurik(DJ) cryptosystem

introduced by Damg̊ard and Jurik [Damg̊ard and Jurik, 2001], which is a generalization of

Paillier encryption. The message space M expands to ZNs for s ≥ 1, and the ciphertext

space is under the group ZNs+1 . As mentioned in [Adida and Wikström, 2007], this gen-

eralization allows one to doubly encrypt messages and use the additive homomorphism of

the inner encryption layer under the same secret key. In particular, let E2
(
x
)

denote an

encryption of the DJ scheme for a message x ∈ ZN2 (when s = 2) and Enc(x) be a normal

Paillier encryption. This extension allows a ciphertext of the first layer to be treated as

a plaintext in the second layer. Moreover, this nested encryption preserves the structure

over inner ciphertexts and allows one to manipulate it as follows:

E2
(
Enc(m1)

)Enc(m2) = E2
(
Enc(m1) · Enc(m2)

)
= E2

(
Enc(m1 +m2)

)
We note that this is the only homomorphic property that our construction relies on.

Throughout this paper, we use ∼ to denote that the underlying plaintext under en-

cryption E are the same, i.e., Enc(x) ∼ Enc(y) ⇒ x = y. We summarize the notation

throughout this paper in Table 4.2. Note that in our application, we need one layered

encryption; that is, given E2
(
Enc(x)

)
, we want a normal Paillier encryption Enc(x). As

introduced in [Baldimtsi and Ohrimenko, 2014], this could simply be done with the help

of S2. However, we need a protocol RecoverEnc to securely remove one layer of encryption.

4.3.4 No-Random-Access (NRA) Algorithm

The NRA algorithm [Fagin et al., 2001] finds the top-k answers by exploiting only sorted

accesses to the relation R. The input to the NRA algorithm is a set of sorted lists S, each

ranks the “same” set of objects based on different attributes. The output is a ranked list

of these objects ordered on the aggregate input scores. We opted to use this algorithm

60

Notation Definition

n Size of the relation R, i.e. |R| = n

M Total number of attributes in R

m Total number of attributes for the query q

Enc(m) Paillier encryption of m

Dec(c) Paillier decryption of c

E2
(
m
)

Damg̊ard-Jurik (DJ) encryption of m

Enc(x) ∼ Enc(y) Denotes x = y, i.e. Dec(Enc(x)) = Dec(Enc(y))

EHL(o) Encrypted Hash List of the object o

EHL+(o) Efficient Encrypted Hash List of the object o

	, � EHL and EHL+ operations, see Section 4.5.

Idi The data item in the ith sorted list Li at depth d

E(Idi) Encrypted data item Idi
FW (o) Cost function in the query token

Bd(o) The best score (upper bound) of o at depth d

W d(o) The worst score (lower bound) of o at depth d

Table 4.2: Notation Summarization

Algorithm 6: NRA Algorithm [Fagin et al., 2001]

1 def NRA
(
L1, ..., LM

)
:

2 Do sorted access in parallel to each of the M sorted lists Li. At each depth d:
repeat

3 Maintain the bottom values xd1, x
d
2, ..., x

d
M encountered in the lists;

4 For every object oi compute a lower bound W d(oi) and upper bound Bd(oi);

5 Let T dk , the current top k list, contain the k objects with the largest W d(·)
values seen so far (and their grades), and let Md

k be the kth largest lower
bound value, W d(·) in T dk ;

6 Halt and return T dk when at least k distinct objects have been seen (so that

in particular T dk contains k objects) and when Bd(ok) ≤Md
k for all ok /∈ T dk ,

i.e the upper bound for every object who’s not in T dk is no greater than Md
k .

Otherwise, go to next depth;

7 until;

because it provides a scheme that leaks minimal information to the cloud server (since

during query processing there is no need to access intermediate objects). We assume that

each column (attribute) is sorted independently to create a set of sorted lists S. The set of

sorted lists is equivalent to the original relation, but the objects in each list L are sorted in

ascending order according to their local score (attribute value). After sorting, R contains

61

M sorted lists, denoted as S = {L1, L2, . . . , LM}. Each sorted list consists of n data items,

denoted as Li = {I1i , I2i , . . . , Ini }. Each data item is a object/value pair Idi = (odi , x
d
i),

where odi and xdi are the object id and local score at the depth d (when d objects have

been accessed under sorted access in each list) in the ith sorted list respectively. Since it

produces the top-k answers using bounds computed over their exact scores, NRA may not

report the exact object scores. The score lower bound of some object o, W (o), is obtained

by applying the ranking function on o’s known scores and the minimum possible values

of o’s unknown scores. The score upper bound of o, B(o), is obtained by applying the

ranking function on o’s known scores and the maximum possible values of o’s unknown

scores, which are the same as the last seen scores in the corresponding ranked lists. The

algorithm reports a top-k object even if its score is not precisely known. Specifically, if the

score lower bound of an object o is not below the score upper bounds of all other objects

(including unseen objects), then o can be safely reported as the next top-k object. We give

the details of the NRA in Algorithm 6.

4.4 Scheme Overview

In this section, we give an overview of our scheme. The two non-colluding semi-honest

cloud servers are denoted by S1 and S2. Let SecTopK = (Enc,Token,SecQuery) be the

secure top-k query scheme containing three algorithms Enc, Token and SecQuery. Enc(R)

is the encryption algorithm that takes relation R as an input and outputs the encrypted

relation ER. The idea of Enc is to encrypt and permute the set of sorted lists for R, so that

the server can execute a variation of the NRA algorithm using only sequential accesses to

the encrypted data. To do this encryption, we design a new encrypted data structure for

the objects, called EHL. The Token algorithm takes a query q and produces a token for the

query. The token serves as a trapdoor so that the cloud knows which list to access. Finally,

SecQuery is the query processing algorithm that takes the token and securely computes top-

k results based on the token. As mentioned earlier, our encryption scheme takes advantage

62

of the NRA top-k algorithm. In particular, S1 scans the encrypted data depth by depth

for each targeted list, maintaining a list of encrypted top-k object ids per depth until there

are k encrypted object ids that satisfy the NRA halting condition. During this process,

S1 and S2 learn nothing about the underlying scores and objects. At the end of the

protocol, the object ids can be reported to the client. As we discuss next, there are two

options after that. Either the encrypted records are retrieved and returned to the client,

or the client retrieves the records using oblivious RAM [Goldreich and Ostrovsky, 1996]

that does not even reveal the location of the actual encrypted records. In the first case,

the server can get some additional information by observing the access patterns, i.e., the

encrypted results of different queries. However, there are schemes that address this access

leakage [Islam et al., 2012, Kuzu et al., 2014] and is beyond the scope of this paper. The

second approach may be more expensive but is completely secure.

In the following sections, we first discuss the new encrypted data structures EHL and

EHL+. Then, we present the three algorithms Enc, Token and SecQuery in more details.

4.5 Encrypted Hash List (EHL)

In this paper, we propose a new data structure called encrypted hash list (EHL) to encrypt

each object. The main purpose of this structure is to allow the cloud to homomorphically

compute equality between the objects, whereas it is computationally hard for the server

to figure out what the objects are. Intuitively, the idea is that given an object o we use

s Pseudo-Random Function (PRF) to hash the object into a binary list of length H and

then encrypt all the bits in the list to generate EHL. In partilar, we use the secure key-

hash functions HMAC as the PRFs. Let EHL(o) be the encrypted list of an object o and let

EHL(o)[i] denote the ith encryption in the list. In particular, we initialize an empty list EHL

of length H and fill all the entries with 0. First, we generate s secure keys κ1, ..., κs. The

object o is hashed to a list as follows: 1) Set EHL[HMAC(ki, o) mod H] = 1 for 1 ≤ i ≤ s.

2) Encrypt each bit using Paillier encryption: for 0 ≤ j ≤ H − 1, Enc(EHL(o)[j]). Fig. 4.2

63

shows how we obtain EHL(o) for the object o.

Secret Keys: k1, …, kS

…

…

EHL(o):

HMAC (k1,o) HMAC (k2,o) HMAC (k S , o)

HMAC (k 1,o)%H HMAC (k 2,o)%H HMAC (k S , o)%H

E(0) E(1) E(0) E(0) E(1) … ... E(1)

0 1 2 H-1… ...

o

Figure 4.2: Encrypted Hash List for the object o.

Lemma 4.5.1. Given two objects o1 and o2, their EHL(o1) and EHL(o2) are computation-

ally indistinguishable.

It is obvious to see that Lemma 4.5.1 holds since the bits in the EHL are encrypted by

the semantically secure Paillier encryption scheme. Given EHL(x) and EHL(y), we define

the randomized operation 	 between EHL(x) and EHL(y) as follows:

EHL(x)	 EHL(y)
def
=

H−1∏
i=0

(
EHL(x)[i] · EHL(y)[i]−1

)ri (4.1)

where each ri is some random value in ZN .

Lemma 4.5.2. Let Enc(b) = EHL(x) 	 EHL(y). Then the plaintext b = 0 if x = y

(two objects are the same), otherwise b is uniformly distributed in the group ZN with high

probability.

Proof Sketch: Let Enc(xi) = EHL(x)[i] and Enc(yi) = EHL(y)[i]. If x = y, i.e. they are

the same objects, then for all i ∈ [0, H − 1], xi = yi. Therefore,

H−1∏
i=0

(EHL(x)[i] · EHL(y)[i]−1)ri = E
(H−1∑
i=0

(ri(xi − yi))
)

= Enc(0)

In the case of x 6= y, it must be true, with high probability, that there exists some i ∈

[0, H − 1] such that Enc(xi) � Enc(yi), i.e. the underlying bit at location i in EHL(x) is

64

different from the bit in EHL(y). Suppose EHL(x)[i] = Enc(1) and EHL(y)[i] = Enc(0).

Therefore, the following holds:

(
EHL(x)[i] · EHL(y)[i]−1

)ri = Enc(ri(1− 0)) = Enc(ri)

Hence, based on the definition 	, it follows that b becomes random value uniformly dis-

tributed in the group ZN . �

It is worth noting that one can also use BGN cryptosystem for the similar operations

above, as the BGN scheme can homomorphically evaluate quadratic functions (see Chap-

ter 2).

False Positive Rate. Note that the construction is indeed a probabilistically encrypted

Bloom Filter except that we use one list for each object and encrypt each bit in the list.

The construction of EHL may report some false positive results for its 	 operation, i.e.

Enc(0) ← EHL(x) 	 EHL(y) when x 6= y. This is due to the fact that x and y may be

hashed to exactly the same locations using s many HMACs. Therefore, it is easy to see that

the false positive rate (FPR) is the same as the FPR of the Bloom Filter, where we can

choose the number of hash functions HMAC s to be H
n ln 2 to minimize the false positive rate

to be (1 − (1 − 1
H

sn
))s ≈ (1 − e−sn/H)s ≈ 0.62H/n. To reduce the false positive rate, we

can increase the length of the list H. However, this will increase the cost of the structure

both in terms of space overhead and number of operations for the randomization operation

which is O(H). In the next subsection, we introduce a more compact and space-efficient

encrypted data structure EHL+.

EHL+. We now present a computation- and space-efficient encrypted hash list EHL+.

The idea of the efficient EHL+ is to first ‘securely hash’ the object o to a larger space

s times and only encrypt those hash values. Therefore, for the operation 	, we only

homomorphically subtract those hashed values. The complexity now reduces to O(s) as

opposed to O(H), where s is the number of the secure hash functions used. We show that

65

one can get negligible false positive rate even using a very small s. To create an EHL+(o)

for an object o, we first generate s secure keys k1, ..., ks, then initialize a list EHL+ of size s.

We first compute oi ← HMAC(ki, o) mod N for 1 ≤ i ≤ s. This step maps o to an element in

the group ZN , i.e. the message space for Paillier encryption. Then set EHL+[i]← Enc(oi)

for 1 ≤ i ≤ s. The operation 	 between EHL+(x) and EHL+(y) are similar defined as in

Equation(4.1), i.e. EHL+(x)	EHL+(y)
def
=
∏s−1
i=0

(
EHL(x)[i] ·EHL(y)[i]−1

)ri , where each ri

is some randomly generated value in ZN . Similarly, EHL+ has the same properties as EHL.

Let Enc(b) ← EHL+(x) 	 EHL+(y), b = 0 if x = y and otherwise b is random in ZN with

high probability.

We now analyze the false positive rate (FPR) for EHL+. The false positive answer occurs

when x 6= y and Enc(0)← EHL+(x)	 EHL+(y). That is HMAC(ki, x)%N = HMAC(ki, y)%N

for each i ∈ [1, s]. Assuming HMAC is a Pseudo-Random Function, the probability of this

happens is at most 1
Ns . Taking the union bound gives that the FPR is at most

(
n
2

)
1
Ns ≤ n2

Ns .

Notice that N ≈ 2λ is large number as N is the product of two large primes p and q in

the Paillier encryption and λ is the security parameter. For instance, if we set N to be a

256 bit number (128-bit primes in Paillier) and set s = 4 or 5, then the FPR is negligible

even for millions of records. In addition, the size of the EHL+ is much smaller than EHL

as it stores only s encryptions. In the following section, we simply say EHL to denote the

encrypted hash list using the EHL+ structure.

Notation. We introduce some notation that we use in our construction. Let x =

(x1, . . . , xs) ∈ ZsN and let the encryption Enc(x) denotes the concatenation of the en-

cryptions Enc(x1)...Enc(xs). Also, we denote by � the block-wise multiplication between

Enc(x) and EHL(y); that is, c ← Enc(x) � EHL(y), where ci ← Enc(xi) · EHL(y)[i] for

i ∈ [1, s].

66

4.6 Database Encryption

We describe the database encryption procedure Enc in this section. Given a relation R

with M attributes, the data owner first encrypts the relation using Algorithm 7.

Algorithm 7: Enc(R): Relation encryption

1 Given the relation R, sort each Li based on the attribute’s value for 1 ≤ i ≤M ;
2 Generate a public/secret key pkp, skp for the Paillier encryption scheme and random

secret keys κ1, . . . , κs for EHL;
3 Do sorted access in parallel to each of the M sorted lists Li;

4 foreach data item Ii = 〈odi , xdi 〉 ∈ Li do
5 foreach depth d do
6 Compute EHL(odi) using the keys κ1, . . . , κs;

7 Compute Encpkp(x
d
i) using pkp;

8 Store the item E(Idi) = 〈EHL(odi),Encpkp(x
d
i 〉) at depth d;

9 Generate a secret key K for a pseudorandom permutation P and permute all the
list based on g. For 1 ≤ i ≤M , permute Li as LPK(i);

10 The data owner securely uploads the keys pkp, skp to the S2, and only pkp to S1;

11 Finally, each permuted list contains a list of encrypted item of the form

E(Id) = 〈EHL(od),Encpkp(x
d)〉. Output all lists of encrypted items as the encrypted

relation as ER;

In ER each data item Idi = (odi , x
d
i) at depth d in the sorted list Li is encrypted as

E(Idi) = 〈EHL(odi),Encpkp(x
d
i)〉. As all the score has been encrypted under the public key

pkp, for the rest of the paper, we simply use Enc(x) to denote the encryption Encpkp(x)

under the public key pkp. Besides the size of the database and M , the encrypted ER doesn’t

reveal anything. In Theorem 4.6.1, we demonstrate this by showing that two encrypted

databases are indistinguishable if they have the same size and number of attributes. We

denote |R| by the size of a relation R.

Theorem 4.6.1. Given two relations R1 and R2 with |R1| = |R2| and same number of

attributes. The encrypted ER1 and ER2 output by the algorithm Enc are indistinguishable.

The proof is straight forward as it’s easy to see that the theorem holds based on

Lemma 4.5.1 and Paillier encryption scheme.

67

4.7 Query Token

Consider the SQL-like query q = SELECT * FROM ER ORDERED BY FW (·) STOP BY k, where

FW (·) is a weighted linear combination of all attributes. In this paper, to simplify our

presentation of the protocol, we consider binary weights and therefore the scoring function

is just a sum of the values of a subset of attributes. However, notice that for non {0, 1}

weights the client should provide these weights to the server and the server can simply adapt

the same techniques by using the scalar multiplication property of the Paillier encryption

before it performs the rest of the protocol which we discuss next. The Token algorithm

is quite simple and works as follows: the client specifies the scoring attribute set M of

size m, i.e. |M| = m ≤ M , then requests the key K from the data owner, where K

is the key corresponds the Pseudo Random Permutation P . Then the client computes

the PK(i) for each i ∈ M and sends the following query token to the cloud server S1:

tk = SELECT * FROM ER ORDERED BY {PK(i)}i∈M STOP BY k.

4.8 Top-k Query Processing

As mentioned, our query processing protocol is based on the NRA algorithm. However,

the technical difficulty is to execute the algorithm on the encrypted data while S1 does

not learn any object id or any score and attribute value of the data. We incorporate sev-

eral cryptographic protocols to achieve this. Our query processing uses two state-of-the-

art efficient and secure protocols: EncSort introduced by [Baldimtsi and Ohrimenko, 2014]

and EncCompare introduced by [Bost et al., 2015] as building blocks. We skip the de-

tailed description of these two protocols since they are not the focus of this paper.

Here we only describe their functionalities: 1). EncSort: S1 has a list of encrypted

keyed-value pairs (Enc(key1),Enc(a1))...(Enc(keym),Enc(am)) and a public key pk, and

S2 has the secret key sk. At the end of the protocol, S1 obtains a list new encryp-

tions (Enc(key′1),Enc(a′1))...(Enc(key′m),Enc(a′m)), where the key/value list is sorted based

on the order a′1 ≤ a′2... ≤ a′m and the set {(key1, a1), ..., (keym, am)} is the same as

68

{(key′1, a′1), ..., (key′m, a′m)}. 2). EncCompare(Enc(a),Enc(b)): S1 has a public key pk and

two encrypted values Enc(a),Enc(b), while S2 has the secret key sk. At the end of the pro-

tocol, S1 obtains the bit f such that f := (a ≤ b). Several protocols have been proposed

for the functionality above. We choose the one from [Bost et al., 2015] mainly because it

is efficient and perfectly suits our requirements.

4.8.1 Query Processing: SecQuery

We first give the overall description of the top-k query processing SecQuery at a high level.

Then in Chapter 4.8.2, we describe in details the secure sub-routines that we use in the

query processing: SecWorst, SecBest, SecDedup, and SecUpdate.

As mentioned, SecQuery makes use of the NRA algorithm but is different from the

original NRA, because SecQuery cannot maintain the global worst/best scores in plaintext.

Instead, SecQuery has to run secure protocols depth by depth and homomorphically com-

pute the worst/best scores based on the items at each depth. It then has to update the

complete list of encrypted items seen so far with their global worst/best scores. At the

end, server S1 reports k encrypted objects (or object ids) without learning any object or

its scores.

Notations. In the encrypted database, we denote each encrypted item by E(I) =

〈EHL(o),Enc(x)〉, where I is the item with object id o and score x. During the query

processing, the server S1 needs to maintain the encrypted item with its current best/worst

scores, and we denote by E(I) = (EHL(o),Enc(W),Enc(B)) the encrypted score item I

with object id o with best score B and worst score W .

In particular, upon receiving the query token tk = SELECT * FROM ER ORDERED BY

{PK(i)}i∈M STOP BY k, the cloud server S1 begins to process the query. The token tk con-

tains {PK(i)}i∈M which informs S1 to perform the sequential access to the lists {LPK(i)}i∈M.

By maintaining an encrypted list T , which includes items with their encrypted global best

and worst scores, S1 updates the list T depth by depth. Let T d be the state of the en-

69

Algorithm 8: Top-k Query Processing: SecQuery

1 S1 receives Token from the client;
2 Parses the Token and let Li = LPK(j) for j ∈ M;

3 foreach depth d at each list do
4 foreach E(Idi) = 〈EHL(odi),Enc(x

d
i)〉 ∈ Li do

/* Compute the worst score for object odi at current depth d */

5 Compute Enc(W d
i))← SecWorst(E(Idi), H, pkp, skp), where H =

{E(Idj)}j∈m,i 6=j ;
/* Compute the best score for object odi at current depth d */

6 Compute Enc(Bd
i)← SecBest(E(Idi), {j}j 6=i, pkp, skp);

/* gets encrypted list Γd without duplicated objects */

7 Run Γd ← SecDedup({E(Idi)}, pkp, skp) with S2 and get the local encrypted list

Γd;

8 Run T d ← SecUpdate(T d−1,Γd, pkp, skp) with S2 and get T d;

9 If |T d| < k elements, go to the next depth. Otherwise, run EncSort(T d) by

sorting on Enc(Wi), get first k items as T dk ;
10 Let the kth and the (k + 1)th item be E(I ′k) and E(I ′k+1), S1 then runs

f ← EncCompare(E(W ′k), E(B′k+1)) with S2, where E(W ′k) is the worst score for

E(I ′k), and E(B′k+1) is the best score for E(I ′k+1) in T d;

11 if f = 0 then
12 Halt and return the encrypted first k item in T dk

crypted list T after depth d. At depth d, S1 first homomorphically computes the local

encrypted worst/best scores for each item appearing at this depth by running SecWorst

and SecBest.

In SecWorst, S1 takes the input of the current encrypted item E(Idi) =

〈EHL(odi),Enc(x
d
i)〉 and all of the encrypted items in other lists H at current depth, i.e.,

H = {E(Idj)}j 6=i,j∈M. S1 runs the protocol SecWorst with S2, and obtains the encrypted

worst score for the object odi . Similarly, in the protocol SecBest, S1 takes the input of

the current encrypted item E(Idi) = 〈EHL(odi),Enc(x
d
i)〉 and the list pointers {j}j 6=i that

indicates all of the encrypted item seen so far. S1 runs the protocol SecBest with S2,

and obtains the encrypted worst score for the object odi . Then S1 securely replaces the

duplicated encrypted objects with large encrypted worst scores Z by running SecDedup

with S2. In the SecDedup protocol, S1 inputs the current encrypted items, {E(Idi)}, seen

70

so far. After the execution of the protocol, S1 gets list of encrypted items Γd such that

there are no duplicated objects. Next, S1 updates the encrypted global list from state

T d−1 to state T d by applying SecUpdate. After that, S1 utilizes EncSort to sort the distinct

encrypted objects with their scores in T d to obtain the first k encrypted objects which are

essentially the top-k objects based on their worst scores so far. The protocol halts if at

some depth, the encrypted best score of the (k+1)-th object, Enc(Bk+1), is less than the

k-th object’s encrypted worst score Enc(Wk). This can be checked by calling the protocol

EncCompare(Enc(Wk),Enc(Bk+1)). Followed by underlying NRA algorithm, it is easy to

see that S1 can correctly reports the encrypted top-k objects. We describe the detailed

query processing in Algorithm 8.

4.8.2 Building Blocks

In this section, we present the detailed description of the protocols SecWorst, SecBest,

SecDedup, and SecUpdate.

4.8.2.1 Secure Worst Score

At each depth, for each encrypted data item, server S1 should obtain the encryption

Enc(W), which is the worst score based on the items at the current depth only. Note

that this is different than the normal NRA algorithm as it computes the global worst pos-

sible score for each encountered objects until the current depth. We formally describe the

protocol setup below:

Protocol 4.8.1. Server S1 has the input E(I) = 〈EHL(o),Enc(x)〉, a set of encrypted

items H, i.e. H = {E(Ii)}i=[|H|], where E(Ii) = 〈EHL(oi),Enc(xi)〉, and the public key

pkp. Server S2’s inputs are pkp and skp. SecWorst securely computes the encrypted worst

ranking score based on L, i.e., S1 outputs Enc(W (o)), where W (o) is the worst score based

on the list H.

The technical challenge here is to homomorphically evaluate the encrypted score only

71

based on the objects’ equality relation. That is, if the object is the same as another o from

L, then we add the score to Enc(W (o)), otherwise, we don’t. However, we want to prevent

the servers from knowing the relations between the objects at any depth. We overcome

this problem using the protocol SecWorst(E(I), L) between the two servers S1 and S2. We

present the detailed protocol description of SecWorst in Algorithm 9.

Algorithm 9: SecWorst
(
E(I), H = {E(Ii)}i∈[|H|], pkp, skp

)
: Worst Score Protocol

S1’s input: E(I), H = {E(Ij)}, pkp
S2’s input: pkp, skp

1 Server S1:
2 Let |H| = m. Generate a random permutation π : [m]→ [m];
3 For the set of encrypted items H = {E(Ij)}, permute each E(Ij) in H as

E(Iπ(j)) = EHL(oπ(j)),Enc(xπ(j)).;

4 for each permuted item in E(Iπ(j)) do

5 compute Enc(bj)← EHL(o)	 EHL(oπ(j)), send Enc(bj) to S2
6 Receive E2

(
ti
)

from S2 and evaluate:

E2
(
Enc(x′i)

)
:= E2

(
ti
)Enc(xi) · (E2

(
1
)
E2
(
ti
)−1)Enc(0)

;

7 Run Enc(x′i)← RecoverEnc(E2
(
Enc(x′i)

)
, pkp, skp) with S2;

8 Set the worst score Enc(W)← (
∏m
i=1 Enc(x′i)) ;

9 Output Enc(W).

10 Server S2:
11 for each Enc(bi) received from S1 do
12 Decrypt to get bi, set ti ← (bi = 0 ? 1 : 0);
13 Send E2

(
ti
)

to S1.

Intuitively, the idea of SecWorst is that S1 first generates a random permutation π and

permutes the list of items in L. Then, it computes the Enc(bi) between E(I) and each

permuted E(Iπ(i)), and sends Enc(bi) to S2. The random permutation prevents S2 from

knowing the pair-wise relations between o and the rest of the objects oi’s. Then S2 sends

E2
(
ti
)

to S1 (line 13). Based on Lemma 4.5.2, ti = 1 if two objects are the same, otherwise

ti = 0. S1 then computes E2
(
Enc(x′i)

)
← E2

(
ti
)Enc(xi) ·

(
E2
(
1
)
E2
(
ti
)−1)Enc(0)

. Based on the

properties of DJ Encryption,

E2
(
ti
)Enc(xi) · (E2

(
1
)
E2
(
ti
)−1)Enc(0)

= E2
(
ti · Enc(xi) + (1− ti) · Enc(0)

)
= E2

(
Enc(x′i)

)

72

Therefore, it follows that x′i = 0 if ti = 0, otherwise x′i = xi. S1 then runs

RecoverEnc(E2
(
Enc(x′i)

)
, pkp, skp) (describe in Algorithm 10) to get Enc(x′i). Note that

the protocol RecoverEnc is also used in other protocols. Finally, S1 evaluates the following

equation: Enc(W (o)) ←
∏m
i=1 Enc(x′i). S1 can correctly evaluate the worst score, because

that, when ti = 0, the object oi is not the same as o, otherwise, ti = 1. The following

formula gives the correct computation of the worst score:

m∏
i=1

Enc(x′i) = Enc(
m∑
i=1

x′i), where x′i =

xi if oi = o

0 otherwise

Algorithm 10: RecoverEnc(E2
(
Enc(c)

)
, pkp, skp) Recover Encryption

S1’s input: E2
(
Enc(c)

)
, pkp

S2’s input: pkp, skp
1 Server S1:

2 Generate r
$←− ZN , compute and send E2

(
Enc(c+ r)

)
← E2

(
Enc(c)

)Enc(r)
to S2.

3 Server S2:
4 Decrypt as Enc(c+ r) and send back to S1

5 Server S1:
6 Receive Enc(c+ r) and compute: Enc(c) = Enc(c+ r) · Enc(r)−1;
7 Output Enc(c).

Note that nothing has been leaked to S1 at the end of the protocol. However, there is

some leakage function revealed to S2 at current depth, which we will describe it in detail

in later section. However, even by learning this pattern, S2 has still no idea on which

particular item is the same as the other at this depth since S1 randomly permutes the item

before sending to S2 and everything has been encrypted. Moreover, no information has

been leaked on the objects’ scores.

73

4.8.2.2 Secure Best Score

The secure computation for the best score is different from computing the worst score.

Below we describe the protocol SecBest between S1 and S2:

Protocol 4.8.2. Server S1 takes the inputs of the public key pkp, E(I) = 〈EHL(o),Enc(x)〉

for the object o in list Li, and a set of pointers P = {j}i 6=j,j∈M to the list in ER. Server

S2’s inputs are pkp, skp. The protocol SecBest securely computes the encrypted best score

at the current depth d, i.e., S1 finally outputs Enc(B(o)), where B(o) is the best score for

the o at current depth.

Algorithm 11: SecBest
(
E(Ii),P, pkp, skp

)
Secure Best Score.

S1’s input: E(Ii) in list Li, P = {j}i 6=j , pkp
S2’s input: pkp, skp

1 Server S1:
2 foreach list Li do
3 maintain Enc(xdi) for Li, where Enc(xdi) is the encrypted score at depth d.

4 Generate a random permutation π : [l]→ [l];
5 Permute each Li as Lπ(i) = EHL(oπ(i)),Enc(xπ(i));

6 foreach permuted E(Iπ(i)) do

7 compute Enc(bi)← EHL(o)	 EHL(oi)

8 send Enc(bi) to S2 receive E2
(
ti
)

and compute:

E2
(
Enc(x′i)

)
:= E2

(
ti
)Enc(xi) · (E2

(
1
)
E2
(
ti
)−1)Enc(0)

;

9 run Enc(x′i)← RecoverEnc(E2
(
Enc(x′i)

)
, pkp, skp) with S2;

10 compute E2
(
Enc(x′di)

)
←
(
1−
∏d
i=1 E

2
(
ti
))Enc(xdi);

11 run Enc(x′di)←RecoverEnc(E2
(
Enc(x′di)

)
, pkp, skp) with S2;

12 set Enc(Bi)← Enc(x′di) · (
∏l
i=1 Enc(x′i));

13 compute Enc(B)←
∏m
i=1 Enc(Bi) and output Enc(B);

14 Server S2:
15 for Enc(bi) received from S1 do
16 Decrypt to get bi. If bi = 0, set ti = 1, otherwise, set ti = 0;
17 Send E2

(
ti
)

to S1.

At depth d, let E(I) be the encrypted item in the list Li, then its best score up to

this depth is based on the whether this item has appeared in other lists {Lj}j 6=i,j∈M. The

74

detailed description for SecBest is described in Algorithm 11.

In SecBest, S1 has to scan the encrypted items in the other lists to securely evaluate

the current best score for the encrypted E(I). The last seen encrypted item in each sorted

list contains the encryption of the best possible values (or bottom scores). If the same

object o appears in the previous depth then homomorphically adds the object’s score to

the encrypted best score Enc(B), otherwise adds the bottom scores seen so far to Enc(B).

In particular, S1 can homomorphically evaluate (at line 9): E2
(
x′i
)

= E2
(
ti · Enc(xi) + (1−

ti) · Enc(0)
)
. That is, if ti = 0 which means item I appeared in the previous depth, x′i will

be assigned the corresponding score xi, otherwise, x′i = 0. Similarly, S1 homomorphically

evaluates the following: Enc(x′di)) = Enc((1−
∑d

i ti) · xdi). If the item I does not appear in

the previous depth, then (1 −
∑d

i ti) = 1 since each ti = 0, therefore, x′di will be assigned

to the bottom value xdi . Finally, S1 homomorphically add up all the encrypted scores and

get the encrypted best scores (line 12).

4.8.2.3 Secure Deduplication

At each depth, some of the objects might be repeatedly computed since the same objects

may appear in different sorted list at the same depth. S1 cannot identify duplicates since

the items and their scores are probabilistically encrypted. We now present a protocol that

deduplicates the encrypted objects in the following.

Protocol 4.8.3. Let the E(I) be an encrypted scored item such that E(I) =

(EHL(o),Enc(W),Enc(B)), i.e. the E(I) is associated with EHL(oi), its encrypted worst

and best score Enc(Wi), Enc(Bi). Assuming that S1’s inputs are the public key pkp, a set

of encrypted scored items Q = {E(Ii)}i∈[|Q|]}. Server S2 has the public key pkp and the

secret key skp. The execution of the protocol SecDedup between S1 and S2 enables S1 to get

a new list of encrypted distinct objects and their scores, that is, at the end of the protocol,

S1 outputs a new list of items E(I ′1), ...,E(I ′l), and there does not exist i, j ∈ [l] with i 6= j

such that oi = oj. Moreover, the new encrypted list should not affect the final top-k results.

75

Algorithm 12: SecDedup
(
Q = {E(Ii)}i∈[|Q|], pkp, skp

)
: De-duplication Protocol

S1’s input: E(I1), . . . ,E(Il), pkp
S2’s input: pkp, skp
S1’s ouput: Output E(I ′1) . . .E(I ′l) without duplicated objects

1 Server S1:
2 Let |Q| = l;
3 for i = 1 . . . l do
4 for j = i+ 1, . . . , l do
5 Compute Enc(bij)←

(
EHL(oi)	 EHL(oj)

)
;

6 Set the symmetric matrix B such that Bij = Enc(bij);

7 S1 generate it own public/private key (pk′, sk′);
8 for each E(Ii) do
9 Generate random αi ∈ ZkN , βi, γi ∈ ZN ;

10 Compute E(Ĩi) = (EHL(õi),Enc(W̃i),Enc(B̃i))← Rand(E(Ii),αi, βi, γi);
11 Compute Hi = Encpk′(αi)||Encpk′(βi)||Encpk′(γi) using pk′;

12 Generate a random permutation π : [l]→ [l];
13 Permute π(B), i.e. permute Bπ(i)π(j) for each Bij ;

14 Permute E(Ĩπ(i)) and Hπ(i) for i ∈ [1, l];

15 Send π(B), {E(Ĩπ(i))}li=1, {Hπ(i)}li=1, pk′ to S2;

16 Server S2:

17 Receive π(B), {E(Ĩπ(i))}li=1, {Hπ(i)}li=1, and pk′ from S1;
18 for upper triangle of π(B) do
19 decrypt bπ(i)π(j) := Decskp(Bπ(i)π(j));
20 if bπ(i)π(j) = 0 then

21 remove E(Ĩπ(i)), Hπ(i);
/* Deduplicate items */

22 randomly generate oi, and αi ∈ ZkN , βi, γi ∈ ZN ;
23 set Wi = Z + βi and BI = Z + γi, where Z = N − 1 ;
24 Set E(I ′π(i)) := (EHL(o)� Enc(αi),Enc(Wi),Enc(Bi));

25 Compute H ′π(i) ← Encpk′(αi)||Encpk′(βi)||Encpk′(γi) using pk′;

26 for remaining Enc(Ĩπ(j)), Hπ(j) do
27 generate random α′i ∈ ZkN , β′i, and γ′i ∈ ZN ;

28 Enc(I ′i) = (EHL(o′i),Enc(W ′i),Enc(B′i))← Rand(Enc(Ĩπ(j)),α
′
i, β
′
i, γ
′
i);

29 Hπ(j) = Encpk′(απ(j)),Encpk′(βπ(j)),Encpk′(γπ(j));
30 set H ′i = Encpk′(απ(j)) ·Encpk′(α′i)||Encpk′(βπ(j)) ·Encpk′(β′i)||Encpk′(γπ(j)) ·Encpk′(γ′i);
31 Generate a random permutation π′ : [l]→ [l]. Permute new list E(Iπ′(i)) and H ′π′(i),

then send them back to S1;

32 Server S1:
33 Decrypt each H ′π′(i) as α′π′(i), β

′
π′(i), γ

′
π′(i) using sk′;

34 foreach E(I ′π′(i)) = EHL(o′π′(i)),Enc(W ′π′(i)),Enc(B′π′(i)) do

35 Run and get

Enc(Îi) = (EHL(ôi),Enc(Ŵi),Enc(B̂i))← Rand(Enc(I ′π′(i)),−α
′
π′(i),−β

′
π′(i),−γ

′
π′(i));

36 Output the encrypted list E(Î1)...E(Îl);

76

Algorithm 13: Rand
(
E(I),α, β, γ

)
: Blinding the randomness

1 Let E(I) = (EHL(o),Enc(B),Enc(W));
2 Compute E(α),Enc(β),Enc(γ);
3 Compute EHL(o)← EHL(o)� Enc(α), Enc(W)← Enc(W) · Enc(β), and
Enc(B)← Enc(B) · Enc(γ);

4 Output E(I ′) = (EHL(o),Enc(W),Enc(B));

Algorithm 14: A Secure Update Protocol SecUpdate
(
T d−1,Γd, pkp, skp

)
S1’s input: pkp, T d−1, Γd (encrypted list without duplicated objects)
S2’s input: pkp, skp

1 Server S1:
2 Permute E(Ii) ∈ Γd as E(Iπ(i)) based on random permutation π;

3 foreach each permute E(Iπ(i)) do

4 foreach each E(Ij) ∈ T d−1 do
5 Let Enc(Wi), Enc(Bi) be encrypted worst/best score in E(Iπ(i)) , and let

Enc(Wj),Enc(Bj) be encrypted worst/best score in E(Ij);
6 Compute Enc(bij)← EHL(Iπ(i))	 EHL(Ij), send Enc(bij) to S2 and get

E2
(
tij
)
;

7 Compute E2
(
Enc(W ′i)

)
← E2

(
tij
)Enc(Wi),

Enc(W ′i)← RecoverEnc(E2
(
Enc(W ′i)

)
, pkp, skp),

Enc(W ′j)← Enc(Wj)Enc(W
′
i);

8 Compute E2
(
Enc(B′j)

)
← E2

(
tij
)Enc(Bi) (E2

(
1
)
E2
(
tij
)−1)Enc(Bj)

Enc(B′j)← RecoverEnc(E2
(
Enc(B′j)

)
, pkp, skp);

9 Set Enc(W ′j),Enc(B
′
j) as the updated score for Enc(Ij);

10 compute E2
(
Enc(W ′i)

)
← E2

(
tij
)Enc(Wi)(E2

(
1
)
E2
(
tij
)−1)Enc(W ′j), run

Enc(W ′i)← RecoverEnc(E2
(
Enc(W ′i)

)
, pkp, skp) and maintain Enc(W ′i) for

each E(Iπ(i))

11 Update the encrypted worst score to Enc(W ′i) for each Enc(Iπ(i)) and keep

the original best score Enc(Bi);

12 Append the updated Enc(Iπ(i)) to T d−1 and get T d;

13 S1 and S2 execute SecDedup(T d, pkp, skp) and get the updated list T d;

14 S1 finally outputs T d.

15 Server S2:
16 foreach Enc(bi) received from S1 do
17 Decrypt to get bi;
18 If bi = 0, set ti = 1, otherwise, set ti = 0. Send E2

(
ti
)

to S1.

77

Intuitively, at a high level, SecDedup let S2 obliviously find the duplicated objects and

its scores, and replaces the object id with a random value and its score with a large enough

value Z = N − 1 ∈ ZN (the largest value in the message space) such that, after sorting the

worst scores, it will definitely not appear in the top-k list.

Figure 4.3: Overview of the SecDedup protocol

Figure 4.3 gives the overview of our approach. The technical challenge here is to allow

S2 to find the duplicated objects without letting S1 know which objects have been changed.

The idea is to let the server S1 send a encrypted permuted matrix B, which describes the

pairwise equality relations between the objects in the list. S1 then use the same permutation

to permute the list of blinded encrypted items before sending it to S2. This prevents S2

from knowing the original data. For the duplicated objects, S2 replace the scores with a

large enough encrypted worst score. On the other hand, after deduplication, S2 also has

to blind the data items as well to prevent S1 from knowing which items are the duplicated

ones. S1 finally gets the encrypted items without duplication. Algorithm 12 describes the

detailed protocol.

We briefly discuss the execution of the protocol as follows: S1 first fill the entry Bij

by computing EHL(oi) 	 EHL(oj). Note that, since the encrypted B is symmetric matrix

indicating the equality relations for the list, therefore, S1 only need fill the upper triangular

for B. and lower triangular can be filled by the fact that Bij = Bji. In addition, S1 blinds

78

the encrypted item Enc(Ii) by homomorphically adding random values and get Enc(Ĩi).

This prevents S2 from knowing the values of the item since S2 has the secret key. Moreover,

S1 encrypts the randomnesses using his own public key pk′ and get Hi. To hide the relation

pattern between the objects in the list, S1 applies a random permutation π to the matrix

Bπ(i)π(j), as well as Enc(Iπ(i)) and Hπ(i). Receiving the ciphertext, S2 only needs to decrypt

the upper triangular of the matrix, S2 only keeps one copy of the Enc(Ĩπ(i)), Hπ(i) and

Enc(Ĩπ(j)), Hπ(j) if bπ(i)π(j) = 0. Without loss of generality, we keep Enc(Ĩπ(j)), Hπ(j) and

replace Enc(Ĩπ(i)), Hπ(i) as line 22-25. For the unchanged item, S2 blinds them using as

well (see line 28-30). It worth noting that the randomnesses added by S2 are to prevent

S1 from discovering which item has been changed or not. S2 also randomly permute the

list as well (line 31). S1 homomorphically recovers the original values by decrypting the

received H ′π′(i) using his sk′ (see line 35). S1 eventually the new permuted list of encrypted

items.

For the duplicated objects, the protocol replaces their object id with a random value,

and its worst score with a large number Z. For the new encrypted items that S2 replaced

(line 22), Enc(Îi) = (EHL(ôi),Enc(Ŵi),Enc(B̂i)), we show in the following that Enc(Ŵi) is

indeed a new encryption of the permuted Enc(Wπ′(π(j))) for some j ∈ [l]. As we can see,

the Enc(Ŵi) is permuted by S2’s random π′, i.e. Enc(Ŵπ′(i)) (see line 31). Hence, it follows

that:

Enc(Ŵπ′(i)) ∼ Enc
(
W ′π′(i) − β

′
π′(i)

)
(4.2)

∼ Enc
(
W ′π′(i) − (βπ′(π(j)) + β′π′(i))

)
(4.3)

∼ Enc
(
W̃π′(π(j)) + βπ′(π(j)) − (βπ′(π(j)) + β′π′(i))

)
(4.4)

∼ Enc
(
Wπ′(π(j))) + βπ′(π(j)) + β′π′(i) − (βπ′(π(j)) + β′π′(i))

)
(4.5)

∼ Enc
(
Wπ′(π(j))

)
(4.6)

In particular, from Algorithm 12, we can see that Equation (4.2) holds due to line 35,

Equation (4.3) holds since line 30 and 33, Equation (4.4) holds due to line 28, and Equa-

tion (4.5) holds because of line 10. On the other hand, for the duplicated items that S1

79

has changed from line 22 to 25, by the homomorphic operations of S1 at line 35, we have

Enc(Ŵπ′(k)) ∼ Enc(W ′π′(k) − β
′
π′(k)) ∼ Enc(Z + β′π′(k) − β

′
π′(k)) ∼ Enc(Z)

Since Z is a very large enough number, this randomly generated objects definitely do not

appear in the top-k list after sorting.

4.8.2.4 Secure Update

At each depth d, we need to update the current list of objects with the latest global

worst/best scores. At a high level, S1 has to update the encrypted list Γd from the state

T d−1 (previous depth) to T d, and appends the new encrypted items at this depth. Let

Γd be the list of encrypted items with the encrypted worst/best scores S1 get at depth d.

Specifically, for each encrypted item E(Ii) ∈ T d−1 and each E(Ij) ∈ Ld at depth d, we

update Ii’s worst score by adding the worst from Ij and replace its best score with Ij ’s

best score if Ii = Ij since the worst score for Ij is the in-depth worst score and best score

for Ij is the most updated best score. If Ii 6= Ij , we then simply append E(Ij) with its

scores to the list. Finally, we get the fresh T d after depth d. We describe the SecUpdate

protocol in Algorithm 14.

4.9 Security Discussion

In this thesis, we do not provide a proof of security for SecTopK = (Enc,Token, SecQuery)

and leave it as future work. In particular, since our non-colluding two-server model is

different than the standard model considered from searchable and structured encryption,

a provable security treatment of our protocol requires new definitions against which to

prove security. Intuitively, however, the security guarantee our protocol should achieve is

that the encrypted database and query processing protocol should reveal no information

about the plaintext database and queries to either server (S1 or S2) beyond some well-

specified and reasonable leakage. It remains an interesting and important open question

80

to mathematically formalize such a notion and prove that our protocol satisfies it.

4.10 Query Optimization

In this section, we present some optimizations that improve the performance of our proto-

col. The optimizations are two-fold: 1) we optimize the efficiency of the protocol SecDedup

at the expense of some additional privacy leakage, and 2) we propose batch processing of

SecDupElim and EncSort to further improve the SecQuery.

4.10.1 Efficient SecDupElim

We now introduce the efficient protocol SecDupElim that provides similar functionality

as SecDedup. Recall that, at each depth, S1 runs SecDedup to deduplicate m encrypted

objects, then after the execution of SecDedup S1 still receives m items but without dupli-

cation, and add these m objects to the list T d when running SecUpdate. Therefore, when

we execute the costly sorting algorithm EncSort the size of list to sort has md elements at

depth d.

The idea for SecDupElim is that instead of keeping the same number encrypted items

m, SecDupElim eliminates the duplicated objects. In this way, the number of encrypted

objects gets reduced, especially if there are many duplicated objects. The SecDupElim

can be obtained by simply changing the SecDedup as follows: in Algorithm 12 at line 20,

when S2 observes that there exist duplicated objects, S2 only keeps one copy of them. The

algorithm works exactly the same as before but without performing the line 22-25. We

also run SecDupElim instead of SecDedup at line 13 in the SecUpdate. That is, after secure

update, we only keep the distinct objects with updated scores. Thus, the number of items

to be sorted also decrease. Now by adapting SecDupElim, if there are many duplicated

objects appear in the list, we have much fewer encrypted items to sort.

Remark on security. The SecDupElim leaks additional information to the server S1.

S1 learns the uniqueness pattern UPd(qi) at depth d, where UPd(qi) denotes the number

81

of the unique objects that appear at current depth d. The distinct encrypted values at

depth d are independent from all other depths, therefore, this protocol still protects the

distribution of the original ER. In addition, due to the ‘re-encryptions’ during the execution

of the protocol, all the encryptions are fresh ones, i.e., there are not as the same as the

encryptions from ER. Finally, we emphasize that nothing on the objects and their values

have been revealed since they are all encrypted.

4.10.2 Batch Processing for SecQuery

In the query processing SecQuery, we observe that we do not need to run the protocols

SecDupElim and EncSort for every depth. Since SecDupElim and EncSort are the most costly

protocols in SecQuery, we can perform batch processing and execute them after a few depths

and not at each depth. Our observation is that there is no need to deduplicate repeated

objects at each scanned depth. If we perform the SecDupElim after certain depths of

scanning, then the repeated objects will be eliminated, and those distinct encrypted objects

with updated worst and best scores will be sorted by running EncSort. The protocol will

remain correct. We introduce a parameter p such that p ≥ k. The parameter p specifies

where we need to run the SecDupElim and EncSort in the SecQuery protocol. That is,

the server S1 runs the SecQuery with S2 the same as in Algorithm 8, except that every p

depths we run line 9-12 in Algorithm 8 to check if the algorithm could halt. In addition, we

can replace the SecDupElim with the original SecDedup in the batch processing for better

privacy but at the cost of some efficiency.

Security. Compared to the optimization from SecDupElim, we show that the batching

strategy provides more privacy than just running the SecDupElim alone. For query q,

assuming that we compute the scores over m attributes. Recall that the UPp(q) at depth

p has been revealed to S1 while running SecDupElim, therefore, after the first depth, in the

worst case, S1 learns that the objects at the first depth is the same object. To prevent

this worst case leakage, we perform SecDupElim every p depth. Then S1 learns there are p

82

distinct objects in the worst case. After depth p, the probability that S1 can correctly locate

those distinct encrypted objects’ positions in the table is at most 1
(p!)m . This decreases fast

for bigger p. However, in practice this leakage is very small as many distinct objects

appear every p depth. Similar to all our protocols, the encryptions are fresh due to the

‘re-encryption’ by the server. Even though S1 has some probability of guessing the distinct

objects’ location, the object id and their scores have not been revealed since they are all

encrypted.

4.10.3 Efficiency

We analyze the efficiency of query execution. Suppose the client chooses m attributes for

the query, therefore at each depth there are m objects. At depth d, it takes S1 O(m)

for executing SecWorst, O(md) for executing SecBest, O(m2) for SecDedup, and O(m2d)

for the SecUpdate. The complexities for S2 are similar. In addition, the EncSort has

time overhead O(m log2m); however, we can further reduce to O(log2m) by adapting

parallelism (see [Baldimtsi and Ohrimenko, 2014]). On the other hand, the SecDupElim

only takes O(u2), where u is the number of distinct objects at this depth. Notice that

most of the computations are multiplication (homomorphic addition), therefore, the cost

of query processing is relatively small.

4.11 Experiments

To evaluate the performance of our protocols, we conducted a set of experiments using

real and synthetic datasets. We used HMAC-SHA-256 as the pseudo-random function

(PRF) for the EHL and EHL+ encoding, 512-bit security for the Paillier and DJ encryption

schemes, and all experiments are implemented using C++. We implement the scheme

SecTopK = (Enc,Token, SecQuery), including all the protocols SecWorst, SecBest, EncSort,

and EncCompare and their optimizations. For the server S1, we run our experiments on a

24 core machine, that serves as the cloud, running Scientific Linux with 128GB memory

83

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ti
m

e
 (

s
e

c
)

number of items (million)

EHL

 EHL
+

(a) Construction Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
iz

e
 (

M
B

)

number of items (million)

EHL

 EHL
+

(b) Size Overhead

Figure 4.4: Encryption using EHL vs. EHL+.

 0

 20

 40

 60

 80

 100

 120

Insurance
Diabetes

PAMAP
Syn.

T
im

e
 (

s
e
c
)

number of items (million)

 EHL
+

EHL

(a) Construction Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Insurance
Diabetes

PAMAP
Syn.

S
iz

e
 (

M
B

)

number of items (million)

 EHL
+

EHL

(b) Size Overhead

Figure 4.5: Encryption EHL vs. EHL+ on real data

and 2.9GHz Intel Xeon. For the server S2, we used a 9 core machine, running Scientific

Linux with 64GB RAM and 3.4GHz Intel Xeon.

Data Sets We use the following real world datasets from UCI Machine Learning Repos-

itory [Lichman, 2013]. insurance: a benchmark dataset that contains 5822 customers’

information from an insurance company and we extracted 13 attributes from the original

dataset. diabetes: a patients dataset containing 101767 patients’ records (i.e. data ob-

jects), where we extracted 10 attributes. PAMAP: a physical activity monitoring dataset that

84

contains 376416 objects, from which we extracted 15 attributes. We also generated syn-

thetic datasets synthetic with 10 attributes that take values from a Gaussian distribution

and the number of records are varied between 5 thousand to 1 million.

4.11.1 Evaluation of the Encryption Setup

We implemented both the EHL and the efficient EHL+. For EHL, to minimize the false

positives, we set the parameters as H = 23 and s = 5, where L is the size of the EHL

and s is the number of secure hash functions. For EHL+, we choose the number of secure

hash function HMAC in EHL+ to be s = 5, and, as discussed in the previous section, we

obtained negligible false positive rate in practice. The encryption Enc is independent

of the characteristics of the dataset and depends only on the size. Thus, we generated

datasets such that the number of the objects range from 0.1 to 1 million. We compare the

encryptions using EHL and EHL+. After sorting the scores for each attribute, the encryption

for each item can be fully parallelized. Therefore, when encrypting each dataset, we used

64 threads on the machine that we discussed before. Figure 4.4 shows that, both in terms

of time and space, the cost of database encryption Enc is reasonable and scales linearly with

the size of the database. Clearly, EHL+ has less time and space overhead. For example, it

only takes 54 seconds to encrypt 1 million records using EHL+. The size is also reasonable,

as the encrypted database only takes 111 MB using EHL+. Figure 4.5 also shows the

encryption time and size overhead for the real dataset that we used. Finally, we emphasize

that the encryption only incurs a one-time off-line construction overhead.

4.11.2 Query Processing Performance

4.11.2.1 Query Performance and Methodology

We evaluate the performance of the secure query processing and their optimizations that

we discussed before. In particular, we use the query algorithm without any optimization

but with full privacy, denoted as Qry F; the query algorithm running SecDupElim instead

85

of SecDedup at every depth, denoted as Qry E; and the one using the batching strategies,

denoted as Qry Ba. We evaluate the query processing performance using all the datasets

and use EHL+ to encrypt all of the object ids.

Notice that the performance of the NRA algorithm depends on the distribution of the

dataset among other things. Therefore, to present a clear and simple comparison of the

different methods, we measure the average time per depth for the query processing, i.e.

T
D , where T is the total time that the program spends on executing a query and D is the

total number of depths the program scanned before halting. In most of our experiments

the value of D ranges between a few hundred and a few thousands. For each query, we

randomly choose the number of attributes m that are used for the ranking function ranging

from 2 to 8, and we also vary k between 2 and 20. The ranking function F that we use is

the sum function.

4.11.2.2 Qry F evaluation

We report the query processing performance without any query optimization. Figure 4.6

shows Qry F query performance. The results are very promising considering that the query

is executed completely on encrypted data. For a fixed number of attributes m = 3, the

average time is about 1.30 seconds for the largest dataset synthetic running top-20 queries.

When fixing k = 5, the average time per depth for all the dataset is below 1.20 seconds.

As we can see, for fixed m, the performance scales linearly as k increases. Similarly, the

query time also linearly increases as m gets larger for fixed k.

4.11.2.3 Qry E evaluation

The experiments show that the SecDupElim improves the efficiency of the query processing.

Figure 4.7 shows the querying overhead for exactly the same setting as before. Since Qry E

eliminates all the duplicated the items for each depth, Qry E has been improved compared

to the Qry F above. As k increases, the performance for Qry E executes up to 5 times faster

than Qry F when k increase to 20. On the other hand, fixing k = 5, the performance of

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

2 4 6 8 10 15 20

ti
m

e
 p

e
r

d
e

p
th

 (
s
e

c
.)

k

diabetes m=3
insurance m=3

pama m=3
syn. m=3

(a) Performance varying k

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2 3 4 5 6 7 8

ti
m

e
 p

e
r

d
e

p
th

 (
s
e

c
.)

m

diabetes k=5
insurance k=5

pama k=5
syn. k=5

(b) Performance varying m

Figure 4.6: Qry F query performance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2 4 6 8 10 15 20

ti
m

e
 p

e
r

d
e

p
th

 (
s
e

c
.)

k

diabetes m=3
insurance m=3

pama m=3
syn. m=3

(a) Performance varying k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2 3 4 5 6 7 8

ti
m

e
 p

e
r

d
e

p
th

 (
s
e

c
.)

m

diabetes k=5
insurance k=5

pama k=5
syn. k=5

(b) Performance varying m

Figure 4.7: Qry E query optimization performance

87

Qry E can execute up to around 7 times faster than Qry F as m grows to 20. In general,

the experiments show that Qry E effectively speeds up the query time 5 to 7 times over the

basic approach.

 20

 40

 60

 80

 100

 120

 140

 160

2 4 6 8 10 15 20

ti
m

e
 p

e
r

d
e

p
th

 (
m

s
)

k

diabetes
insurance

pama
syn.

(a) Performance varying k

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 2 3 4 5 6 7 8
ti
m

e
 p

e
r

d
e

p
th

 (
m

s
)

m

diabetes
insurance

pama
syn.

(b) Performance varying m

 20

 40

 60

 80

 100

 120

 250 300 350 400 450 500 550

ti
m

e
 p

e
r

d
e

p
th

 (
m

s
)

p

diabetes
insurance

pama
syn.

(c) Performance varying p

Figure 4.8: Qry Ba query optimization performance

4.11.2.4 Qry Ba evaluation

We evaluate the effectiveness of batching optimization for the Qry Ba queries. Figure 4.8

shows the query performance of the Qry Ba for the same settings as the previous exper-

iments. The experiments show that the batching technique further improves the perfor-

88

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

insurance
diabetes

pamap
syn.

ti
m

e
 p

e
r

d
e
p
th

 (
s
e
c
.)

QueryBa
QueryE
QueryF

Figure 4.9: Comparisons (k = 5, m = 2, and p = 500)

mance. In particular, for fixed batching parameter p = 150, i.e. every 150 depths we

perform SecDupElim and EncSort in the SecQuery, and we vary our k from 2 to 20. Com-

pared to the Qry E, the average time per depth for all of the datasets have been further

improved. For example, when k = 2, the average time for the largest dataset synthetic

is reduced to 74.5 milliseconds, while for Qry F it takes more than 500 milliseconds . For

diabetes, the average time is reduced to 53 milliseconds when k = 2 and 123.5 millisec-

onds when k increases to 20. As shown in figure 4.8a, the average time linearly increases

as k gets larger. Similarly, when fixing the k = 5 and p = 150, for synthetic the per-

formance per depth reduce to 61.1 milliseconds and 92.5 milliseconds when m = 2 and 8

separately. In Figure 4.8c, We further evaluate the parameter p. Ranging p from 200 to

550, the experiments show that the proper p can be chosen for better query performance.

For example, the performance for diabetes achieves the best when p = 450. In general,

for different dataset, there are different p’s that can achieve the best query performance.

When p gets larger, the number of calls for EncSort and SecDupElim are reduced, however,

the performance for these two protocols also slow down as there’re more encrypted items.

We finally compare the three queries’ performance. Figure 4.9 shows the query perfor-

mance when fixing k = 5, m = 3, and p = 500. Clearly, as we can see, Qry Ba significantly

improves the performance compared to Qry F. For example, compared to Qry F, the aver-

age running time is roughly 15 times faster for PAMAP.

89

4.11.2.5 Communication Bandwidth

Finally we show the experiments on the communication bandwidth and latency. Our

experiments show that the network latency is significantly less than the query computation

cost. We evaluate the communication on the fully secure and un-optimized Qry Ba queries.

Note that, for each depth, the bandwidth is the same since the duplicated encrypted objects

are filled with encryptions of random values.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 3 4 5 6 7 8

B
a

n
d

w
id

th
 (

K
B

)
p

e
r

d
e

p
th

of attributes

(a) Bandwidth per depth varying m

 0

 5

 10

 15

 20

2 4 6 8 10 15 20

T
o

ta
l
B

a
n

d
w

id
th

 S
iz

e
 (

M
B

)

k

(b) Total bandwidth size for different k

Figure 4.10: Communication bandwidth evaluation

We evaluate the bandwidth on the largest dataset synthetic. Note that, the bandwidth

per depth is independent of k since each depth this communication size only depends on

m. As mentioned the bandwidth is O(m2), by varying m we show in Figure 4.10a the

bandwidth per depth. In Figure 4.10b, we show the total bandwidth when executing the

top-20 by fixing m = 4. As we can see, the total size of the bandwidth is very small,

therefore, the total latency could be very small for a high-speed connection between the

two clouds. By assuming a standard 50 Mbps LAN setting, we show in the table 4.3 below

the total network latency between the servers S1 and S2 when k = 20 and m = 4.

90

dataset total bandwidth (MB) total network latency (in seconds)

insurance 8.87 1.41

diabetes 12.45 1.99

PAMAP 15.72 2.5152

synthetic 17.3 2.768

Table 4.3: Total Communication Network Latency for each dataset when k = 20, m = 4

The top-20 can be reported for all the dataset after a few thousands depth. Therefore,

the average latency for each depth on every dataset is less than 1ms, which is significantly

less than the query processing cost. Similar conclusions can be drawn for other parameter

settings.

4.12 Top-k Join

We would like to briefly mention that our technique can be also extended to compute top-k

join queries over multiple encrypted relations. Given a set of relations, R1, . . . , RL, each

tuple in Ri is associated with some score that gives it a rank within Ri. The top-k join

query joins R1 to RL and produces the results ranked on a total score. The total score

is computed according to some function, F , that combines individual scores. We consider

only (i.e.equi-join) conditions in this paper. Similarly, the score function F we consider

in this paper is also a linear combination over the attributes from the joining relations.

A possible SQL-like join query example is as follows: Q1 = SELECT * FROM A,B,C WHERE

A.1=B.1 and B.2=C.3 ORDER BY A.1+B.2+C.4 STOP AFTER k; where A, B and C are

three relations and A.1, B.1, B.2, C.3, C.4 are attributes on these relations. Our idea

is to design a secure join operator, denoted as ./sec, such that the server S1 obliviously

joins the relations based on the received token. S1 has to invoke a protocol with S2 to get

the resulting joined results that meet the join condition.

91

4.12.1 Secure Top-k Join

We provide a description of the secure top-k join in this section. Since a join operator is

implemented in most system as a dyadic (2-way) operator, we describe the secure top-k

operator as a binary join operator between two relations R1 and R2. Consider an authorized

client that wants to join two encrypted relations and get the top-k based on a join condition.

Assume that each tuple in Ri has mi many attributes and each Ri have ni many tuples

for i = {1, 2}. Furthermore, denote oij be the jth objects in Ri and let oij .xk be the kth

attribute value.

4.12.2 Encryption Setup for Multiple databases

Algorithm 15: Enc(R1, R2): database encryption

1 Generate public/secret key pkp, skp for the pailliar encryption, generate random

secret keys κ1, . . . , κs for the EHL;
2 foreach each oij ∈ Ri do

3 foreach each attribute oij .xk do

4 set E(sk)← 〈EHL(oij .xk),Enc(oij .xk)〉;
5 set E(oij) =

(
E(s1), ..., E(smi)

)
6 Generate a key K for the PRP P ;
7 Permutes the encrypted attributes based on P , i.e. set
E(oij) =

(
E(sPK(1)), ..., E(sPK(mi))

)
;

8 Output permuted encrypted databases as ER1 = {E(o11)...E(o1n1
)} and

ER2 = {E(o21)...E(o2n2
)};

Consider a set of relations R1 and R2. The encryption setup is similar as the top-

k for one relation. The difference is that since we have multiple relations on different

data we cannot assign a global object identifier for each the objects in different relations.

The difference here is that, in addition to encrypting an object id with EHL, we encrypt

the attribute value using EHL since the join condition generated from the client is to

join the relations based on the attribute values. Therefore, we can compare the equality

between different records based on their attributes. The encryption Enc(R1, R2) is given

in Algorithm 15.

92

The encrypted relations ER1,ER2 do not reveal anything besides the size. The proof is

similar to the proof in Theorem 4.6.1.

4.12.3 Query Token

Consider a client that wants to run query a SQL-like top-k join as follows: Q = SELECT

* FROM R1, R2 WHERE R1.A = R2.B ORDER BY R1.C + R1.D STOP AFTER k; where A, C are

attributes in R1 and B, D are attributes in R2. The client first requests the key K for the

P , then computes (t1, t2, t3, t4) ← (PK(R1.A), PK(R2.B), PK(R1.C), PK(R2.D)). Finally,

the client generates the SQL-like query token as follows: tQ = SELECT * FROM ER1,ER2

WHERE ER1.t1 = ER2.t2 ORDERED BY ER1.t3 + ER2.t4 STOP AFTER k. Then, the client

sends the token tQ to the server S1.

4.12.4 Query Processing for top-k join

In this section, we introduce the secure top-k join operator ./sec. We first introduce some

notation that we use in the query processing algorithm. For a receiving token tQ that is

described in Section 4.12.4, let the join condition be JC
def
:=
(
ER1.t1= ER2.t2

)
, and the score

function Score = ER1.t3 + ER4.t4. Moreover, for each E(o1i) ∈ ER1, let E(xit1) and E(xit3)

be the t1-th and t3-th encrypted attribute. Similarly, let E(xjt2) and E(xjt4) be the t2-th

and t4-th encrypted attribute for each E(o2j) in ER2. In addition, let E(X) be a vector

of encryptions, i.e. E(X) = 〈Enc(x1), ...,Enc(xs)〉, and let E(R) = 〈(Enc(r1), ...,Enc(rs))〉,

where R ∈ ZsN with each ri
$←− ZN . Denote the randomization function Rand as below:

Rand(E(X),E(R)) = (Enc(x1) · Enc(r1), ...,Enc(xn) · Enc(rn))

= (Enc(x1 + r1), ...,Enc(xn + rn))

. This function is similar to Rand in Algorithm 12 and is used to homomorphically blind

the original value.

In general, the procedure for query processing includes the following steps:

93

Algorithm 16: SecJoin(tk, pkp, skp): ./sec with JC = (ER1.t1,ER2.t2) and Score =
ER1.t3 + ER2.t4
S1’s input: pkp, tk
S2’s input: pkp, skp

1 Server S1:
2 Parse tk, let JC = (ER1.t1,ER2.t2) and Score = ER1.t3 + ER2.t4
3 foreach E(o1i) ∈ ER1, E(o2j) ∈ ER2 in random order do

4 Let E(o1i) =
(
E(xi1), ...E(xim1)

)
and E(o2j) =

(
E(xj1), ...E(xjm2)

)
;

5 Compute Enc(bij)← EHL(xit1)	 EHL(xjt2), where E(xit1), E(xjt2) are the
t1-th, t2-th attributes in E(o1i), E(o2j);

/* evaluate sij = bij(xit3 + xjt4) */

6 Send Enc(bij) to S2 and receive E2
(
tij
)

from S2;

7 Compute Score as: sij ← E2
(
bij
)Enc(xit3)Enc(xjt4);

8 run Enc(sij)← RecoverEnc(Sij , pkp, skp).

9 Combine rest of the attributes for E(oij) as follows: xl ← E2
(
bij
)Enc(xl),

where Enc(xl) ∈ {Enc(xi1)...Enc(xjm2)} in E(O1
i), E(O2

j);

10 Run Enc(xl)← RecoverEnc(xl, pkp, skp).

11 Server S2:
12 For each received tij , decrypts it. If it is 0, then compute bij ← E2

(
1
)
.

Otherwise, bij ← E2
(
0
)
. Sends bij to S1.

13 Server S1:
14 Finally holds joined encrypted tuples E(oij) = Enc(sij), {Enc(xl)}, where

Enc(sij) is the encrypted Score, {Enc(xl)} are the joined attributes from
ER1,ER2.

15 Run L← SecFilter({E(oij), pkp, skp}) and get the encrypted list L.

16 Run EncSort to conduct encrypted sort on encrypted Score Enc(sij), and return
top-k encrypted items.

• Perform the join on ER1 and ER2.

– Receiving the token, S1 runs the protocol with S2 to generate all possible joined

tuples from two relations and homomorphically computes the encrypted scores.

– After getting all the joined tuples, S1 runs SecFilter({E(oi)}, pkp, skp) (see Algo-

rithm 17), which is a protocol with S2 to eliminate the tuples that do not meet

the join condition. S1 and S2 then runs the protocol SecJoin. S1 finally produce

the encrypted join tuples together with their scores.

94

Algorithm 17: SecFilter
(
{E(oi)}, pkp, skp

)
S1’s input: {E(oi)}, pkp
S2’s input: pkp, skp

1 Server S1:
2 Let E(oi) =

(
Enc(si),E(Xi)

)
where E(Xi) = 〈Enc(xi1), ...,Enc(xis)〉;

3 Generate a key pair (pks, sks);
4 foreach E(oi) do
5 Generate random ri ∈ Z∗N , and Ri ∈ ZmN ;
6 Enc(s′i)← Enc(si)

ri and E(X ′i)← Rand(E(Xi),E(Ri));

7 Set E(o′i) =
(
Enc(s′i),E(X ′i)

)
;

8 Compute the following: Encpks(r−11),Encpks(R1), . . . , Encpks(r−1n),Encpks(Rn);

9 Generate random permutation π, permute E(o′π(i)), Encpks(r−1π(i)), and Encpks(Rπ(i));

10 Sends E(o′π(i)), Encpks(r−1π(i)),Encpks(Rπ(i)), and pks to S2;

11 Server S2:
12 Receiving the list E(o′π(i)) and Encpks(rπ(i)),Encpks(Rπ(i));

13 foreach E(o′π(i)) ∈
(
Enc(s′π(i)),E(X ′π(i))

)
do

14 decrypt b← Enc(s′π(i));

15 if b = 0 then
16 Remove this entry E(T ′π(i)) and Encpks(r−1π(i)),Encpks(Rπ(i))

17 foreach remaining items do
18 Generate random γi ∈ Z∗N , and Γi ∈ ZmN ;

19 Enc(s̃i)← Enc(s′π(i))
γi and E(X̃i)← Rand

(
E(X ′π(i)),E(Γi)

)
;

20 Set E(õi) =
(
Enc(s̃i),E(X̃i)

)
;

/* evaluate r̃i = r−1π(i)γ
−1
i */

21 compute the following using pks: Encpks(r̃i)← Encpks(r−1π(i))
γ−1
i ;

/* evaluate R̃i = Rπ(i) + Γ−1i */

22 Encpks(R̃i)←Encpks(Rπ(i)) · Encpks(Γi)

23 Sends the E(õi) and Encpks(r̃i),Encpks(R̃i) to S1

24 Server S1:

25 foreach E(õi) = (Enc(s̃),E(X̃i)) and Encpks(r̃i),Encpks(R̃i) do

26 use sks to decrypt Enc(r̃i) as r̃i, Enc(R̃i) as R̃i;
/* homomorphically de-blind */

27 compute Enc(si)← Enc(s̃i)
r̃i and E(Xi)← Rand(E(X̃i),E(−R̃i));

28 Set E(o′i) = (Enc(si),E(Xi));

/* Suppose there’re l tuples left */

29 Output the list E(o′1) ... E(o′l).

• EncSort: after securely joining all the databases, S1 then runs the encrypted sorting

protocol to get the top-k results.

The main ./sec is fully described in Algorithm 16. As mentioned earlier, since all the

95

attributes are encrypted, we cannot simply use the traditional join strategy. The merge-

sort or hash based join cannot be applied here since all the tuples have been encrypted

by a probabilistic encryption. Our idea for S1 to securely produce the joined result is as

follows: S1 first combines all the tuples from two databases (say, using nested loop) by

initiating the protocol SecJoin. After that, S1 holds all the combined tuples together with

the scores. The joined tuple have m1 + m2 many attributes (or user selected attributes).

Those tuples that meet the equi-join condition JC are successfully joined together with the

encrypted scores that satisfy the Score function. However, for those tuples that do not

meet the JC, their encrypted scores are homomorphically computed as Enc(0) and their

joined attributes are all Enc(0) as well. S1 holds all the possible combined tuples. Next,

the SecFilter eliminates all of those tuples that do not satisfy JC. It is easy to see that

similar techniques from SecDupElim can be applied here. At the end of the protocol, both

S1 and S2 only learn the final number of the joined tuples that meet JC.

Below we describe the SecJoin and SecFilter protocols in detail. Receiving the Token,

S1 first parses it as the join condition JC = (ER1.t1, ER2.t2), and the score function Score =

ER1.t3+ER2.t4. Then for each encrypted objects E(o1i) ∈ ER1 and E(o2i) ∈ ER2 in random

order S1 computes tij ←
(
EHL(xit1)	 EHL(xjt2)

)rij , where xit1 and xjt2 are the value for

the t1th and t2th attribute for E(o1i) and E(o2j) separately. rij is randomly generated

value in Z∗N , then S1 sends tij to S2. Having the decryption key, S2 decrypts it to bij ,

which indicates whether the encrypted value xit1 and xjt2 are equal or not. If bij = 0,

then we have xit1 = xjt2 which meets the join condition JC. Otherwise, bij is a random

value. S2 then encrypts the bit bij using a double layered encryption and sends it to S1,

where bij = 0 if xit1 6= xjt2 otherwise bij = 1. Receiving the encryption, S1 computes

Sij ← E2
(
bij
)Enc(x1t3)Enc(x2t4), where x1t3 is the t3-th attribute for E(o1i) and x2t4 is the t4-

th attribute for E(o2j). Finally, S1 runs the StripEnc to get the normal encryption Enc(sij).

96

Based on the construction,

Enc(sij) ∼ Enc
(
bij(x1t3 + x2t4)

)
, where bij =

1 if x1t1 = x2t2

0 otherwise

Finally, after fully combining the encrypted tuples, S1 holds the joined encrypted

tuple as well as the encrypted scores, i.e. E(T) = (Enc(sij), Enc(x11)...Enc(x1m1),

Enc(x21), ...,Enc(x2m2)). During the execution above, nothing has been revealed to S1,

S2 only learns the number of tuples meets the join condition JC but does not which pairs

since the S1 sends out the encrypted values in random order. Also, notice that S1 can only

select interested attributes from ER1 and ER2 when combining the encrypted tuples. Here

we describe the protocol in general.

After SecJoin, assume S1 holds n combined the tuples with each tuple has m combined

attributes, then for each of tuple E(Ti) = (Enc(si),E(Xi)), where E(Xi) is the combined

encrypted attributes E(Xi) = 〈Enc(xi1), ...Enc(xim)〉. Next, S1 tries to blind encryptions

in order to prevent S2 from knowing the actual value. For each E(Ti), S1 generates random

ri ∈ Z∗N and Ri ∈ ZNm, and blinds the encryption by computing following: Enc(s′i) ←

Enc(si)
ri and E(X ′i) ← Rand(E(Xi),E(Ri)). Then S1 sets E(T ′i) =

(
Enc(s′i),Enc(X

′
i)
)
.

Furthermore, S1 generates a new key pair for the paillier encryption scheme (pks, sks) and

encrypts the following: L = Enc(r−11)pks ,Enc(R1)pks , . . . ,Enc(r−1n)pks ,Enc(Rn)pks , where

each r−1i is the inverse of ri in the group ZN . S1 needs to encrypt the randomnesses in

order to recover the original values, and we will explain this later. Moreover, S1 generates

a random permutation π, then permutes E(Tπ(i)) and Enc(r−1π(i))pks ,Enc(Rπ(i))pks for i =

[1, n]. S1 sends the permuted encryptions to S2.

S2 receives all the encryptions. For each received E(T ′π(i)) = (Enc(s′π(i)),E(X ′π(i))),

S2 decrypts Enc(s′π(i)), if s′π(i) is 0 then S2 removes tuple E(T ′π(i)) and corresponding

Enc(r−1π(i))pks , Enc(Rπ(i))pks . For the remaining tuples E(Tπ(i)), S2 generates random

r′i ∈ Z∗N , and R′i ∈ ZmN , and compute the following Enc(s̃i) ← Enc(s′π(i))
r′i , Enc(X̃i) ←

97

Rand
(
E(X ′π(i)),E(R′i)

)
(see Algorithm 16 line 19). Then set E(T̃i) =

(
Enc(s̃i),Enc(X̃i)

)
Note that, this step prevents the S1 from knowing which tuples have been removed. Also,

in order to let S1 recover the original values, S2 encrypts and compute the following us-

ing pks, Enc(r̃i) ← Enc(r−1π(i))
r′i
−1

pks
and Enc(R̃i) ←Enc(R′π(i))pks · Enc(R′i)pks . Finally, S1

sends the E(T̃i) and Enc(r̃i),Enc(R̃i) to S1. Assuming there’re n′ joined tuples left. On

the other side, S1 receives the encrypted tuples, for each E(T̃i) = Enc(s̃),Enc(X̃i) and

Enc(r̃i),Enc(R̃i), S1 recovers the original values by computing the following: compute

Enc(s′i) ← Enc(s̃i)
r̃i and E(X ′i) ← Rand(E(X̃i),E(−R̃i)). Notice that, for the remaining

encrypted tuples and their encrypted scores, S1 can successfully recover the original value,

we show below that the encrypted scores Enc(sj) is indeed some permuted Enc(sπ(i)):

Enc(sj) ∼ Enc(r̃j · s̃j) (see Alg. 16 line 28)

∼ Enc(r−1π(j)r
′−1
j · s̃j) (see Alg. 16 line 22)

∼ Enc(r−1π(j)r
′−1
j · s′π(j) · r

′
j) (see Alg. 16 line 19)

∼ Enc(r−1π(j)r
′−1
j · sπ(j)rπ(j)r′j) (see Alg. 16 line 6,10)

∼ Enc(sπ(j))

If we don’t want to leak the number of tuples that meet JC, we can use a similar

technique from SecDedup, that is, S2 generates some random tuples and large enough

random scores for the tuples to not satisfy JC. In this way, nothing else has been leaked

to the servers. It is worth noting that the technique sketched above not only can be used

for top-k join, but for any equality join can be applied here.

4.12.4.1 Performance Evaluation

We conduct the experiments under the same environment as in Section 4.11. We use

synthetic datasets to evaluate our sec-join operator ./sec: we uniformly generate R1 with

98

5K tuples and 10 attributes, and R2 with 10K tuples and 15 attributes. Since the server

runs the oblivious join that we discuss before over the encrypted databases, the performance

of the ./sec does not depend on the parameter k. We test the effect of the joined attributes

in the experiments. We vary the total number of the attribute m joined together from two

tables. Figure 4.11 shows performance when m ranges from 5 to 20.

 20

 40

 60

 80

 100

 120

 140

 160

 180

5 8 10 15 20

tim
e

(s
ec

)

M

top-k join on encrypted R1, R2

Figure 4.11: Top-k join: ./sec

Our operator ./sec is generically designed for joining any attributes between two rela-

tions. In practice, one would be only interested in joining two tables using primary-key-to-

foreign-key join or foreign-key-to-primary-key join. Our methods can be easily generalized

to those joins. In addition, one can also pre-sort the attributes to be ranked and save

computations in the ./sec processing. We leave this as the future work of this thesis.

4.12.5 Related works on Secure Join

Many works have proposed for executing equi-joins over encrypted data. One recent

work [Pang and Ding, 2014] proposed a privacy-preserving join on encrypted data. Their

work mainly designed for the private join operation, therefore cannot support the top-

k join. In addition, in [Pang and Ding, 2014], although the actual values for the joined

records are not revealed, the server learns some equality pattern on the attributes if

99

records are successfully joined. In addition, [Pang and Ding, 2014] uses bilinear pairing

during their query processing, thus it might cause high computation overhead for large

datasets. CryptDB [Popa et al., 2011] is a well-known system for processing queries on

encrypted data. MONOMI [Tu et al., 2013] is based on CryptDB with a special focus on

efficient analytical query processing. [Kerschbaum et al., 2013] adapts the deterministic

proxy re-encryption to provide the data confidentiality. The approaches using determin-

istic encryption directly leak the duplicates and, as a result, the equality patterns to the

adversarial servers. [Wong et al., 2014] propose a secure query system SDB that protects

the data confidentiality by decomposing the sensitive data into shares and can perform

secure joins on shares of the data. However, it is unclear whether the system can perform

top-k queries over the shares of the data. Other solutions such as Order-preserving encryp-

tion (OPE) [Boldyreva et al., 2011b, Agrawal et al., 2004] can also be adapted to secure

top-k join, however, it is commonly not considered very secure on protecting the ranks of

the score as the adversarial server directly learns the order of the attributes.

4.13 Top-k Query Processing Conclusion

This paper proposes the first complete scheme that executes top-k ranking queries over

encrypted databases in the cloud. First, we describe a secure probabilistic data structure

called encrypted hash list (EHL) that allows a cloud server to homomorphically check

equality between two objects without learning anything about the original objects. Then,

by adapting the well-known NRA algorithm, we propose a number of secure protocols

that allow efficient top-k queries execution over encrypted data. The protocols proposed

can securely compute the best/worst ranking scores and de-duplication of the replicated

objects. Moreover, the protocols in this paper are stand-alone which means the protocols

can be used for other applications besides the secure top-k query problem. The scheme is

experimentally evaluated using real-world data sets which show the scheme is efficient and

practical.

Chapter 5

Conclusions

Ensuring security and privacy is becoming a significant challenge for cloud computing,

especially for users with sensitive and valuable data. This thesis focus on the develop-

ment of privacy-enhancing technologies that minimize the amount of data being revealed

when outsourcing massive datasets in cloud-based environments. In particular, this thesis

investigates several practical and provably secure encryption schemes that allow the data

owner to encrypting large-scale databases without losing the ability to query and retrieve

it efficiently for authorized clients.

In this dissertation, we have formalized and proposed the graph encryption framework

for graph databases. The graph encryption is to encrypt graph data in such a way that they

can be privately queried. In particular, in Chapter 3, this thesis proposes a graph encryp-

tion scheme for approximate shortest distance queries, called GRECS. Such scheme allows

the client to query the shortest distance between two nodes in an encrypted graph. The

GRECS system consists of three different schemes and can support approximated shortest

distance queries. By leveraging distance oracle structures, we present several encryption

schemes with different trade-offs. These encryption schemes do not affect the distance

approximation of the underlying distance oracles, and, at the same time, provide strong

security guarantees based on the formal security definition from graph encryption. The

first scheme is computationally efficient, while the second one is communication-efficient

by adopting specialized homomorphic encryption schemes. This thesis also propose a third

scheme which is both computational and communication-efficient but leaks some small

amount of controlled information. The experimental results of using the encryption scheme

101

on many real world graph datasets are very promising. It demonstrates that the construc-

tions are extremely efficient and scalable compared to state-of-the-art solutions. In fact,

in most cases, GRECS can report better approximations than the original distance oracle,

which makes the accuracy of the shortest distance quite high. For example, for 10,000

randomly generated queries, roughly 50% of the distances returned are the true shortest

distances. Moreover, this thesis also explores how the techniques can be applied to other

graph queries.

In Chapter 4, this thesis presents a secure top-k query processing protocol on encrypted

databases under the non-colluding semi-honest clouds model. The thesis also has formu-

lated and presented several novel secure sub-protocols, such as secure best/worst score and

secure de-duplication, which can be adapted as stand-alone building blocks for many other

applications. Furthermore, we extend the techniques to support secure top-k join queries

over multiple encrypted databases. The results show that the protocol is extremely efficient

and has very low computational overhead. Moreover, this dissertation presents the secure

protocol for handling general secure join queries. The proposed scheme also improves the

security of other existing works which adopt some less secure property-preserving encryp-

tions. This thesis has evaluated schemes by implementing the proposed protocols and

running a set of experiments on a number of real-world databases.

5.1 Future Directions

This dissertation so far has taken preliminary steps to dealing with some of the security

and privacy issues that arise in databases and data mining. Nevertheless, in the future

there are a number of fascinating open problems in the area that need to be addressed on

how to provide large-scale data security and privacy in cloud computing. Some compelling

problems that come to mind include:

Privacy-preserving Machine Learning One goal is to design a practical privacy-

preserving machine learning system that enables machine learning algorithms to run on

102

encrypted data. Recently, a number of applied security and privacy research problems

have appeared in data mining and machine learning. For example, in the cloud-based

environment, a user with sensitive data wants to make an inference using a machine learn-

ing predictive model that is held by the cloud, without compromising the user’s private

information. To protect data confidentiality, the user encrypts the data and sends the

ciphertexts to the cloud who runs the machine learning algorithm over the encrypted

data. Existing solutions are mainly focused on specific machine learning models and rely

on some high-degree homomorphic encryptions with extremely high performance overhead.

However, by taking advantage of the structures of the original dataset, one can have an effi-

cient structured encryption scheme for some algorithms running on specific data structures.

Having many such encryption schemes as building blocks can result in a more efficient and

more secure system. The goal would be to have a generic and modular approach that can

combine those structured encryption schemes for machine learning tasks.

Verifiable Computation on Encrypted Databases This thesis mainly addresses the

problem of providing strong privacy under semi-honest adversarial model. In the future,

it will be compelling to explore the possibility of bringing verifiable computation to both

structured and graph encryptions. A number of works have shown some preliminary results

of designing verifiable computation for some particular homomorphic encryption schemes.

However, these theoretical results are very inefficient and are very hard to apply to database

and data mining applications. A future direction is to combine the techniques of searchable

and graph encryption with the techniques used in verifiable computation. A long-term goal

would be to have a practical verifiable encryption scheme for massive datasets that provides

both data privacy and integrity, without losing the capability to query the datasets.

Leakage Mitigation The protocols given in this thesis come with certain leakages. An-

other direction is to explore techniques to further reduce leakage in privacy-preserving

database systems and mitigate inference attacks on those systems. In addition, we still

103

don’t know if there are any better ways of expressing the semantic meanings of leakage

and quantifying the amount of leakage when querying encrypted databases. We have seen

many proposed works on supporting rich SQL queries on encrypted databases by leveraging

property-preserving encryptions. Those approaches have much weaker security guarantees.

Resolving this issue seems a promising future direction.

List of Journal Abbreviations

ACM Comput. Surv. ACM Computing Surveys

ACM Trans. Database Syst. ACM Transactions on Database Systems

ACNS . International Conference on Applied Cryp-

tography and Network Security

ASIACCS ACM Conference on Computer and Commu-

nications Security

CIKM . ACM International Conference on Informa-

tion and Knowledge Management

COSN . International conference on Online social net-

works

CODASPY ACM Conference on Data and Applications

Security and Privacy

CRYPTO International Cryptology Conference

DBSec . Conference on Data and Applications Secu-

rity and Privacy

EDBT . International Conference on Extending

Database Technology

ESORICS European Symposium on Research in Com-

puter Security

FC . International Conference on Financial Cryp-

tography and Data Security

105

ICDE . IEEE International Conference on Data En-

gineering

ICDM . IEEE International Conference on Data Min-

ing

Inf. Syst. Information Systems

J. ACM . Journal of the ACM

J. Assoc. Inf. Sci. Technol. . Journal of the Association for Information

Science and Technology

J. Math. Sociol. Journal of Mathematical Sociology

J. Com. Sec. Journal of Computer Security

KDD . ACM International Conference on Knowledge

Discovery and Data Mining

NDSS . The Network and Distributed System Sym-

posium

OSDI . USENIX Symposium on Operating Systems

Design and Implementation

Oakland S & P IEEE Symposium on Security and Privacy

PAKDD . Pacific Asia Conference on Knowledge Dis-

covery and Data Mining

PKC . International Conference on Practice and

Theory of Public-Key Cryptography

PVLDB . Proceedings of the Very Large DataBase En-

dowment

PODS . ACM Symposium on Principles of Database

Systems

SDM . SIAM International Conference on Data Min-

ing

106

SIAM Rev. SIAM Review

SIGMOD ACM International Conference on Manage-

ment of Data

SODA . ACM-SIAM Symposium on Discrete Algo-

rithms

SOSP . ACM Symposium on Operating Systems

Principles

STOC . ACM Symposium on Theory of Computing

TCC . International Conference on Theory of Cryp-

tography Conference

TKDD . ACM Transactions on Knowledge Discovery

from Data

TKDE . IEEE Transactions on Knowledge and Data

Engineering

USENIX Security USENIX Security Symposium

VLDB J. Very Large DataBase Journal

WSDM . ACM International Conference on Web

Search and Data Mining

Bibliography

[Adida and Wikström, 2007] Adida, B. and Wikström, D. (2007). How to shuffle in public.
In TCC, pages 555–574.

[Aggarwal and Yu, 2008] Aggarwal, C. C. and Yu, P. S., editors (2008). Privacy-Preserving
Data Mining - Models and Algorithms, volume 34 of Advances in Database Systems.

[Agrawal et al., 2011] Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A., and Wang,
S. (2011). Secure data management service on cloud computing infrastructures. In New
Frontiers in Information and Software as Services, volume 74, pages 57–80.

[Agrawal et al., 2004] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2004). Order
preserving encryption for numeric data. In ACM SIGMOD International Conference on
Management of Data, pages 563–574.

[Aly et al., 2013] Aly, A., Cuvelier, E., Mawet, S., Pereira, O., and Vyve, M. V. (2013).
Securely solving simple combinatorial graph problems. In Financial Cryptography, pages
239–257.

[Arasu et al., 2015] Arasu, A., Eguro, K., Joglekar, M., Kaushik, R., Kossmann, D., and
Ramamurthy, R. (2015). Transaction processing on confidential data using cipherbase.
In ICDE, pages 435–446.

[Bajaj and Sion, 2011] Bajaj, S. and Sion, R. (2011). Trusteddb:a trusted hardware based
database with privacy and data confidentiality. In SIGMOD, pages 205–216.

[Baldimtsi and Ohrimenko, 2014] Baldimtsi, F. and Ohrimenko, O. (2014). Sorting and
searching behind the curtain. In Financial Cryptography, volume 2014, page 1017.

[Blanton et al., 2013] Blanton, M., Steele, A., and Aliasgari, M. (2013). Data-oblivious
graph algorithms for secure computation and outsourcing. In ASIACCS, pages 207–218.

[Boldyreva et al., 2011a] Boldyreva, A., Chenette, N., and O’Neill, A. (2011a). Order-
preserving encryption revisited: Improved security analysis and alternative solutions. In
Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 578–595.

[Boldyreva et al., 2011b] Boldyreva, A., Chenette, N., and O’Neill, A. (2011b). Order-
preserving encryption revisited: improved security analysis and alternative solutions. In
Advances in Cryptology - CRYPTO ’11, pages 578–595.

[Boneh et al., 2005] Boneh, D., Goh, E.-J., and Nissim, K. (2005). Evaluating 2-dnf for-
mulas on ciphertexts. In TCC 2005, pages 325–342.

108

[Bost et al., 2015] Bost, R., Popa, R. A., Tu, S., and Goldwasser, S. (2015). Machine
learning classification over encrypted data. In NDSS 2015.

[Bugiel et al., 2011] Bugiel, S., Nürnberger, S., Sadeghi, A., and Schneider, T. (2011).
Twin clouds: Secure cloud computing with low latency. In CMS, pages 32–44.

[Cash et al., 2014] Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.,
and Steiner, M. (2014). Dynamic searchable encryption in very-large databases: Data
structures and implementation. In Network and Distributed System Security Symposium
(NDSS ’14).

[Cash et al., 2013a] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., and Steiner,
M. (2013a). Highly-scalable searchable symmetric encryption with support for boolean
queries. In CRYPTO ’13, pages 353–373.

[Cash et al., 2013b] Cash, D., Jarecki, S., Jutla, C. S., Krawczyk, H., Rosu, M.-C., and
Steiner, M. (2013b). Highly-scalable searchable symmetric encryption with support for
boolean queries. In CRYPTO, pages 353–373.

[Chang and Mitzenmacher, 2005] Chang, Y. and Mitzenmacher, M. (2005). Privacy pre-
serving keyword searches on remote encrypted data. In ACNS ’05, pages 442–455.
Springer.

[Chase and Kamara, 2010] Chase, M. and Kamara, S. (2010). Structured encryption and
controlled disclosure. In ASIACRYPT ’10, volume 6477, pages 577–594.

[Chechik, 2014] Chechik, S. (2014). Approximate distance oracles with constant query
time. In STOC, pages 654–663.

[Cheng et al., 2010] Cheng, J., Fu, A. W.-C., and Liu, J. (2010). K-isomorphism: privacy
preserving network publication against structural attacks. In SIGMOD Conference,
pages 459–470.

[Choi et al., 2014] Choi, S., Ghinita, G., Lim, H., and Bertino, E. (2014). Secure knn query
processing in untrusted cloud environments. TKDE, 26:2818–2831.

[Cohen, 2014] Cohen, E. (2014). All-distances sketches, revisited: Hip estimators for mas-
sive graphs analysis. In PODS, pages 88–99.

[Cohen et al., 2013] Cohen, E., Delling, D., Fuchs, F., Goldberg, A. V., Goldszmidt, M.,
and Werneck, R. F. (2013). Scalable similarity estimation in social networks: closeness,
node labels, and random edge lengths. In COSN, pages 131–142.

[Cohen et al., 2003] Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. (2003). Reacha-
bility and distance queries via 2-hop labels. SIAM J. Comput., 32(5):1338–1355.

[Curtmola et al., 2006] Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R. (2006).
Searchable symmetric encryption: Improved definitions and efficient constructions. In
CCS 2006, pages 79–88. ACM.

109

[Curtmola et al., 2011] Curtmola, R., Garay, J. A., Kamara, S., and Ostrovsky, R. (2011).
Searchable symmetric encryption: Improved definitions and efficient constructions. Jour-
nal of Computer Security, 19(5):895–934.

[Damg̊ard and Jurik, 2001] Damg̊ard, I. and Jurik, M. (2001). A generalisation, a simplifi-
cation and some applications of paillier’s probabilistic public-key system. In PKC, pages
119–136.

[Das Sarma et al., 2010] Das Sarma, A., Gollapudi, S., Najork, M., and Panigrahy, R.
(2010). A sketch-based distance oracle for web-scale graphs. In WSDM, pages 401–410.

[Dwork et al., 2006] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrat-
ing noise to sensitivity in private data analysis. In TCC, pages 265–284.

[Dwork and Nissim, 2004] Dwork, C. and Nissim, K. (2004). Privacy-preserving datamin-
ing on vertically partitioned databases. In CRYPTO 2004, 2004, Proceedings, pages
528–544.

[Elmehdwi et al., 2014] Elmehdwi, Y., Samanthula, B. K., and Jiang, W. (2014). Secure
k-nearest neighbor query over encrypted data in outsourced environments. In ICDE,
pages 664–675.

[Fagin et al., 2001] Fagin, R., Lotem, A., and Naor, M. (2001). Optimal aggregation algo-
rithms for middleware. In SIGACT-SIGMOD-SIGART.

[Feigenbaum et al., 2006] Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M. J.,
and Wright, R. N. (2006). Secure multiparty computation of approximations. ACM
Transactions on Algorithms, 2(3):435–472.

[Gao et al., 2011] Gao, J., Yu, J. X., Jin, R., Zhou, J., Wang, T., and Yang, D. (2011).
Neighborhood-privacy protected shortest distance computing in cloud. In SIGMOD,
pages 409–420.

[Gentry, 2009a] Gentry, C. (2009a). A fully homomorphic encryption scheme. PhD thesis,
Stanford University.

[Gentry, 2009b] Gentry, C. (2009b). Fully homomorphic encryption using ideal lattices. In
STOC ’09, pages 169–178. ACM Press.

[Gentry et al., 2010] Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010). A simple
bgn-type cryptosystem from lwe. In Advances in Cryptology - EUROCRYPT ’10, pages
506–522. Springer.

[Goh, 2003] Goh, E.-J. (2003). Secure indexes. Technical Report 2003/216, IACR ePrint
Cryptography Archive. See http://eprint.iacr.org/2003/216.

[Goldreich and Ostrovsky, 1996] Goldreich, O. and Ostrovsky, R. (1996). Software protec-
tion and simulation on oblivious RAMs. Journal of the ACM, 43(3):431–473.

http://eprint.iacr.org/2003/216

110

[Hacigümüs et al., 2002] Hacigümüs, H., Iyer, B. R., Li, C., and Mehrotra, S. (2002).
Executing SQL over encrypted data in the database-service-provider model. In SIGMOD,
pages 216–227.

[Halevi et al., 2001] Halevi, S., Krauthgamer, R., Kushilevitz, E., and Nissim, K. (2001).
Private approximation of np-hard functions. In STOC, pages 550–559. ACM.

[Han et al., 2013] Han, W., Lee, S., Park, K., Lee, J., Kim, M., Kim, J., and Yu, H. (2013).
Turbograph: a fast parallel graph engine handling billion-scale graphs in a single PC.
In KDD, pages 77–85.

[Hang et al., 2015] Hang, I., Kerschbaum, F., and Damiani, E. (2015). ENKI: access con-
trol for encrypted query processing. In SIGMOD, pages 183–196.

[Hore et al., 2012] Hore, B., Mehrotra, S., Canim, M., and Kantarcioglu, M. (2012). Secure
multidimensional range queries over outsourced data. VLDB J., 21(3):333–358.

[Ilyas et al., 2008] Ilyas, I. F., Beskales, G., and Soliman, M. A. (2008). A survey of top-k
query processing techniques in relational database systems. ACM Comput. Surv., 40(4).

[Islam et al., 2012] Islam, M. S., Kuzu, M., and Kantarcioglu, M. (2012). Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In NDSS.

[Jaideep Vaidya, 2008] Jaideep Vaidya, Murat Kantarcioglu, C. C. (2008). Privacy-
preserving näıve bayes classification. VLDB J., 17(4):879–898.

[Kamara and Papamanthou, 2013] Kamara, S. and Papamanthou, C. (2013). Parallel and
dynamic searchable symmetric encryption. In Financial Cryptography and Data Security
(FC ’13).

[Kamara et al., 2012] Kamara, S., Papamanthou, C., and Roeder, T. (2012). Dynamic
searchable symmetric encryption. In ACM Conference on Computer and Communica-
tions Security (CCS ’12). ACM Press.

[Kasiviswanathan et al., 2013] Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and
Smith, A. (2013). Analyzing graphs with node differential privacy. In TCC, pages 457–
476.

[Katz and Lindell, 2008] Katz, J. and Lindell, Y. (2008). Introduction to Modern Cryptog-
raphy. Chapman & Hall/CRC.

[Kerschbaum et al., 2013] Kerschbaum, F., Härterich, M., Grofig, P., Kohler, M., Schaad,
A., Schröpfer, A., and Tighzert, W. (2013). Optimal re-encryption strategy for joins in
encrypted databases. In DBSec, pages 195–210.

[Kurosawa and Ohtaki, 2012] Kurosawa, K. and Ohtaki, Y. (2012). Uc-secure searchable
symmetric encryption. In Financial Cryptography and Data Security (FC ’12), Lecture
Notes in Computer Science, pages 285–298. Springer.

111

[Kuzu et al., 2014] Kuzu, M., Islam, M. S., and Kantarcioglu, M. (2014). Efficient privacy-
aware search over encrypted databases. CODASPY, pages 249–256.

[Kyrola and Guestrin, 2014] Kyrola, A. and Guestrin, C. (2014). Graphchi-db: Simple
design for a scalable graph database system - on just a PC. CoRR, abs/1403.0701.

[Leskovec et al., 2005] Leskovec, J., Kleinberg, J. M., and Faloutsos, C. (2005). Graphs
over time: densification laws, shrinking diameters and possible explanations. In KDD,
pages 177–187.

[Li et al., 2014] Li, R., Liu, A. X., Wang, A. L., and Bruhadeshwar, B. (2014). Fast
range query processing with strong privacy protection for cloud computing. PVLDB,
7(14):1953–1964.

[Lichman, 2013] Lichman, M. (2013). UCI machine learning repository.

[Lindell and Pinkas, 2000] Lindell, Y. and Pinkas, B. (2000). Privacy preserving data min-
ing. In Proceedings of the 20th Annual International Cryptology Conference on Advances
in Cryptology (CRYPTO ’00), pages 36–54, London, UK. Springer-Verlag.

[Liu et al., 2015a] Liu, A., Zheng, K., Li, L., Liu, G., Zhao, L., and Zhou, X. (2015a).
Efficient secure similarity computation on encrypted trajectory data. In ICDE, pages
66–77.

[Liu et al., 2014] Liu, C., Huang, Y., Shi, E., Katz, J., and Hicks, M. W. (2014). Automat-
ing efficient ram-model secure computation. In IEEE SP, pages 623–638.

[Liu et al., 2015b] Liu, C., Wang, X. S., Nayak, K., Huang, Y., and Shi, E. (2015b).
Oblivm: A programming framework for secure computation. In IEEE SP, pages 359–376.

[Liu and Terzi, 2008] Liu, K. and Terzi, E. (2008). Towards identity anonymization on
graphs. In SIGMOD Conference, pages 93–106.

[Low et al., 2010] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Heller-
stein, J. M. (2010). Graphlab: A new framework for parallel machine learning. In UAI,
pages 340–349.

[Malewicz et al., 2010] Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn,
I., Leiser, N., and Czajkowski, G. (2010). Pregel: a system for large-scale graph process-
ing. In SIGMOD, pages 135–146.

[Menezes et al., 1996] Menezes, A., van Oorschot, P. C., and Vanstone, S. A. (1996). Hand-
book of Applied Cryptography. CRC Press.

[Mouratidis and Yiu, 2012] Mouratidis, K. and Yiu, M. L. (2012). Shortest path compu-
tation with no information leakage. PVLDB, pages 692–703.

[Murat Kantarcioglu, 2004] Murat Kantarcioglu, C. C. (2004). Privacy-preserving dis-
tributed mining of association rules on horizontally partitioned data. TKDE, 16:1026–
1037.

112

[Naveed et al., 2014] Naveed, M., Prabhakaran, M., and Gunter, C. (2014). Dynamic
searchable encryption via blind storage. In Oakland S& P 2014.

[Paillier, 1999] Paillier, P. (1999). Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology – Eurocrypt ’99, volume 1592 of Lecture
Notes in Computer Science, pages 223–238. Springer-Verlag.

[Pang and Ding, 2014] Pang, H. and Ding, X. (2014). Privacy-preserving ad-hoc equi-join
on outsourced data. ACM Trans. Database Syst., 39(3):23:1–23:40.

[Popa et al., 2011] Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakrishnan, H.
(2011). Cryptdb: protecting confidentiality with encrypted query processing. In SOSP,
pages 85–100.

[Potamias et al., 2009] Potamias, M., Bonchi, F., Castillo, C., and Gionis, A. (2009). Fast
shortest path distance estimation in large networks. In CIKM, pages 867–876.

[Przulj et al., 2004] Przulj, N., Wigle, D. A., and Jurisica, I. (2004). Functional topology
in a network of protein interactions. Bioinformatics, 20(3):340–348.

[Qi et al., 2013] Qi, Z., Xiao, Y., Shao, B., and Wang, H. (2013). Toward a distance oracle
for billion-node graphs. In VLDB, pages 61–72.

[Ren et al., 2015] Ren, L., Fletcher, C. W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M.,
and Devadas, S. (2015). Constants count: Practical improvements to oblivious ram. In
USENIX Security.

[Rivest et al., 1978] Rivest, R., Adleman, L., and Dertouzos, M. (1978). On data banks
and privacy homomorphisms. In Foundations of Secure Computation, pages 169–180.

[Samanthula et al., 2014] Samanthula, B. K., Jiang, W., and Bertino, E. (2014). Privacy-
preserving complex query evaluation over semantically secure encrypted data. In ES-
ORICS, pages 400–418.

[Sarwat et al., 2012] Sarwat, M., Elnikety, S., He, Y., and Kliot, G. (2012). Horton: Online
query execution engine for large distributed graphs. In ICDE, pages 1289–1292.

[Shanks, 1971] Shanks, D. (1971). Class number, a theory of factorization, and genera. In
1969 Number Theory Institute, pages 415–440. Providence, R.I.

[Shao et al., 2013] Shao, B., Wang, H., and Li, Y. (2013). Trinity: a distributed graph
engine on a memory cloud. In SIGMOD, pages 505–516.

[Shen and Yu, 2013] Shen, E. and Yu, T. (2013). Mining frequent graph patterns with
differential privacy. In KDD 2013, pages 545–553.

[Shi et al., 2007] Shi, E., Bethencourt, J., Chan, H. T., Song, D. X., and Perrig, A. (2007).
Multi-dimensional range query over encrypted data. In IEEES&P, pages 350–364.

113

[Song et al., 2000] Song, D., Wagner, D., and Perrig, A. (2000). Practical techniques for
searching on encrypted data. In Oakland S & P, pages 44–55.

[Stefanov et al., 2014] Stefanov, E., Papamanthou, C., and Shi, E. (2014). Practical dy-
namic searchable encryption with small leakage. In Network and Distributed System
Security Symposium (NDSS ’14).

[Thorup and Zwick, 2005] Thorup, M. and Zwick, U. (2005). Approximate distance ora-
cles. Journal of the ACM, 52(1):1–24.

[Tu et al., 2013] Tu, S., Kaashoek, M. F., Madden, S., and Zeldovich, N. (2013). Processing
analytical queries over encrypted data. PVLDB, 6(5):289–300.

[Vaidya and Clifton, 2005] Vaidya, J. and Clifton, C. (2005). Privacy-preserving top-k
queries. In ICDE, pages 545–546.

[Vaidya et al., 2008] Vaidya, J., Clifton, C., Kantarcioglu, M., and Patterson, A. S. (2008).
Privacy-preserving decision trees over vertically partitioned data. TKDD, 2(3).

[Wang et al., 2014] Wang, X. S., Nayak, K., Liu, C., Chan, T. H., Shi, E., Stefanov, E.,
and Huang, Y. (2014). Oblivious data structures. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pages 215–226.

[Wong et al., 2009] Wong, W. K., Cheung, D. W.-l., Kao, B., and Mamoulis, N. (2009).
Secure knn computation on encrypted databases. In SIGMOD, pages 139–152.

[Wong et al., 2014] Wong, W. K., Kao, B., Cheung, D. W., Li, R., and Yiu, S. (2014).
Secure query processing with data interoperability in a cloud database environment. In
SIGMOD, pages 1395–1406.

[Yao et al., 2013] Yao, B., Li, F., and Xiao, X. (2013). Secure nearest neighbor revisited.
In ICDE, pages 733–744.

Curriculum Vitae of Xianrui Meng

Address MCS 207,111 Cummington Mall
Department of Computer Science, Boston University
Boston, 02215, MA, US

Email xmeng@bu.edu

Website http://cs-people.bu.edu/xmeng

Education Ph.D in Computer Science
· Boston University, Sep. 2010 – July. 2016
· Advisor: Prof. George Kollios
· Thesis Topic: Privacy-preserving queries on encrypted databases

Master of Science in Computer Science
· Boston University, Sep. 2010 – Jan. 2013
· Advisor: Prof. Steven Homer

Bachelor of Science in Mathematics and Computer Science
· Bloomsburg University of Pennsylvania, Sep. 2006 – May. 2010
· Advisor: Prof. William Calhoun

Research
Interests

Database Security and Privacy, Applied Cryptography
Graph Database Management, Query Optimization, Cloud computing

Research
Experience

Research Assistant, Sep. 15 – Jul. 16
· NSF CNS-1414119

Research Assistant, Sep. 14 – May. 15
· NSF CISE IIS-1320542

Research Assistant, Sep. 13 – Aug. 14
· NSF 1012910

Research Assistant, Sep. 12 – Aug. 13
· NSF CNS-1017529

Teaching
Experience

Teaching Fellow, 2014 Spring
· CS 330: Introduction to Algorithms

Teaching Fellow, 2012 Fall
· CS 235: Algebraic Algorithms

115

Teaching Fellow, 2011 Fall
· CS 101: Introduction to Computer Science

Teaching Fellow, 2011 Spring
· CS 111: Introduction to Computer Science I

Teaching Fellow, 2010 Fall
· CS 101: Introduction to Computer Science

Services External Reviewer
· SIGMOD: 2016, 2015, 2014
· TKDE: 2015, 2014
· VLDB 2015, 2014
· ICDE: 2016, 2015, 2014
· EDBT: 2016, 2015
· EUROCRYPT: 2013
· ASIACRYPT: 2014

1.Publications Xianrui Meng, Haohan Zhu, George Kollios. Secure Top-k Query Pro-
cessing on Encrypted Databases. eprint arXiv: CoRR abs/1510.05175.
2015. (Under Review)

2. Haohan Zhu, Xianrui Meng, George Kollios. NED: An Inter-
Graph Node Metric Based On Edit Distance. eprint arXiv: CoRR
abs/1602.02358. 2016. (Under Review)

3. Xianrui Meng, Seny Kamara, Kobbi Nissim, George Kollios. GRECS:
Approximate Shortest Distance Queries On Encrypted Graphs. 22nd ACM
Conference on Computer and Communications Security (CCS), Denver,
Colorado, USA, October 2015

4. Haohan Zhu, Xianrui Meng, George Kollios. Privacy Preserving Simi-
larity Evaluation of Time Series Data. EDBT 2014: 499-510.

5. Benjamin Fuller, Xianrui Meng, Leonid Reyzin. Computational Fuzzy
Extractors. ASIACRYPT 2013.

6. Xianrui Meng Security and Privacy Aspects Of Mobile Application For
Post-Surgical Care. Boston University Technical Report.

	Introduction
	Notation and Preliminaries
	Notations
	Cryptographic Tools
	Encryption
	Pseudo-random functions

	Graph Encryption for Approximate Shortest Distance Queries
	Graph Encryption
	Related Work
	Graph privacy
	Distance oracles

	Distance Oracles for Shortest Distance Computation
	Sketch-based oracles.
	The Das Sarma et al. oracle.
	The Cohen et al. oracle
	Shortest distance queries

	Distance Oracle Encryption
	Security
	Leakage
	Efficiency

	GRECS Constructions
	A Computationally-Efficient Scheme
	Security and efficiency.
	A Communication-Efficient Scheme
	Error Detection
	A Space-Efficient Construction

	Experimental Evaluation
	Datasets
	Overview
	Performance of GraphEnc1
	Performance of GraphEnc2
	Performance of GraphEnc3
	Approximation errors

	Application to Other Graph Queries
	All-Distance Sketches
	Graph Similarity Queries using All-Distance Sketches
	Graph Encryption based on ADS

	Top-k Query Processing on Encrypted Relational Databases
	Introduction
	Related Works and Background
	Preliminaries
	Problem Definition
	The Architecture
	Cryptographic Tools
	No-Random-Access (NRA) Algorithm

	Scheme Overview
	Encrypted Hash List (EHL)
	Database Encryption
	Query Token
	Top-k Query Processing
	Query Processing: SecQuery
	Building Blocks

	Security Discussion
	Query Optimization
	Efficient SecDupElim
	Batch Processing for SecQuery
	Efficiency

	Experiments
	Evaluation of the Encryption Setup
	Query Processing Performance

	Top-k Join
	Secure Top-k Join
	Encryption Setup for Multiple databases
	Query Token
	Query Processing for top-k join
	Related works on Secure Join

	Top-k Query Processing Conclusion

	Conclusions
	Future Directions

	List of Journal Abbreviations
	Bibliography
	Curriculum Vitae of Xianrui Meng

