583 research outputs found

    ECC 2018 Workshop Proposal

    Get PDF

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Properties of convergence of a class of iterative processes generated by sequences of self-mappings with applications to switched dynamic systems

    Get PDF
    This article investigates the convergence properties of iterative processes involving sequences of self-mappings of metric or Banach spaces. Such sequences are built from a set of primary self-mappings which are either expansive or non-expansive self-mappings and some of the non-expansive ones can be contractive including the case of strict contractions. The sequences are built subject to switching laws which select each active self-mapping on a certain activation interval in such a way that essential properties of boundedness and convergence of distances and iterated sequences are guaranteed. Applications to the important problem of stability of dynamic switched systems are also given.The authors are very grateful to the Spanish Government for Grant DPI2012-30651 and to the Basque Government and UPV/EHU for Grants IT378-10, SAIOTEK S-PE13UN039 and UFI 2011/07. The authors are also grateful to the referees for their suggestions

    Adaptive control of time-invariant systems with discrete delays subject to multiestimation

    Get PDF
    This paper deals with a robustly stable adaptive pole-placement-based controller for time-delay linear systems with unknown point delays within known intervals of sufficiently small lengths under unmodeled dynamics and bounded disturbances. A multiestimation scheme is used to improve the identification error and then to deal with possible errors between the true basic delays compared to that used in the regressor of the adaptive scheme. Each estimation scheme possess a relative dead zone for each estimation scheme which freezes the adaptation for small sizes of the adaptation error compared with the estimated size of the contribution of the uncertainties to the filtered output. All the estimation schemes run in parallel but only that, which is currently in operation, parameterizes the adaptive controller to generate the plant input at each time. A supervisory scheme chooses in real time the appropriate estimator subject to a minimum residence time which is the tool to ensure closed-loop stability under switching between the estimators in the estimation scheme. The dead zone adaptation mechanism prevents the closed-loop system against potential instability caused by uncertainties

    Finite-time synchronization of Markovian neural networks with proportional delays and discontinuous activations

    Get PDF
    In this paper, finite-time synchronization of neural networks (NNs) with discontinuous activation functions (DAFs), Markovian switching, and proportional delays is studied in the framework of Filippov solution. Since proportional delay is unbounded and different from infinite-time distributed delay and classical finite-time analytical techniques are not applicable anymore, new 1-norm analytical techniques are developed. Controllers with and without the sign function are designed to overcome the effects of the uncertainties induced by Filippov solutions and further synchronize the considered NNs in a finite time. By designing new Lyapunov functionals and using M-matrix method, sufficient conditions are derived to guarantee that the considered NNs realize synchronization in a settling time without introducing any free parameters. It is shown that, though the proportional delay can be unbounded, complete synchronization can still be realized, and the settling time can be explicitly estimated. Moreover, it is discovered that controllers with sign function can reduce the control gains, while controllers without the sign function can overcome chattering phenomenon. Finally, numerical simulations are given to show the effectiveness of theoretical results

    Complex Projective Synchronization in Drive-Response Stochastic Complex Networks by Impulsive Pinning Control

    Get PDF
    The complex projective synchronization in drive-response stochastic coupled networks with complex-variable systems is considered. The impulsive pinning control scheme is adopted to achieve complex projective synchronization and several simple and practical sufficient conditions are obtained in a general drive-response network. In addition, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical simulations are provided to show the effectiveness and feasibility of the proposed methods

    Impulsive Pinning Markovian Switching Stochastic Complex Networks with Time-Varying Delay

    Get PDF
    The synchronization problem of stochastic complex networks with Markovian switching and time-varying delays is investigated by using impulsive pinning control scheme. The complex network possesses noise perturbations, Markovian switching, and internal and outer time-varying delays. Sufficient conditions for synchronization are obtained by employing the Lyapunov-Krasovskii functional method, Itö's formula, and the linear matrix inequality (LMI). Numerical examples are also given to demonstrate the validity of the theoretical results
    • …
    corecore