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Controllability pre-verification of silicone soft robots based on
finite-element method

G. Zheng, O. Goury, M. Thieffry, A. Kruszewski, C. Duriez

Abstract— Soft robot is an emergent research field which
has variant promising applications. However, the design of soft
robots nowadays still follows the trial-and-error process, which
is not at all efficient. This paper proposes to design soft robots
by pre-checking controllability during the numerical design
phase. Finite-element method is used to model the dynamics of
silicone soft robots, based on which the differential geometric
method is applied to analyze the controllability of the points of
interest. Such a verification is also investigated via model order
reduction technique and Galerkin projection. The proposed
methodology is finally validated by numerically designing a
controllable parallel soft robot.

I. INTRODUCTION

Soft robots are rightly able to adjust their shapes to suit
the task and their environments [1]. The term “soft” means
the robots’ mechanical function relies on using deformable
structures in a way similar to the biological world and
organic materials. The use of deformable materials makes
soft robots very compliant, which provides positive outcomes
that are complementary to traditional rigid robotics. Due to
their compliance, they can access to fragile parts of an envi-
ronment by applying minimal pressure. Their large number
of degrees of freedom and actuators ease the maneuvering
through soft and confined spaces. These make soft robots
relevant for medical and surgical robotics [2], manipulation
of fragile objects, domestic robotics with safer interactions
with humans, arts and entertainment.

Up to now, the design of soft robot is based on nature,
including the elephant’s trunk, the octopus, and the worm
[3]. Compared to rigid robots for which several softwares and
simulation tools, such as Gazebo [4], have been developed
to facilitate its numerical design procedure, the design of
soft robots nowadays still follows the trial-and-error process,
which is not at all efficient, or even time-consuming, since
the functional verification stage can be only effectuated after
the soft robots have been made and assembled. Also, it is
expensive/wasteful in the sense that many materials cannot
be reused if the functionality of fabricated soft robots is
not satisfactory. Therefore, the requirement of an efficient
numerical methodology for soft robot design is necessary.

As a goal, the final prototype of soft robot should be
controllable. Therefore, this issue deserves to be taken into
account during the numerical design phase. The main contri-
bution of this paper is to investigate such a methodology to
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numerically design controllable soft robots. In this paper,
we limit our investigations on soft robot made by solid
deformable materials, such as silicone. Therefore finite-
element method (FEM) is used in the proposed methodology
to model the desired soft robots. Such a choice has been
validated by several designs of soft robots [5], [6], [7], [8],
[9]. After that, using differential geometric method [10], [11],
sufficient condition is deduced to judge whether the selected
points of interest of soft robot can be controllable or not.
Such a condition is discussed both for high-dimensional FEM
model and also for reduced-order model, which is obtained
by applying model order reduction (MOR) technique. In
the literature, MOR is a topic which has been studied in
very different domains, including control community [12],
signal processing [13], mechanics [14] and so on. Different
techniques are proposed, such as reduced basis methods [15],
proper orthogonal decomposition [16], balanced truncation
[17], Krylov subspace methods [18], proper generalized
decomposition [19] etc. Roughly speaking, MOR enables us
to approximate the high-dimensional system with a lower
one by preserving satisfactory properties. In the proposed
methodology, proper orthogonal decomposition will be used
to deduce the reduced-order model via Galerkin projection
[20]. An iterative procedure is proposed in this paper to
numerically design the soft robot by pre-checking the con-
trollability of the selected points of interest. The proposed
methodology is finally applied to numerically design a paral-
lel soft robot for the purpose of highlighting its effectiveness.

II. MODELING AND PROBLEM STATEMENT

Before stating the problem of soft robot design, let us
firstly take a look at the procedure when designing rigid
robots. Imaging that we are going to design a rigid manip-
ulator, as shown in Figure 1 (Left), we can then follow the
following conventional procedure:
[Step 1] Draw the desired mechanics, validate the kinemat-

ics and design the mechatronic components;
[Step 2] Deduce automatically the corresponding dynamical

model (i.e., ordinary differential equation (ODE),
since it is assumed to be rigid);

[Step 3] Analyze the properties based on the obtained model
to judge whether such a configuration can satisfy
user’s requirements, for example, capability to be
controlled;

[Step 4] If yes, we can then synthesize and test the controller
for the numerical model (via numerical simulation
in a virtual environment);
If no, go back to Step 1 to modify the configuration



and repeat the same procedure till the design is
satisfactory.

This is an intuitive and efficient way to design any form of
rigid robots. A natural and interesting question is: ‘Can we
have the similar efficient procedure to design soft robots?’. It
is a huge challenge to answer this question, since the flexible
characteristic of soft robots makes the modeling (Step 2)
quite difficult, and this prevents the developments of Step 3-
4. The objective of this paper is to investigate the difficulties
of this challenge and to propose a first feasible solution, even
if it is limited to certain types of soft robots.

Fig. 1. Robot design scenarios. Left: Rigid manipulator, actuated by
motors; Right: Soft manipulator, actuated by cables

To design a general form of soft robots with solid de-
formable materials (such as silicone), for example a de-
formable manipulator as shown in Figure 1 (Right), how can
we model such an irregular design mathematically? Since the
robot is flexible, it is natural to think about the modeling by
partial differential equation (PDE). Such a choice however
suffers from the following problems

1) It is feasible only for simple cases (such as linear do-
main, homogeneous parameters), and it fails to deduce
automatically the PDE model from irregular shape (for
example the soft manipulator in Figure 1 or the parallel
soft robot presented in Figure 3);

2) Generally, the dynamics of soft robots is nonlinear, and
this nonlinearity makes the modeling by nonlinear PDE
more complex, for which the property analysis becomes
quite difficult;

3) Also, the actuators equipped in soft robots might pro-
vide either boundary or domain (distributed) control
(such as tendon at a point or penetrates inside the robot
body, or pressure actuator...), and this will complicate
again the upcoming analysis of properties for nonlinear
PDE;

4) Another weaknesses of the modeling via nonlinear PDE
would be the lack of well-developed results/software
which enable us to efficiently pre-check the properties
of the desired soft robots by numerical methods. Note
that this pre-check needs to be repeated each time when
the design has been modified (similar to Step 4 for rigid
robot design).

In fact, these problems, related to the modeling of de-
formation for solid continuum materials, have already been
identified in mechanics and addressed using numerical meth-
ods, such as FEM. FEM allows to obtain the dynamics, even
for irregular shapes and complex boundary/domain condi-
tions. So it can capture different types of actuators including

boundary and domain control. In this sense, FEM is a good
candidate to model soft robots made by solid deformable
materials. Also, there already exist certain softwares which
enable us to automatically generate the FEM model for
any shape, and efficiently update the FEM model when
modification is made.

For those reasons, we limit our study on a special class
of soft robots.

Assumption 1. It is assumed that

1) the soft robot is made by homogeneous solid deformable
materials with known homogeneous properties (such as
elasticity, constitutive law and so on);

2) FEM can provide precisely approximate model of soft
robots, by choosing small size of mesh;

3) The robot to be designed is limited by its workspace and
the outputs of actuators are physically bounded.

The above assumption imposed certain limitations of our
study. However, we would like to remark the following facts.

- The item 1) of Assumption 1 might be satisfied, since
the users normally know in advance which material
(and its properties) will be used to fabricate soft robot.
However, the requirement of homogeneous property and
material seems restrictive for the fabrication phase. In
fact, non-homogeneous properties can be also possible
once the user knows well its property and can integrate
it into FEM. The item 1) is imposed only for the
simplicity reason.

- Secondly, with the known properties of solid deformable
materials, it is possible to obtain a precise approximate
model via FEM if the mesh is sufficient small. In other
words, the item 2) of Assumption 1 is also feasible.
Of course, smaller the mesh is chosen, greater the
dimension of FEM model will be. And this will heavily
increase the computation time. However, as we will see
in Section IV, MOR can be applied to highly reduced
the dimension of FEM model;

- Generally, the item 3) of Assumption 1 is always satis-
fied for any mechanical system, including soft robots.

Besides the flexible materials, actuator (to drive soft
robots) is another important issue to be investigated. The type
of actuators and where they are mounted will determine the
controllability (possibility of regulation) of the designed soft
robots. In this sense, it is necessary to simulate numerically
the soft robots, for which a pre-analysis is crucial to deter-
mine the type and the place of the integrated actuators by
checking the controllability. These properties are important
when considering controller design problem in the upcoming
stage.

When designing a soft robot, since the number of actuators
is limited while the number of element is huge, logically
it is not possible to control all elements at the same time.
In most of cases, we only want to control certain points
of interest of soft robots (for example the end-effector of
the flexible manipulator). Therefore, in the design phase,
we are looking for a feasible configuration: with minimum



number of actuators to achieve the easy control of certain
points of interest. Consequently, this paper tries to answer
the following problem: Given a configuration of soft robot
with the equipped actuators (in a virtual environment),
satisfying Assumption 1, does such a configuration enable
us to control certain points of interest?

III. ANALYSIS BASED ON FINITE-ELEMENT MODEL

A. Modeling of soft robots via FEM

Under Assumption 1, for a given configuration of soft
robot, with the equipped actuators, we can then discretize
its space by using finite number of fine elements to deduce
its dynamical model. Following the second law of Newton,
we can use the following nonlinear model to describe its
behavior [5]:

M(q)q̈ +D(q, q̇)q̇ +K(q)q = HT (q)λ (1)

where q ∈ Rnq is the position of the nodes of the mesh,
M(q) is mass matrix which is always invertible, D is
damping matrix, and K(q) represents stiffness matrix.

The damping matrix D(q, q̇) and the tangent stiffness
matrix K(q) are arose from the internal forces of the soft
robot, which depends on the constitutive law of the material
the soft robot is made of. The damping matrix is often
taken as being a linear combination of the mass and stiffness
matrices: D = αM+βK, with the coefficients α and β being
the Rayleigh damping coefficients [7]. H(q) represents the
force directions (including actuators from the robot itself),
and is usually sparse, as it has only non-zero values at
the points where the actuators are applied. λ represents the
magnitude of the actuators.

B. System transformation and differential geometry

Under Assumption 1, given any configuration of soft robot
with the equipped actuators, we can derive the dynamical
model (1) by applying FEM. The objective is then to check
the controllability of certain chosen points, which in fact is
a well-known notion in control community. In order to be
coherent with symbols used in control community, let us note

x =

[
x1

x2

]
=

[
q
q̇

]
, ui = λi

and denote by y ∈ Rp the chosen points of interest:

y = h(x)

It is worthy noting that normally y is a linear function of
x since the points of interest can be freely chosen by the
designer. In this case, we can note as well y = h(x) = Cx.

Reformulating (1) in the new coordinates x, we can then
arrive at

ẋ = f(x) +
∑m

i=1 gi(x)ui
y = h(x)

(2)

where x ∈ D ⊂ Rn with n = 2nq , u = [u1, · · · , um]
T ∈

Rm, y ∈ Rp with m ≥ p, and

f(x) =

[
x2

−M−1(x1)D(x1, x2)x2 −M−1(x1)K(x1)x1

]
[g1, · · · , gm] =

[
0

M−1(x1)HT (x1)

]
System (2) is typically nonlinear, and the concept of

controllability has already been investigated in control com-
munity by applying differential geometric method [10]. The
following will recall some basic notations of such a method.

For system (2), consider f(x) = [f1(x), · · · , fn(x)]
T

as a vector field, i.e. f(x) =
∑n

i=1 fi(x) ∂
∂xi

where ∂
∂xi

denotes the partial derivative in the direction of ei =
[0, · · · , 0, 1, 0, · · · , 0]

T whose ith component is 1. Then for
any function hi(x), its Lie derivative in the direction of f(x)
is defined as

Lf(x)hi(x) =
∂hi(x)

∂x
f(x) =

n∑
j=1

∂hi(x)

∂xj
fj(x)

Iteratively, we can define the jth Lie derivative as Lj
fhi =

LfL
j−1
f hi for j ≥ 1.

For the configuration of soft robot described by the non-
linear system (2) with the chosen points y = h(x) ∈ Rp,
we can then define the relative degree for each hi(x) with
1 ≤ i ≤ p.

Definition 1. [10] For system (2), the relative degree of
hi(x) with 1 ≤ i ≤ p is noted as ri if the following
conditions are satisfied for x ∈ D:

{
LgkL

j−1
f hi = 0, for all 1 ≤ k ≤ m, 1 ≤ j ≤ ri − 1

LgkL
ri−1
f hi 6= 0, ∃k, for 1 ≤ k ≤ m

Then, system (2) is said to have the relative degree r =∑p
i=1 ri.

Using the relative degree, we can introduce the concept of
zero dynamics. Assume that system (2) has relative degree
r =

∑p
i=1 ri , then there exists a change of coordinates

[z, η]
T

=
[
h1, · · · , Lr1−1

f h1, · · · , hp, · · · , L
rp−1
f hp, η

]T
with η ∈ Rn−r being a complementary of z to form a
diffeomorphism (which is not unique), such that system (2)
can be transformed into the following normal form:

żi = Aizi +Bi

[
Lri
f hi +

∑m
k=1 LgkL

ri−1
f hiuk

]
∀i ∈ [1, p]

η̇ = α(z, η) + β(z, η)u
(3)

where z =
[
zT1 , · · · , zTp

]T
, u = [u1, · · · , um]

T , α(z, η) and
β(z, η) are determined by the chosen η, and

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Rri×ri , Bi =


0
0
...
0
1

 ∈ Rri



In control community, the sub-dynamics η is named as
zero dynamics of (3). Let us now define the decoupling
matrix Γ(x) as follows

Γ(x) =

 Lg1L
r1−1
f h1 · · · LgmL

r1−1
f h1

...
. . .

...
Lg1L

rp−1
f hp · · · LgmL

rp−1
f hp

 (4)

based on which we can then state the following result.

Theorem 2. Under Assumption 1, the chosen points for the
configuration of soft robots described by (1) are controllable
if

rank Γ(x) = p,∀x ∈ D (5)

Proof: From (3), it is easy to obtain

Y = Ω(x) + Γ(x)u (6)

with Γ(x) being defined in (4) and

Y =
[
y

(r1)
1 , · · · , y(rp)

p

]T
Ω(x) =

[
Lr1
f h1, · · · , L

rp
f hp

]T
Since Γ(x) ∈ Rp×m with p ≤ m, therefore, the condition
(5) implies that Γ(x)ΓT (x) ∈ Rp×p and

rank Γ(x)ΓT (x) = p,∀x ∈ D

Setting

u = ΓT (x)
[
Γ(x)ΓT (x)

]−1
[−Ω(x) + v]

where v = [v1, · · · , vp]
T is a virtual control input which

can be freely chosen by the designer, then the input-output
relation (6) can be linearized as

y
(ri)
i = vi,∀i ∈ [1, p]

from which we can draw the conclusion that the chosen
points y ∈ Rp are controllable. �

It is worth noting that the rank condition (5) gives only
a sufficient condition to check whether the chosen points
of interest are controllable or not. Also, the verification of
the rank condition (5) depends on the computation of Lie
derivative of hi in the direction of f and gi, which are
normally high dimensional. It is therefore interesting (or even
necessary) to investigate the approach to deduce the order of
system (2).

IV. ANALYSIS BASED ON REDUCED-ORDER MODEL

The key idea of model-order reduction is to seek a low-
dimensional state space where the dynamics of the high-
dimensional system can be almost kept, by neglecting the
states which are hard to be reached and hard to be observed.
The requirements when applying model order reduction are
numerous [21]. First, the approximation error should be
small (in the sense of input-output norm, or least square).
Also, the interested properties, such as stability and passivity,
should be preserved. Especially, the procedure needs to be
computationally efficient, stable and automatic.

For linear system, the well-known balanced-truncation
method can be applied to minimize H∞ and Hankel norms
[21], which however is not any more valid for nonlinear
system described as (2). Here, we adopt the technique based
on Karhunen-Loève transform [22] (named as well POD:
proper orthogonal decomposition [16]). This method enables
us to seek the best approximating low-dimensional subspace
(by solving a H2 optimization problem, which needs only
linear matrix computation even for nonlinear systems), and
then a Galerkin projection can be applied to obtain low-
dimensional nonlinear systems [23], [20].

In the proposed methodology, the POD method is adopted
(other MOR methods can also be used). This method is based
on empirical data, which can be generated from numerical
simulation of high-dimensional nonlinear dynamical system
(2). The details of this technique can be found in any
textbook on model-order reduction, and the following will
only briefly present the idea.

For the system (2) obtained from FEM model, denote
by US = {us1 , · · · , usN } the sequence of control inputs,
and XS = {xs1 , · · · , xsN } as the corresponding samples of
x(t). Note S ⊂ Rn as the subspace and Π as the projection
operator mapping Rn onto S, i.e.,

Π : Rn → S

The objective of POD is to search such an operator for the
purpose of minimizing the following cost function:

J (Π) =

N∑
i=1

||xsi −Πxsi ||22

For this, define the correlation matrix of the empirical data

Xcov =

N∑
i=1

xsix
T
si

and it has been proven [21] that the optimal k-dimensional
subspace satisfies:

min
Π
J (Π) =

n∑
i=n−k+1

σi

where σi represents the eigenvalues of Xcov with decreasing
order as σ1 ≥ σ2 ≥ · · · ≥ σn. This implies that the
solution of the above optimization problem is equivalent
to the singular value decomposition of X (noted as X =
UΣV T ), and the optimal projector is the first k rows of the
left singular vector of X (i.e. Π = col [U1, · · · , Uk] ∈ Rk×n)
with the property ΠΠT = I .

With the deduced k-dimensional projector Π, the trajec-
tory x(t) can be then projected onto the subspace S as

ξ = Πx (7)

where ξ ∈ Rk is the new coordinates on S. This projection
enables us to apply Galerkin method to deduce the reduced-
order model. Precisely, substituting (7) back into the high-
dimensional system (2) yields

ξ̇ = f̄(ξ) +
∑m

i=1 ḡi(ξ)ui
y = h̄(ξ)

(8)



with
f̄(ξ) = Πf(ΠT ξ)
ḡi(ξ) = Πgi(Π

T ξ)
h̄(ξ) = h(ΠT ξ)

Note that system (8), which is of low-dimensional k, has
the same structure as the high-dimensional system (2). Sim-
ilarly, we can calculate the relative degree for (8), noted as
(r̄1, · · · , r̄p), and then define the decoupling matrix Γ̄(ξ) for
(8) as follows

Γ̄(ξ) =


Lḡ1L

r̄1−1
f̄

h̄1 · · · LḡmL
r̄1−1
f̄

h̄1

...
. . .

...
Lḡ1L

r̄p−1

f̄
h̄p · · · LḡmL

r̄p−1

f̄
h̄p

 (9)

based on which we can state similar result as that of Theorem
2, i.e., the chosen points of interest for the configuration of
soft robots described by (1) are controllable if rank Γ̄(ξ) = p.

V. SOFT ROBOT PRE-CHECKING PROCEDURE

Having an idea to design a soft robot under Assumption
1, the proposed rank conditions enable us to pre-check
numerically the controllability of the points of interest in
a virtual environment before the fabrication of prototype.
Due to the deduced rank conditions, an iterative pre-checking
procedure can be established, which is illustrated in Figure.
2.

Fig. 2. Iterative procedure for the design of controllable soft robotics

Precisely, the users draw a configuration of soft robot they
want to design in a virtual environment via existing software,
like CAD. Under Assumption 1, a FEM model might be then
deduced automatically by using certain software (such as
SOFA [24]), once the flexible material properties (Young’s
modulus, deformation law...) have been determined. After
that, the users can choose certain points of interest to check
whether those points are controllable. To realize this, a
low-dimensional model can be obtained, by applying MOR
techniques, such as POD presented in Section IV. If the
rank condition presented in Section IV is not satisfied, then
we need to modify the configuration of soft robot ( change
either the structure of robot, or the placement and the type of
actuators), and repeat the numerical design procedure. Once
a feasible configuration is found out, i.e., the rank condition
is satisfied, the users can then pass to the stage of fabrication.

By using the proposed methodology, the users can largely
reduce the design duration. Also, the designed robot has
been numerically verified in the virtual environment, which
guarantees the feasible functionalities of the final prototype,
provided that all conditions in Assumption 1 are fulfilled as
well during the fabrication.

VI. CASE STUDY

In this section, we are going to use the proposed method-
ology to design a parallel soft robot and pre-check the con-
trollability of the points of interest before its real fabrication.
Using CAD kind of software, we can draw the possible
configuration of such a parallel robot, for example the one
presented in [5]. Figure 3 depicts one configuration with 4
soft links actuated by 4 independent cables.

Fig. 3. Possible configuration of the parallel soft robot, actuated by 4 fixed
cables; red point on the top represents the point of interest.

In order to specify the flexible characteristic, a constitutive
law needs to be chosen. Since the robot will be made of
silicone, therefore we use a co-rotational elastic formulation.
This formulation assumes a linear elastic deformation law
for the elements (tetrahedra in this case), but accounts for
large rotations by formulating that pure elastic deformation
within the frame of each element. This offers a reasonable
model, which can account for large rotations of the elements.
More details about the co-rotational formulation can be found
in [25]. The model is parameterized by Young’s Modulus
and Poisson’s ratio. To deduce the FEM model, a mesh of
1628 nodes and 4147 tetrahedra is defined, and the value
of Young’s Modulus is set to 500Mpa and the Poisson’s
ration is set to 0.45 (quasi incompressible). With 3 degrees of
freedom (Dof) per node, the number of degrees of freedom of
that model is dimx = 3× 1628 = 4884, which is displayed
in Figure 4.

To reduce the high number of Dof, we proceed to apply a
projection-based model-order reduction method, as described
previously. In practice, the robot is simulated in all its
possible deformations, by applying all possible actuations
to make the robot explore its entire workspace. All the data
is stored in a large matrix called the snapshot matrix. The
reduced basis is computed by applying POD to the stored
states, i.e., the snapshot matrix. Using an error tolerance
of 10−3, a reduced basis of 50 vectors is selected, i.e.,
dim ξ = 50 in (8).



Fig. 4. Finite-element model of the soft parallel robot for the configuration
described in Figure 3.

In this case study, we want to check whether the top point
of this parallel robot is controllable or not. Therefore, it has
been selected as the output of system (2). Several scenarios
have been checked by calculating the rank of decoupling
matrix Γ̄(ξ) defined in (9). The results are listed as follows:

Scenario Actuated cables rankΓ̄(ξ) Conclusion
1 #1, #2 2 2D contr.
2 #1, #3 2 2D contr.
3 #1, #2, #3, #4 3 3D contr.

The results listed in the above table show that, using only
2 cables (either cable #1 and #2, or cable #1 and #3 ), the
top point can be controlled only in 2 dimensions, while using
all cables enables us to control the top point in 3 dimensional
space. The proposed methodology is validated by this parallel
soft robot since the conditions drawn from the rank condition
coincide well the reality.

VII. CONCLUSION

This paper proposed a method on how to design a con-
trollable silicone soft robot based on FEM: from concept
to prototype. Firstly, we applied FEM to obtain a high-
dimensional nonlinear dynamical system. Then, the con-
trollability of certain points of interest has been checked
by using differential geometric method, which is a quite
popular approach in control community. The deduced rank
condition is based on the high-dimensional system, thus is
computationally expensive. Consequently, a reduced-order
system was deduced by applying MOR and Galerkin pro-
jection, for which the rank condition was re-formulated. An
iterative design procedure has been proposed to facilitate the
design of controllable soft robots, and its efficiency has been
highlighted by designing a parallel soft robot.
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