2,060 research outputs found

    Time Minimal Trajectories for a Spin 1/2 Particle in a Magnetic Field

    Full text link
    In this paper we consider the minimum time population transfer problem for the zz-component of the spin of a (spin 1/2) particle driven by a magnetic field, controlled along the x axis, with bounded amplitude. On the Bloch sphere (i.e. after a suitable Hopf projection), this problem can be attacked with techniques of optimal syntheses on 2-D manifolds. Let (E,E)(-E,E) be the two energy levels, and Ω(t)M|\Omega(t)|\leq M the bound on the field amplitude. For each couple of values EE and MM, we determine the time optimal synthesis starting from the level E-E and we provide the explicit expression of the time optimal trajectories steering the state one to the state two, in terms of a parameter that can be computed solving numerically a suitable equation. For M/E<<1M/E<<1, every time optimal trajectory is bang-bang and in particular the corresponding control is periodic with frequency of the order of the resonance frequency ωR=2E\omega_R=2E. On the other side, for M/E>1M/E>1, the time optimal trajectory steering the state one to the state two is bang-bang with exactly one switching. Fixed EE we also prove that for MM\to\infty the time needed to reach the state two tends to zero. In the case M/E>1M/E>1 there are time optimal trajectories containing a singular arc. Finally we compare these results with some known results of Khaneja, Brockett and Glaser and with those obtained by controlling the magnetic field both on the xx and yy directions (or with one external field, but in the rotating wave approximation). As byproduct we prove that the qualitative shape of the time optimal synthesis presents different patterns, that cyclically alternate as M/E0M/E\to0, giving a partial proof of a conjecture formulated in a previous paper.Comment: 31 pages, 10 figures, typos correcte

    Quantum control of molecular rotation

    Full text link
    The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two- and many-body scenarios, thereby allowing to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information, to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, we recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control --- from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting.Comment: 52 pages, 11 figures, 607 reference

    Magnetic bearings-state of the art

    Get PDF
    Magnetic bearings have existed for many years, at least in theory. Earnshaw's theorem, formulated in 1842, concerns stability of magnetic suspensions, and states that not all axes of a bearing can be stable without some means of active control. In Beam's widely referenced experiments, a tiny (1/64 in diameter) rotor was rotated to the astonishing speed of 800,000 rps while it was suspended in a magnetic field. Despite a long history, magnetic bearings have only begun to see practical application since about 1980. The development that finally made magnetic bearings practical was solid state electronics, enabling power supplies and controls to be reduced in size to where they are now comparable in volume to the bearings themselves. An attempt is made to document the current (1991) state of the art of magnetic bearings. The referenced papers are large drawn from two conferences publications published in 1988 and 1990 respectively

    On the Eigenvalue Distribution for a Beam with Attached Masses

    Full text link
    We study a mathematical model of a hinged flexible beam with piezoelectric actuators and electromagnetic shaker in this paper. The shaker is modelled as a mass and spring system attached to the beam. To analyze free vibrations of this mechanical system, we consider the corresponding spectral problem for a fourth-order differential operator with interface conditions that characterize the shaker dynamics. The characteristic equation is studied analytically, and asymptotic estimates of eigenvalues are obtained. The eigenvalue distribution is also illustrated by numerical simulations under a realistic choice of mechanical parameters.Comment: Accepted for publication in the special issue "Stabilization of Distributed Parameter Systems: Design Methods and Applications", SEMA SIMAI Springer Serie

    Some components of safety and comfort of a car

    Get PDF
    This paper addresses the need to minimize of vibration levels of unsprung weight of elements of vehicles suspension are considered. In the study design, some methods of parametric optimization with dynamic vibration absorbers (DVA) in elements of a nonlinear suspension with dynamic mechanical properties have been applied. To determine the low frequency components of vibration of laminated composite plates with the DVA system numerical estimates of the vibration of the equivalent plate of Timoshenko used. One structural version for ensuring the preservation of the residual space of the passenger cabin of the bus during the rollover according to norms 66 is considered. The energy-absorbing structure of the roof of the bus is made in the form of tubular space-frame made of composite materials

    Technology for large space systems: A special bibliography with indexes (supplement 06)

    Get PDF
    This bibliography lists 220 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1981 and December 31, 1981. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments

    Nonisotropic 3-level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy

    Full text link
    We apply techniques of subriemannian geometry on Lie groups and of optimal synthesis on 2-D manifolds to the population transfer problem in a three-level quantum system driven by two laser pulses, of arbitrary shape and frequency. In the rotating wave approximation, we consider a nonisotropic model i.e. a model in which the two coupling constants of the lasers are different. The aim is to induce transitions from the first to the third level, minimizing 1) the time of the transition (with bounded laser amplitudes), 2) the energy of lasers (with fixed final time). After reducing the problem to real variables, for the purpose 1) we develop a theory of time optimal syntheses for distributional problem on 2-D-manifolds, while for the purpose 2) we use techniques of subriemannian geometry on 3-D Lie groups. The complete optimal syntheses are computed.Comment: 29 pages, 6 figure
    corecore