4 research outputs found

    Controllability pre-verification of silicone soft robots based on finite-element method

    Get PDF
    International audienceSoft robot is an emergent research field which has variant promising applications. However, the design of soft robots nowadays still follows the trial-and-error process, which is not at all efficient. This paper proposes to design soft robots by pre-checking controllability during the numerical design phase. Finite-element method is used to model the dynamics of silicone soft robots, based on which the differential geometric method is applied to analyze the controllability of the points of interest. Such a verification is also investigated via model order reduction technique and Galerkin projection. The proposed methodology is finally validated by numerically designing a controllable parallel soft robot

    FEM-Based Exterior Workspace Boundary Estimation for Soft Robots via Optimization

    Get PDF
    International audienceThis paper investigates the exterior workspace boundary of a soft robot with a certain configuration controlled by equipped bounded actuators. To achieve this, we implement an optimization-based approach on the studied soft robot which has been modeled by the Finite Element Method (FEM). Finally, we provide numerical simulations of various configurations to demonstrate the validity of the suggested technique, which, in comparison to the conventional forward method, may considerably minimize the complexity of exterior workspace boundary estimation

    Model Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges

    Full text link
    Continuum soft robots are mechanical systems entirely made of continuously deformable elements. This design solution aims to bring robots closer to invertebrate animals and soft appendices of vertebrate animals (e.g., an elephant's trunk, a monkey's tail). This work aims to introduce the control theorist perspective to this novel development in robotics. We aim to remove the barriers to entry into this field by presenting existing results and future challenges using a unified language and within a coherent framework. Indeed, the main difficulty in entering this field is the wide variability of terminology and scientific backgrounds, making it quite hard to acquire a comprehensive view on the topic. Another limiting factor is that it is not obvious where to draw a clear line between the limitations imposed by the technology not being mature yet and the challenges intrinsic to this class of robots. In this work, we argue that the intrinsic effects are the continuum or multi-body dynamics, the presence of a non-negligible elastic potential field, and the variability in sensing and actuation strategies.Comment: 69 pages, 13 figure

    Commande dynamique de robots déformables basée sur un modèle numérique

    Get PDF
    This work focuses on modeling and control of soft robots. It covers the entire development of the controller, from the modeling step to the practical experimental validation.From a theoretical point a view, large-scale dynamical systems along with model reduction algorithms are studied. In addition to the theoretical studies, different experimental setups are used to illustrate the results. A cable-driven soft robot and a pressurized soft arm are used to test the control algorithms. Through these different setups, we show that the method can handle different types of actuation, different geometries and mechanical properties. This emphasizes one of the interests of the method, its genericity.Cette thèse s'intéresse à la modélisation et à la commande de robots déformables (robots dont le mouvement se fait par déformation). Nous nous intéressons à la conception de lois de contrôle en boucle fermée répondant aux besoins spécifiques du contrôle dynamique de ces robots, sans restrictions fortes sur leur géométrie. La résolution de ce défi soulève des questions théoriques qui nous amènent au deuxième objectif de cette thèse: développer de nouvelles stratégies pour étudier les systèmes de grandes dimensions
    corecore