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The arrival of new technologies related to smart grids and the resulting ecosystem of applications and

management systems pose many new problems. The databases of the traditional grid and the various

initiatives related to new technologies have given rise to many different management systems with sev- 

eral formats and different architectures. A heterogeneous data source integration system is necessary to

update these systems for the new smart grid reality. Additionally, it is necessary to take advantage of the

information smart grids provide. In this paper, the authors propose a heterogeneous data source integra- 

tion based on IEC standards and metadata mining. Additionally, an automatic data mining framework is

applied to model the integrated information.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

The traditional systems in power distribution grids usually have

databases with different data structure. The new technologies re-

lated to Smart Grids have provided the opportunity of new and

advanced functions. Although these new systems are based on the

usage of sensor networks and information systems, the systems

need the information from older systems, integrating information

from heterogeneous data sources. In this sense, there are several

problems which need to be solved: 

- Information integration. The new systems need to take advan-

tage of old and new data sources. Thus, the integration of

these heterogeneous data sources is very difficult, because each

database has their own structure. This data source should be

translated to a common format. In this way, the information

standards provide a good source for a Common Information

Models (CIM).

- Data model definition incomplete. The data structures and

models of relational databases are not often completely im-

plemented. Frequently, there are several things lacking in the

database structure: foreign keys, primary keys, constraints of

specific columns, etc. The lack of any of these components

makes it more difficult to understand stored information, al-
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though, these lacks make the implementation of interfaces eas-

ier, because, for example, the joining of tables can be performed

in queries. 

- Understanding of database models. Each system involved in

power distribution grids usually has a different structure:

charging management for electrical vehicles ( Richardson, Flynn,

& Keane, 2012; Sousa, Morais, Vale, Faria, & Soares, 2012 ), en-

ergy management systems for buildings ( La, Chan, & Soong,

2016; Wang, Wang, & Yang, 2012 ), and distribution systems

( Zidan & El-Saadany, 2012 ). The use of information standards

simplifies the understanding information stage, in any process

of system, data mart or modelling development. The informa-

tion standards provide a CIM to store all information about

the power grid and management systems, for example: Inter-

national Electrotechnical Committee (IEC) with 61,970, 61,968

and 62,325, and Distributed Management Task Force (DMTF).

- Evolution of technologies. Currently, the development of new

technologies is faster than the market’s ability to apply them,

being more evident in the electrical distribution field. Particu-

larly, the technologies related to information management de-

veloped for power distribution companies needs to evolve the

systems to take advantage from the new functionalities.

- Modelling information. The new technologies based on Smart

Grid systems increase the volume of databases. These databases

need powerful algorithms to model the information. Addition-

ally, the information from older system provides several refer-

ences in order to evaluate the impact of these new technolo-
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gies, i.e. by means of Key Performance Indicators (KPI), or to

get better models. 

In this paper, a novel method to solve these problems is pro-

osed. The system is based on the automatic characterization of

etadata in order to discover structural and semantic relationships

hich were previously unknown. Additionally, this process discov-

rs information about parameters and their patterns in order to

stablish the corresponding level of importance. This definition is

ery similar to data mining concept. Thus, this process is named

etadata mining. The system includes several data mining tools to

odel information for classification, outlier detection, pattern de-

ection, forecasting, or information retrieval based on the level of

mportance established by metadata mining process. Although, the

rocess could get a low success ratio with some models, the results

f this process will help in understanding the information and fo-

us the manual modelling, decreasing the economic and time cost

f the modelling process. 

The following section gives a bibliographical review of some

eferences related to the topic. Next, the metadata mining process

s described with the characterization of each entity on the data

ource. Additionally, the integration process and data mining appli-

ation are described. Finally, an application to a case in the power

ector is shown. 

. Bibliographical review

The main research related to metadata mining applies to

ocuments ( Campos & Silva, 20 0 0 ) and multimedia contents

 Wong, 1999 ). The goal of these studies is knowledge discov-

ry ( Yi, Sundaresan, & Huang, 20 0 0 ) or content classification

 Yi & Sundaresan, 20 0 0 ). Additionally, there are many references

bout usage of metadata over several types of contents: ( ̧S ah

 Wade, 2012 ) proposed a novel automatic metadata extraction

ramework, which is based on a novel fuzzy based method for

utomatic cognitive metadata generation and uses different docu-

ent parsing algorithms to extract rich metadata from multilingual

nterprise content. ( Asonitis, Boundas, Bokos, & Poulos, 2009 ) pro-

osed an automated tool for characterizing news video files, using

etadata schemas. 

Alemu and Stevens (2015 ) proposed an efficient metadata fil-

ering in order for users to effectively utilise metadata and thus

nhance the findability and discoverability of information ob-

ects. Fermoso et al. (2009 ) proposed a new software tool called

DS (eXtensible Data Sources) that integrates data from relational

atabases, native XML databases, and XML documents. This frame-

ork integrates all information from heterogeneous databases to

 XML-based format, such as MODS (Metadata Object Description

chema). 

Models and algebras are proposed by some references, in or-

er to provide tools for heterogeneous data integration. For exam-

le, in the case of models, Liu, Liu, Wu, and Ma (2013 ) proposed a

eterogeneous Data Integration Model (HDIM) based on the com-

arison and analysis of the current existing data integration ap-

roaches. On this HDIM, a pattern-mapping-based system called

DMP is designed and implemented. This approach tries to im-

rove the rapid development of the Internet of Things (IoT), and

u and Song (2010 ) proposed a heterogeneous data integration for

mart grids. The authors described a model based on XML and on-

ology combined with cloud services to solve the heterogeneous

roblem from the syntax and semantics. The authors tested with

upervisory Control and Data Acquisition (SCADA) data to validate

he model. 

In the case of algebras, Tang, Zhang, and Xiao (2005 ) proposed

 capability object conceptual model to capture a rich variety of

uery-processing capabilities of sources and outline an algebra to
ompute the set of mediator-supported queries based on the capa-

ility limitations of the sources they integrate. This algebra is used

n several references. 

Additionally, there are a number of studies and research re-

ated to heterogeneous data integration based on, for instance, XML

 Fengguang, Xie, & Liqun, 2009 ) ( Su, Fan, & Li, 2010 ) ( Lin, 2009 ),

ucene and XQuery ( Tianyuan, Meina, & Xiaoqi, 2010 ), and OGSA-

AI ( Gao & Xiao, 2013 ). In the same way, heterogeneous data in-

egration has applications to many areas, such as Livestock Prod-

cts Traceability ( Chen & Liu, 2009 ), safety production ( Han, Tian,

 Wu, 2009 ), management information systems ( Hailing & Yu-

ie, 2012 ), medical information ( Shi, Liu, Xu, & Ji, 2010 ), and web

nvironments ( Fan & Gui, 2007 ). 

There are also examples of the application of data mining

ixed with heterogeneous data source integration. Cao, Chen, and

iang (2007 ) proposed a framework of a self-Adaptive Heteroge-

eous Data Integration System (AHDIS), based on ontology, seman-

ic similarity, web service and XML techniques, which can be reg-

lated dynamically. Merrett (2001 ) used OLAP and data mining to

llustrate the advantages for the relational algebra of adding the

etadata type attribute and the transpose operator. 

In relation with the application of data mining techniques au-

omatically over integrated information, Li, Kang, and Gao (2007 )

roposed a high-level knowledge modelled by ordinary differen-

ial equations (ODEs) discovered in dynamic data automatically

y an Asynchronous Parallel Evolutionary Modelling Algorithm

APHEMA). The data mining techniques are mainly used to forecast

arameters. Hoiles and Krishnamurthy (2015 ) proposed a nonpara-

etric demand forecasting based on Least Squares Support Vec-

or Machine (LS-SVM). Chen, Li, Lau, Cao, and Wang (2010 ) pro-

osed detecting automated load curve data cleansing based on the

-Spline smoothing and Kernel smoothing to automatically cleanse

orrupted and missing data.

Some commercial-strength DataBase Management Systems 

DBMS) and their On-Line Analytical Processing (OLAP) extensions

rovide very good solution to model information. However, all

hese applications implement solutions for modelling with super-

ision of an expert user. This software cannot make an automatic

odelling because the software does not have any information

bout the problem or the information stored in the database. The

roposed metadata mining method provides this information, de-

ermines what parameters or columns are a possible objective of

he data mining model, and what the best technique is to get a

ood model. 

. General description

The proposed system provides a solution for the described

roblems, these problems are related to heterogeneous data

ources and data analysis from smart grids ecosystems. The pri-

ary advantages of this solution are: 

- The integration of information can be performed over any rela-

tional data source.

- The deployment of a smart grid ecosystem or a specific system

in a smart grid is quicker because the system designs a specific

ETL (Extract, Transform, and Load) for the new system based on

standard information.

- The integration of information can be optionally stored in a

data warehouse, with star or snowflake structure.

- The integration of information from different systems in a

smart grid can be performed by the proposed system.

- The integration process can be applied in any distributed sys-

tem with a high security level because the system only uses

metadata.



Fig. 1. Flow and architecture overview.
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- The information of metadata mining can be used to optimize

the original data sources.

- The process provides basic models for each parameter identi-

fied in the data sources, using different data mining and text

mining techniques.

The information flow and architecture is shown in Fig. 1 . The

metadata from data sources is gathered by the metadata mining

engine using the query engine. The metadata are characterized and

classified by means of a Decision Support System. The Decision

Support System (DSS) has several rules that are based on the indi-

cators generated in the metadata mining process and the results of

queries. The DSS has 492 rules: 30 rules in Metadata Mining En-

gine, 352 rules in Dynamic ETL Engine, and 110 rules in Data and

Text Mining Engine. Each of these rules has been obtained from

experience in collaboration in around 20 research projects with

utility companies. The common problem in these projects is the

existence of different relational data sources (95% were relational

databases), with different: data management systems, data model,

scope, and, often, without defined foreign keys. The 30 rules in

Metadata Mining Engine deal with technical metadata. The 352

rules in Dynamic ETL Engine deal with technical and informational

metadata to create and run the ETL. These rules could be classified

into: 

- Dynamic rules. The antecedent and consequence of a dynamic

rule is stored on a table. This really means that each dynamic

rule is applied several times, depending of the coincidences be-

tween available information and the data stored in the dynamic

rule antecedent. In this sense, several sets of rules could be

identified:

◦ 95 rules deal with IEC Common Information Model (CIM).

◦ 83 rules deal with DMTF CIM.

◦ 32 rules deal with IEC CIM extensions.

◦ 36 rules deal with DMTF CIM extensions.

◦ 53 rules deal with constraints.

◦ 33 rules deal with foreign constraints.

- Static rules. These rules only have one antecedent and conse-

quence. There are 20 rules which treat general topics to create

and run the dynamic ETL.
- The 110 rules in Data and Text Mining Engine could be classi-

fied in:

- 96 dynamic rules deal with the selection and application of the

most adequate method for each modelling process, according to

technical and informational metadata and the characterization

performed.

- 14 static rules deal with the analysis of the results of modelling

methods applied.

The static and dynamic rules were generated from experi-

nce on several research projects related with utilities and Smart

rids. These projects are related to Smart Grids ( Personal, Guer-

ero, Garcia, Peña, & Leon, 2014 ), non-technical losses detection

 Guerrero et al., 2011 ) and ( Guerrero et al., 2016 a), Smart Grid

cosystem integration ( Guerrero, Personal, Parejo, García, & León,

016 b), etc. The first prototype of this framework only has a semi-

utomatic process to integrate tables, and the researcher manu-

lly modifies it. After several applications of this prototype, several

onfiguration rules were extracted and the main structure of rules

static and dynamic rules) was designed. The proposed solution

ries to integrate all information from all provided data sources. If

he proposed solution cannot integrate any part of any data source,

t includes the information and trace it to manually define new

ules for these new data sources. The proposed solution is the re-

ult of several iterations and the automatic generation of rules is

n development, but was not applied for this solution. 

When the system has classified all metadata from all data

ources, the Dynamic ETL Engine performs the integration. There

re two possibilities: according to an information standard or data

arehouse (star or snowflake structure). If the user requires it,

he integrated information can be modelled by the Data and Text

ining Engine. This engine performs an analysis according to the

etadata mining information, in order to obtain the best model

or each selected parameter. Thus, following the configuration pro-

ided by the user, the system gathers all metadata from data

ources and provides: 

- A database with integrated information in a specific format.

- A database with different models for each parameter identified.



Fig. 2. Metadata mining process flow chart.
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. Metadata mining

The metadata mining process is based on the metadata in rela-

ional databases. Currently, the method has been successfully ap-

lied in several databases related to power distribution, power

onsumption, energy efficiency, health, and laboratory databases.

he metadata mining methodology is the same in all these cases.

he flow diagram is shown in Fig. 2 . In the case of relational

atabases, this methodology has several steps that are shown in

ig. 2 . 
.1. Relational database identification and metadata extraction 

The proposed system has been tested with relational databases:

ySQL, IBM DB2, Oracle Database, PostgreSQL, Microsoft SQL

erver, and HBase. The identification of the relational database

anagement system provides: 

- Query language.

- Specific considerations about the RDBMS (Relational DataBase

Management System).

- The name and structure of system tables.
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Several queries to extract system tables are performed accord-

ing to the database identified. These queries are automatically gen-

erated according to the identified RDBMS. The system provides two

options to perform the queries: 

- In system in which the RDBMS is not directly accessible, the

system provides a sql script. The user has to run this script in

the command line of the RDBMS. The results of the script usu-

ally are several text files (one per system table) and these text

files are loaded in the system. This information is pre-processed

in order to correct mistakes and format errors.

- The system runs the queries through a connection with RDBMS.

The pre-processing step is easier than in the other case because

the direct connection reduces the mistakes and errors in the

interpretation of extracted information.

This process was simultaneously applied to several data

sources. 

4.2. Execution of grouping queries 

The grouping queries are executed for each column of each ta-

ble to obtain information regarding: 

- The different values of the column.

- The frequency of each value.

- The absolute and relative frequencies of each value.

- Different statistical information about distribution of values.

This information is mixed with information from the previous

step if there is statistical information regarding the column in the

system tables. Occasionally, the statistical information in the sys-

tem tables is empty because the database was not analysed by

RDBMS tools. 

The results of grouping queries are stored in different tables.

For example, the grouping query for column u,k,j in table u,k from

data source u (ds u ) in standard Statement Query Language (SQL)

was 

SELECT column u,k,j , COUNT( ∗) AS counter

FROM table u,k 

GROUP BY column u,k,j 

ORDER BY column u,k,j ; 

ds u table k column k,j

column u,k,j counter

value u,k,j,i v u,k,j,i

Where, u is the data source index, k is the table index, j is the

column index and i is the record index of ds u table k column k,j . This

query provides a table with two columns: column k,j and counter.

The first column contains all the possible values of the column

(value u,k,j,i ). The second column contains the number of the records

which has the corresponding value. This table is stored in the tar-

get database. The name of the table will be a combination of the

table and column names: ds u table k column k,j . 

These queries are separately performed on each column be-

cause of data protection laws. The execution of the queries in each

column avoids crossing the data and obtaining the original register

or original data source. However, these results provide enough in-

formation to know the possible values of column and the pattern

or distribution of values. 

4.3. Characterization process 

The characterization process is executed in several stages by

characterization engine ( Fig. 2 ). In each characterization several

key indicators are generated. These indicators will be used by DSS
n order to stablish the semantic and structural relationships, per-

orming the integration of information. Additionally, these key in-

icators also specify the available parameters for a Data and Text

ining Engine. 

.3.1. Characterization of columns 

The characterization of a column depends on the data type. The

rst step is to classify the column in one of these categories: Nu-

erical, Text, Timestamp, Object, Binary, and Other. 

Each category is characterized according to different indexes

nd statistical information. These categories have the calculation

f some indexes in common: 

- Number of different values (TNV u,k,j ): This parameter is the

number of records of ds u table k column k,j .

- Total Number of Records (TNR u,k,j ): The total number of records

in the original table. This value must be the same for all

column u,k,j from table u,k .

T N R u,k, j = 

ND V u,k, j∑

i =0

v u,k, j,i

- Analysis of null value:

◦ Number of records with null value (NNV u,k,j ) is obtained

by a query: SELECT counter FROM table k column k,j WHERE

isNull(column u,k,j ) ; If query do not return any value NNV u,k,j

will be 0.

◦ Null value frequency (N u,k,j ). Number of records with null

values divided by total number of records.

N u,k, j = 

N N V u,k, j 

T N R u,k, j 

◦ Null value weight (NVW u,k,j ). If NNV u,k,j > 0 then

NVW u,k,j = 1/TNV u,k,j else NVW u,k,j = 0 .

- Analysis of blank value:

◦ Number of records with Blank Value (NBV u,k,j ) is obtained

by a query: SELECT counter FROM table k column k,j WHERE

isBlank(column u,k,j ) ; If query do not return any value NBV u,k,j

will be 0.

◦ Blank value frequency (B u,k,j ). Number of records with blank

values divided by total number of records. B u,k, j =
NB V u,k, j

T N R u,k, j

◦ Blank Value Weight (BVW u,k,j ). If NBV u,k,j is greater than 0

then BVW u,k,j = 1/TNV u,k,j else BVW u,k,j will be 0.

- Analysis of default value: the default values is extracted from

metadata of table k:

◦ Number of records with Default Value (NDV u,k,j ) is obtained

by a query: SELECT counter FROM table k column k,j WHERE

column u,k,j = default_value ; If query does not return any

value NDV u,k,j will be 0.

◦ Default value frequency (D u,k,j ). Number of records with de-

fault values divided by total number of records. This index

is calculated only if the default value is included in the con-

straints of the table.

D u,k, j = 

ND V u,k, j 

T N R u,k, j 

◦ Default Value Weight (DVW u,k,j ). If NDV u,k,j is greater than 0

then DVW u,k,j = 1/TNV u,k,j else DVW u,k,j will be 0

- Analysis of other values:

◦ Relative Useful (RU u,k,j ). Number of different useful values

divided by number of different values. No useful values are:

blanks, nulls, and defaults.

R U u,k, j = N D V u,k, j −
(
N V u,k, j + B V u,k, j + D V u,k, j 

)
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f

◦ Absolute Useful (AU u,k,j ). This indicator is calculated accord-

ing to the value of previous indicators:

A U u,k, j = 1 − −
(
NN V u,k, j + NB V u,k, j + ND V u,k, j 

)
.

◦ Value Frequency (VF u,k,j,i ). For each value:

V F u,k, j,i = v k, j,i / TN R u,k, j

◦ Value Weight (VW u,k,j,i ). If v u,k,j,i is greater than 0 then

VW u,k,j,i = 1/TNV u,k,j else VW u,k,j,i will be 0.

- Enumerable. This index identifies the number of identified cat-

egories in the values of the column. This is very common in

discretized information or in parametric information. A value

of zero determines a column with continuous values.

- Formatted. This indicator determines if there exists any for-

mat in the column values. If the column stored numerical or

time information, the format of this column will be extracted

from metadata information. If the format of the values is not

specified in metadata, the format is inferred by values. Usually,

in this case, a text data type is used in the column, and the

value should be a code, for instance: serial number, identifica-

tion code, etc. The value u,k,j,i is processed character by charac-

ter, each number is replaced by N, each letter is replaced by L,

and any symbol or special character (space character included)

is replaced S.

The profile for numerical columns contains information about

ata type, length, precision, column description, and constraints.

ome statistical information is calculated: histograms, maximum,

inimum, standard deviation, average, median, mode, and varia-

ion coefficient. 

The profile of text columns contains information about data

ype, length, char set, column description, and constraints. Some

tatistical information is calculated: histograms, maximum length,

inimum length, average length, standard deviation length, maxi-

um number of words, minimum number of words, and average

ord length. Additionally, a dictionary is generated using text min-

ng techniques. This dictionary is used to calculate the relationship

oefficient with each column. The text mining technique attempts

o elicit the text field concepts, structured or otherwise. A con-

ept can comprise one or more words which represent an entity

e.g., action, and event). Natural Language Processing (NLP) meth-

ds are used to extract linguistic (e.g., words and phrases) and

on-linguistic (e.g., dates and numbers) concepts. An interesting

eview of this technique and its use in information management

ystems is proposed in Métais (2002 ). The following set of func-

ionalities are included: 

a. Recognition of punctuation errors. These types of mistakes in-

clude the incorrect use of the tilde, the period, the comma, the

point and comma, the dividing bar, etc.

b. Recognition of spelling errors. A grouping fuzzy technology is

applied. When concepts of the text are extracted, words with

similar spelling (referring to the letters that compose it) or that

are closely related are classified together. By applying this algo-

rithm, mistakes of omission of letters, duplication of letters, or

permutation of letters are corrected. This algorithm is used in

the fuzzy relationship coefficient with each column calculation.

Although these mistakes are corrected before storing the con-

ept in the dictionary, they are registered in the system in order to

stablish the level of wording of the column. 

The profile for timestamp columns contains information about

ata type, format, column description, and constraints. Some sta-

istical information is calculated: histograms, minimum, maximum,

verage time period between records, minimum time period be-

ween records, maximum time period between records, values

ith the maximum number of records, values with the minimum
umber of records, average number of records per value, standard

eviation of number of records per value, and vales with the near-

st number of records to average number of records per value. Ad-

itionally, a histogram of the number of records per value is cre-

ted. This histogram is normalized from 0 to 1, dividing the num-

er of records in each value by total number of records. This infor-

ation is used to calculate the relationship coefficient with each

olumn. 

The profile of object columns is used when the column contains

nformation in a specific datatype defined in the RDBMSs. These

ata types are composed by different primitive types. If the system

able contains information about this data type (sometimes this in-

ormation is not accessible) the system associates several profiles

o the column one per primitive type, generating all the informa-

ion previously described in each profile. Arrays are classified in

his category. 

The profile of a binary column is used when the data type of a

olumn stores binary information, for example images, documents,

tc. Currently, the metadata mining only classifies the type of con-

ents into the following categories: 

- Images: if the stored information is about image files

- Documents: if the stored information is about text file docu-

ments

- Video: if the stored information is about video files

- Technical: if the stored information is about technical files

- Other: if the information is not classified in the previous cate-

gories or is encrypted information.

The profile of other columns is used when the column cannot

e classified in the categories above. Normally, these columns are

ot used in the metadata mining process, and they are manually

andled in order to establish a new profile. The encrypted columns

re usually classified in this category. 

.3.2. Characterization of relationships 

The characterization of relationships is based on the constraint

tored in metadata, and the similarity between registered values

f columns. In the second case, several coefficients are calculated

tudying the column name and the values of columns: 

- Fuzzy relationship coefficient with each column. This is an ar-

ray of indexes, one per column in the database. Each element of

this array establishes the relationship between different fields

according to the name of the column. The index calculation

is based in the application of a fuzzy algorithm to match the

column name with other column names. The index can have a

value between 0 and 1; zero indicates that there isn’t any re-

lationship, and one indicates that the columns are related. This

algorithm was described previously, but additionally some rules

in the DSS are used to detect some concepts or terms.

- Relationship coefficient with each column. This is an array of

indexes, one per column in the database. Each element of this

array establishes the relationship between different columns

according to the registered values. First the algorithm compares

the data type, then the values.

- Cardinality. The cardinality of relationship is calculated for each

column. This cardinality is calculated based on the constraint

stored in metadata and in the results of relationships coeffi-

cients previously described.

.3.3. Characterization of tables 

Each table on the selected data source is classified in one of the

ollowing categories: 
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- Parametric information table. The tables of this category con-

tain indexed information about different characteristics. For ex-

ample, the statistical classification of economic activities in the

European Community (NACE) can be used in several tables, and

it could have several columns: ID, SECTOR, SUBSECTOR, CODE,

and DESCRIPTION. In this way, only using a reference to ID it is

possible to obtain all information using a join query.

- Entity information table. These tables contain information

about different entities in the system, for example: contracts,

equipment, etc.

- Personal information table. These tables contain personal infor-

mation that could require privacy protection.

- Historical information table. These tables are characterized by

the utilization of timestamp columns, and they show any regu-

larity in these columns. Some examples include historical data

about consumption, historical data about tasks, etc.

- Complementary information table. These tables contain addi-

tional information for entity, personal, or historical information

tables.

- Bridge table. This table category identifies tables that are only

composed of indexed columns and are usually bridges between

several tables. This is not a good practice in database structure

definition, but it is possible to find some of these cases.

- Orphan table. This category represents the tables that did not

show any relationship with other column tables.

- Dummy table. This category represents tables that cannot be

classified in previously defined categories.

These categories are established by experience in several utility-

related projects. Notwithstanding when the system finds any table

which cannot be classified into these categories it is classified as a

dummy table. In this case, an expert user could review the results

(described in section V) and create a new category if it is neces-

sary. 

Additionally, some indicators are calculated for each table: 

- Total Number of Tables of Data Source (NTDS u , where u is the

data source identification). 

- Number of Table Columns (NTC u,k , where k is the table identi-

fication from data source u ).

- Number of Related Tables of data source (NRT u,k ). This number

is calculated for each table k from data source u . The number

of related tables includes the relationships with a high value in

relationship coefficients (calculated in column characterization).

- Number of Columns with high rate of Relationship (NCR u,k ), this

number is calculated for each table k from data source u . This

number includes the columns with a high value in the relation-

ship coefficients (calculated in column characterization).

- Number of Primary Key (NPK u,k ). Number of primary keys in

the table k from data source u .

- Number of Self-Relationships (NSR u,k ). Number of self-

relationships in table k from data source u .

- Table Relationship Indicator (TRI u,k ). The number of related ta-

bles divided by total number of tables in data source.

T R I u,k = 

NR T u,k 

NT D S u,k 

- Column Relationship Indicator (CRI u,k ). This indicator is calcu-

lated for each table k from data source u . Number of columns

with foreign or primary keys (this includes the columns with a

high rate in the relationships index) divided by the total num-

ber of columns in the table.

C R I u,k = 

NC R u,k 

NC T u,k 
- Key Indicator (KI u,k ). Number of primary keys divided by the

total number of columns in the table.

K I u,k = 

NP K u,k 

NC T u,k 

- Self-Relationship Indicator (SRI u,k ). Indicates the number of re-

cursive relationships.

SR I u,k = 

NS R u,k 

NC T u,k 

.3.4. Characterization of data source 

The characterization of the data source determines the coher-

nce and reliability of the stored information, and it establishes

he different indicators that will be used in automatic application

f data mining techniques. These techniques try to establish mod-

ls for prediction and classification of information. Additionally,

he characterization includes information for automatic integration

ith other data sources. 

- Total Number of Tables (TNT u ).

- Total Number of Columns (TNC u ). Total number of columns in

all tables of the data source u .

T N C u = 

∑ T N T u

k =1 
NC T u,k 

- Database malleable indicator. This indicator establishes the po-

tential for data analysis based on the information stored in the

database. The number of columns with a high rate of useful in-

formation (columns with any possibility of application of any

data mining technique) plus columns without useful informa-

tion but with a high correlation coefficient with useful columns

divided by the total number of columns.

- Database time analysis indicator. This indicator establishes the

potential of temporal analysis. The calculation of this indicator

is very similar to the “Database malleable indicator”. This indi-

cator considers as useful columns those columns with any pos-

sibility of application of any time analysis technique.

- Database classification analysis indicator. This indicator estab-

lishes the potential of application of classification and cluster-

ing techniques. The calculation of this indicator is very similar

to the “Database malleable indicator”. This indicator considers

as useful those columns with any possibility of application of

any classification or clustering technique.

- Database forecasting analysis indicator. This indicator estab-

lishes the potential of application of forecasting techniques. The

calculation of this indicator is very similar to the “Database

malleable indicator”. This indicator considers as useful those

columns with any possibility of application of any forecasting

technique.

- Database text analysis indicator. This indicator establishes the

potential of application of text mining techniques. The calcula-

tion of this indicator is very similar to the “Database malleable

indicator”. This indicator considers as useful those columns

with any possibility of application of any text mining technique.

- Cohesion indicator. This indicator shows the information co-

hesion. The orphan records and tables are used to calculate

this indicator. Additionally, if statistical information about the

database is available, then this indicator is modified adding

columns without queries.

- Replication indicator. This indicator shows the level of redun-

dant information.



Table 1

Results of characterization of tables.

Data source Table name Classification Relationship indicator Column Rel. Ind. Key Ind. Auto-rel. Number of cols. Number of regs.

A EconomicActivity PARAMETRIC 0 .25 0 .17 0 .17 0 6 996

A Contract ENTITY 0 .5 0 .13 0 .06 0 16 11

A HistoricalMeasures HISTORICAL 0 .5 0 .33 0 .33 0 6 11,037,600

A SourceType COMPLEMENTARY 0 .25 0 .17 0 .17 0 6 21

B EconomicActivity PARAMETRIC 0 .14 0 .17 0 .17 0 6 996

B Contract ENTITY 0 .57 0 .24 0 .06 0 17 4

B HistoricalRecharging HISTORICAL 0 .29 0 .4 0 .4 0 5 840,960

B VehicleData PERSONAL 0 .29 0 .25 0 .13 0 8 4

B Tariff PARAMETRIC 0 .29 0 .25 0 .13 0 8 12

B RechargingStation COMPLEMENTARY 0 .29 0 .14 0 .07 0 14 3

B Connector COMPLEMENTARY 0 .29 0 .17 0 .17 0 6 24

C PowerResource COMPLEMENTARY 0 .33 0 .11 0 .11 0 9 3

C HisMeasures HISTORICAL 0 .67 0 .6 0 .6 0 5 3,784,320

C SourceType COMPLEMENTARY 0 .33 0 .2 0 .2 0 5 9

Table 2

Results of characterization of data sources.

Data source Indicators and coefficients

Minable Time analysis Classification analysis Forecasting Text analysis Cohesion Replication

A 0 .82 0 .60 0 .53 0 .70 0 .05 0 .87 0

B 0 .93 0 .72 0 .70 0 .50 0 .10 0 .70 0 .30

C 0 .75 0 .81 0 .41 0 .68 0 .10 0 .98 0
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.3.5. General characterization 

The general characterization establishes the relationship be-

ween all the data sources characterized according to the method

reviously defined. In this characterization, all the previous steps

re repeated, but considering all databases or data sources as the

ole database. The new indicators calculated contain values accord-

ng to all data sources. These new indicators have the prefix ‘gen-

ral’. 

. Decision support system and integration of information

The integration of information from heterogeneous databases is

ccomplished by the application of general characterization in all

lassified databases. This module creates queries to integrate all

nformation from columns and tables based on a decision support

ystem based on 352 rules. This Decision Support System is part

f a Dynamic ETL Engine and it is based on the information gen-

rated in the characterization of metadata mining process and on

he results of several queries. The rules provide the queries to build

he final query that integrates the information from different ta-

les from different data sources. These queries are packed into ETL

ccording to the target RDBMS. All tables with similar characteri-

ation are checked to be grouped according to the calculated car-

inality. These new tables are characterized using the process pre-

iously described. The new values are compared with the original

alues in order to check the integration. 

An example of these rules that involves several queries is

hown below. This rule is used in the characterization of columns,

nd this rule calculates the cardinality of one side of the relation-

hip. Some queries are performed to calculate it. These queries are:

- Select count( table 1 column A,1 .column A,1 ) AS count A from

table 1 column A,1 where not( table 1 column A,1 in (select

table 1 column A,1 .column A,1 from table 1 column A,1 , table 2 column B,2 

where table 1 column A,1 .column A,1 = table 2 column B,2 .column B,2 )); 

- Select min(counter A ) AS min A , max(counter A ) AS

max A , min(counter B ) AS min B , max(counter B )

AS max B from (select table 1 column A,1 .column A,1 ,

table 2 column B, 2 .column B , 2 , sum( table 1 column A, 1 .counter)

counter A , sum( table 2 column B, 2 .counter) counter B 
from table 1 column A, 1 , table 2 column B2 where 

table 1 column A, 1 .column A , 1 = table 2 column B, 2 .column B ,2 group

by table 1 column A, 1 .column A , 1 , table 2 column B, 2 .column B , 2 ) 

The Decision Support System uses the results of these queries

nd the calculated index to establish the cardinality of relation be-

ween column A of Table 1 and column of Table 2 . 

If fuzzy_relationship > = 0 .5 or

relationship_coefficient > = 0 .9 or

exists defined constraint then

If (min A == max A and min A > 1) or 

min A < max A then

(maximum cardinality is N)

endif

If (min A == max A and min A == 1) then 

(maximum cardinality is 1)

endif

If count A < > 0 then

(minimum cardinality is 0)

else

(minimum cardinality is 1)

endif

endif

Currently, the process of checking the validity of the integration

s performed by using several threshold parameters. These param-

ters are specified by the user or analyst. The automatic thresh-

ld parameter adjustment is in the research stage. Additionally, the

ser can filter orphan tables and bridge tables, and avoid bridge ta-

les. 

The system can integrate information in two ways: 

- According to the information of characterization. The system

has been tested with several data sources. The intelligent ETL

engine tries to create databases with star or extended-star ar-

chitecture, in order to generate a data warehouse.

- According to the information of characterization and an infor-

mation standard. Currently, the system only works with power

distribution information standards. This system has been tested

with information related to utilities, energy management, and

information systems. The intelligent ETL engine can follow two

standards: IEC CIM based on IEC 61,970 and 61,968 or DMTF

CIM based on version 2.44.1 (but only applied to power grids).
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Currently, the utilization of other standards for health (HL7 and

OpenEHR) are in the research stage. 

The integration of information includes several tables with in-

formation of characterization. This information was generated in

metadata mining. The added tables are: 

- GEN_CHAR. This table contains one record per data source, and

contains information about the calculated indicators and data

source description.

- DB_CHAR. This table contains one record per database, and con-

tains information about the calculated indicators and database

information. It is associated with data source described in

GEN_CHAR.

- TAB_CHAR. This table contains one record per table, and con-

tains information about the calculated indicators, relationship

information, and table information. It is associated with data

source (GEN_CHAR) and database (DB_CHAR).

- COL_CHAR. This table contains one record per column, and con-

tains information about the calculated indicators, relationship

information, and table information. It is associated with data

source (GEN_CHAR), database (DB_CHAR), datatype (DT_CHAR),

and table (TAB_CHAR)

- CONS_CHAR. This table contains one record per constraint, and

contains information about constraints and the associated table

and column. It is associated with column (COL_CHAR) and table

(TAB_CHAR).

- DT_CHAR. This table contains one record per component of data

type, and contains information about data types.

Additionally, the information from the integrated resource is

described by similar tables with ‘I’ prefix: I_DB_CHAR, I_TAB_CHAR,

I_COL_CHAR, I_CONS_CHAR, and I_DT_CHAR. 

These tables have several additional columns to store informa-

tion that will be generated in the data mining stage. 

6. Data mining

The data mining module is guided by information generated in

the characterization stage, supported by a DSS based on 110 rules.

In the first place, a feature selection is performed to associate a

support index to each column. This feature selection is performed

for each column as a target. In this way, each column has one value

associated to it. 

Currently, a threshold is manually specified to use the differ-

ent columns and it is based on experience. The variation of this

threshold takes effect in the accuracy of data mining results, gen-

erating models that could not be useful, with a high error rate,

and computational time wasting. Although, the threshold is based

on experience it has not been optimized. The value of threshold

is set in order to ensure good models, which addressed the stud-

ies over the data. Thus, the data analyst could use these models

as a starting point. The application of automatic methods for opti-

mization of this threshold is in the research stage and is focused

in parametric optimization based on fuzzy techniques and evolu-

tionary computation. 

Additionally, according to the characterization performed, sev-

eral methods are applied to obtain models. This module has been

implemented in an SPSS Modeler ( IBM SPSS Modeler 16 Algo-

rithms Guide , n.d. ) and Python ( IBM SPSS Modeler 16 Python Script-

ing and Automation Guide , n.d. ). In this way, the applied algo-

rithms or techniques are: Anomaly detection ( Chandola, Baner-

jee, & Kumar, 2009 ), apriori ( Agrawal & Srikant, 1994 ), bayesian

network ( Pearl, 20 0 0 ), C5.0, 1 Carma ( Hidber, 1999 ), C&R Tree
1 http://www.rulequest.com/.

h  

t  
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 Breiman, Friedman, Stone, & Olshen, 1984 ), Chi-squared Auto-

atic Interaction Detector or CHAID ( Kass, 1980 ), Cluster eval-

ation (based on silhouette coefficient, sum of squares error or

SE, sum of squares between or SSB, and predictor importance),

OXREG ( Cox, 1972 ), Decision List, Discriminant, Factor Analysis

PCA) ( Geiger & Kubin, 2012 ), Generalized Linear Models, Gen-

ralized linear mixed models ( Madsen & Thyregod, 2010 ), K-

eans ( MacQueen, 1967 ), Kohonen ( Kohonen, 1982 ), Logistic Re-

ression ( Freedman, 2005 ), KNN ( Pan, McInnes, & Jack, 1996 ),

inear modelling ( Belsley, Kuh, & Welsch, 2013 ), neural net-

ork ( Haykin, 1994 ), optimal binning ( Usama M. Fayyad, 1993 ),

Quick, Unbiased, Efficient Statistical Tree” or QUEST ( Loh &

hih, 1997 ), linear regression, Sequence, Self-learning response

odel or SLRMs, support vector machine (SVM), temporal ca-

ual modelling algorithms ( Arnold, Liu, & Abe, 2007 ), time series

 Box, Jenkins, & Reinsel, 2008 ), and TwoStep cluster ( Chiu, Fang,

hen, Wang, & Jeris, 2001 ). 

The selection and application of techniques is controlled by an

mplemented Python, based on thresholds over different Metadata

ining parameters. Thus, it is based on two criteria: 

- The error rate of each generated method.

- The correlation between the model and the target.

Additionally, the generation of models can be personalized by: 

- Specification of time limit in model generation.

- Specification of memory limit in model generation.

- Manual filtering of non-desired targets.

- Establishing a limit in the number of parameters to consider in

the modelling process.

- Manual filtering of non-desired algorithms or techniques.

. Experimental results

The proposed system was applied to several data sources re-

ated to power distribution. In different projects related to util-

ties, this framework has evolved until the framework presented

n this paper. There are several problems in the application of

his solution in companies. Firstly, the availability of database sys-

ems is very low. The commercial databases are busy with gen-

ral management tasks (billing, memberships, withdrawals, field

orks, etc.). These tasks spend all the resources during daylight

ours. During night hours, the backup process spends more time.

t is very difficult to find an availability time window to perform

ny other task. Secondly, the data protection laws are a very seri-

us issue. These laws ban sharing or crossing the data with other

ystems (or, in some cases, from other departments) or other com-

anies. Thus, if the integration should be performed by an exter-

al system, this system must guaranteed that the data protection

aws are accomplished. This means the original information could

ot be restored in external systems. Thirdly, the accessibility of in-

ormation in this type of systems is very difficult because of the

ybersecurity levels. The data extraction is essential to execute any

ntegration of information. The data extraction stage depends on

hether there is a direct connection to the data source. When the

ata source is protected, and it is not possible to have a direct con-

ection or remote connection. In these cases in the proposed solu-

ion the queries are executed by a script generated by the system,

nd the user runs the script on an authorized client. The script

rovides several text files with information from each table. The

ser loads these files onto the system. However, when the system

as a direct or remote connection with the data source, the extrac-

ion is automatically performed with authorization from the user,

nd the data protection laws are fulfilled. 

http://www.rulequest.com/


Fig. 3. UML diagram for Source A.

Fig. 4. UML diagram for Source B.
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The utility companies have a lot of databases related to differ-

nt aspects of business, and maybe volumes of several thousands

f tables. However, it is very difficult to reach a number of several

housands of tables. Thus, to test the proposed solution a special

ase is selected. Although this is a real case, it has a low rate of

ata protection and confidentiality. This case shows the strengths

nd weaknesses of the proposed solution. The data sources were

elated to (some columns were omitted because of a confidential-

ty agreement): 

- Source A: Consumer historical information. This data source

contains information about consumers: historical consumption

data and contract information. This data source has four tables:

contract information, historical data, and two parametric tables.

The UML diagram is shown in Fig. 3 . The foreign keys and in-

terrelations between tables were not established by constraints;
the authors indicate the relations in order to make a better pre-

sentation of the data source. 

- Source B: Recharging stations usage information. This data

source contains information about consumption at a recharging

station. This data source has six tables: recharging station infor-

mation, contractual information, vehicle information, consump- 

tion information, and three parametric tables. The UML diagram

is shown in Fig. 4 . The foreign keys and interrelations between

the tables were not established by constraints; the authors in-

dicate the relations in order to make a better presentation of

the data source.

- Source C: Generation data from different source types. This data

source contains information about wind and photovoltaic gen-

eration data. This data source has three tables: historical infor-

mation, source information, and a parametric table. The UML

diagram is shown in Fig. 5 . The foreign keys and interrelations



Fig. 5. UML diagram for Source C.
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between the tables were not established by constraints; the au-

thors indicate the relationship in order to make a better presen-

tation of the data source. 

After the metadata mining process and the characterization

stage, the results for each data source are shown in Tables 1 and

2 . The information in Tables 1 and 2 is only regarding tables and

databases. This information is evaluated by a decision support sys-

tem. The information about columns has been omitted because of

a confidentiality agreement. 

In Table 1 , the number of records shows what the greatest ta-

bles in each source are. All these sources are historical information.

The relationship indicator and the column relationship indicator

show the interrelation level of the table. If the relationship indi-

cator is near to 1, the structure of the database will be near a star

or snowflake structure. The column relationship indicator identifies

the number of columns that is needed to define a record. The sys-

tem combines this indicator with the data type of each column to

estimate the maximum size of the table. The self-relationship in-

dicator shows the reflexive relationships. The sources do not have

any reflexive relationships. 

In Table 2 , the coefficients and indicators were calculated ac-

cording to the results of previous characterization processes. In this

case, all the sources showed a high rate of possibilities for applica-

tion of data mining techniques. They show a high rate of cohesion

and low rate of replication. The best punctuation is for time analy-

sis and forecasting. Thus, the decision support system selected the

methods related to time analysis and forecasting to apply in the

data mining stage. 

These data sources were in different RDBMSs: Microsoft SQL

Server, MySQL, and Oracle. The integration was performed in an

HBase. 

Following the IEC Standards, seventeen tables were created:

PowerSystemResources, Mesaurement, Terminal, Analog, Analog-

Value, AnalogLimitSet, Accumulator, AccumulatorValue, Accumula-

torLimit, AccumulatorLimitSet, StringMeasurement, StringMeasure-

mentValue, Discrete, DiscreteValue, ValueAliasSet, ValueToAlias,

and MeasurementValueSource. There is no table about quality of

measurement because there was no table about quality. Addition-

ally the information about the different characterization process

(metadata mining) was added to the database using the tables de-

scribed in the Integration of Information section. 

The data mining modelling was configured to forecasting meth-

ods. This configuration is selected by the system based on the na-

ture of the parameters and the indexes calculated in the metadata

mining process. This situation can be changed however, by the user

adding options for outlier detection, classification, or visualizations.

The results of data mining modelling in each parameter are shown

in Table 3 . In some cases, the system selected several methods be-

cause they have the same evaluation value. Nevertheless the differ-
nt methods were ordered according to the time required for the

odel generation process. 

A regression model was created for the Recharging stations, but

n the test stage the generated model showed a very high error

ate. The algorithm has no information about routes or drivers. 

.1. Performance test 

The proposed solution was designed to work in an architecture

ased on Hadoop or Spark architecture, interacting with Hbase.

owever, it was not deployed in a real cluster of machines. The

luster was implemented with two virtualized servers. The first

erver has an Intel i7 (3 GHz), 16 GB RAM, GTX750 (2GB and 640

UDA cores) and 8 TB of hard disk space. The second server has

n Intel Xeon E5 (2 GHz), 64 GB RAM, Quadro K1200 (4 GB and 512

UDA cores) and 10 TB of hard disk space. The proposed solution

akes advantage of other solutions developed for other projects

 Guerrero et al., 2016 a) in order to integrate the architectures of

adoop and Spark and to take advantage from CUDA cores in some

perations. 

The performance study is based on the application of metadata

ining and data mining processes. The extraction process is per-

ormed but is not included in the performance study. The extrac-

ion process is executed in systems with a high control in data

ccess. These systems have window times in which it is possible

o execute extraction and backup processes. This window times

re sometimes in night hours or, even weekends. Each system has

ts own window times. For these reasons, the performance study

mitted the extraction processes. The metadata mining process is

xecuted in Hadoop and Spark architectures, storing the results in

base. The data mining process is performed by an SPSS Modeler

onnected to the HBase server. Of course, this study is limited by

he proposed hardware, in better and greater architectures the pro-

ess will be faster. 

The Table 4 shows the results for the proposed case, showing

he size of each database, and the time investing in metadata min-

ng. The integration and data mining process took 2.14 h. 

The framework was applied on other sets of data sources in or-

er to compare the evaluation test with bigger data sources. The

esults of this new data sources are shown in Table 5 . The integra-

ion and data mining processes took 50.5 h. 

The results of the performance test provide some interesting

onclusions: 

- The time of metadata mining process depends on the num-

ber of columns ( Fig. 6 ), and the number of fields that contains

dates, timestamps or long texts. The increase of these types of

columns could increase the metadata mining process complex-

ity in time. The influence of Size ( Fig. 7 ) did not show any clear

relation. However, the influence of number of tables ( Fig. 8 )

shows some similarities, but it is not clear in low values.



Table 3

Results of data mining forecasting detected parameters.

Data source Parameter Modelling method Correlation Error

A Authorised car dealer ∗ Linear regression generalized linear model 0 .993 0 .014

A Hotel industry ∗ Regression generalized linear model 0 .993 0 .014

A Technical advice office ∗ Regression generalized linear model 0 .992 0 .017

A General services ∗ Regression generalized linear model 0 .996 0 .007

A Communication office ∗ Regression generalized linear model 0 .99 0 .019

A Power generation company office ∗ Regression generalized linear model 0 .955 0 .087

A Authorised car dealer (without garage) ∗ Regression generalized linear model 0 .971 0 .058

A Consulting office Neural network (multilayer perceptron) 0 .961 0 .046

A Main power distribution office ∗ Regression generalized linear model 0 .992 0 .015

A Power distribution office Neural network (multilayer perceptron) 0 .977 0 .046

A Temporary employment agency office ∗ Regression generalized linear model 0 .983 0 .033

B Recharging stations Not useful model

C 20 KW generation plant ∗ Regression generalized linear model 0 .993 0 .014

C 80 KW generation plant ∗ Linear regression generalized linear model 0 .99 0 .019

C 100 KW generation plant ∗ Linear regression generalized linear model 0 .991 0 .018

∗: Several modelling techniques provides similar correlation and error rates. The different techniques based on regression usually 

provide the same model or similar.

Table 4

Results of performance test in the proposed case.

Data source Number of tables Number of columns Size (GB) Metadata mining time (Seconds)

A 4 34 27 .46 1 .34

B 7 73 0 .38 2 .34

C 3 19 9 .17 0 .49

Table 5

Results of performance test in new case.

Data source Number of columns Number of columns Size (GB) Metadata mining time (Seconds)

D 16 382 192 .77 390 .02

E 16 364 169 .57 371 .84

F 16 315 45 .29 322 .35

G 16 321 40 .94 327 .41

L 16 306 29 .69 313 .26

O 1 387 2 .97 392 .07

P 659 5732 16 .46 5622 .12

Q 521 2165 0 .02 2291 .85

Fig. 6. Number of columns and metadata mining time (Seconds) chart.



Fig. 7. Size (GB) and metadata mining time (Seconds) chart.

Fig. 8. Number of tables and metadata mining time (Seconds) chart.
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- The time of integration depends strongly on the total number

of tables and size. If the total number of tables is very high, the

number of relationships is very high, too. If the size increases,

the time invested to translate the information increases, too.

Thus, the ETL Dynamic Engine takes more time to get the fi-

nal integration.

- The time of data mining process depends strongly on the num-

ber of columns involved in the process.

8. Conclusions

Smart grids and the new technologies related to information

management are the future of the new smart services and appli-

cations. Several services and applications of different technologi-

cal levels coexist within the current utility grid. In this sense, it
s necessary to establish techniques that provide the capability to

ntegrate information from different architecture and technological

evels. These technologies increase the robustness of the manage-

ent systems related to the utility grid. 

The metadata mining process is focused on metadata, and tak-

ng advantage of this technology it is possible to make systems

hat integrate the information, according to an information stan-

ard, star, or extended-star structure. Additionally, a system for au-

omatic modelling is provided, based on a previous application of

 metadata mining algorithm. In this way, this technology provides

n easy-to-use and adaptive platform to integrate and model infor-

ation. The models could be improved by adding new information,

nd performing the modelling algorithm. 

In this paper, the proposed system is used in power distribu-

ion, but the future research lines include the application of this
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echnology to other types of database, such as document-based

nd key-value databases. 

. Future research lines

The future research lines are: 

- Test these techniques in other type of utilities.

- Extend these techniques with non-relational databases.

- Extend these techniques to use in health sector.

- Modelling the variation of threshold for automatic data mining

techniques according to the results of metadata mining in order

to increase the accuracy of generated models.

Additionally, the research team is currently researching about

ew techniques to integrate heterogeneous systems at web service

evel ( Guerrero et al., 2016 b). 
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