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Abstract The paper is a continuation of our previous work on the controllability
problems of a slowly rotating Timoshenko beam. The optimal control problem for
this system is stated and the numerical method of obtaining its solution is given.
Our approach is based upon the use of a special character of functions generating a
corresponding moment problem.
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1 Introduction

We consider the model of a Timoshenko beam slowly rotating in a horizontal plane,
where the left end of the beam is clamped to the disk of a driving motor [1]. A number
of works concerning various controllability problems for the model were published. In
particular, Krabs and Sklyar [2] analyzed the appropriate non-Fourier trigonometric
moment problem in 1999, inspired by Russel (e.g., [3]). They showed that the system
is rest-to-rest controllable, under some conditions on the physical properties of the
materials of the beam, if the time of steering is strictly greater than the certain critical
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value (minimal controllability time). The more general problem of description of all
reachable states of the system of the beam and the disk was solved in [4,5]. Those
results were used to obtain a new controllability condition of the beam in the form
of smoothness of end states [6]. A similar model of a non-homogeneous beam was
considered in [7] where the minimal time for a rest-to-rest controllability was found.

It is worth to mention that there exists only at most one control function steering
from the preassigned position of rest to another, if the time of steering equals exactly
the minimal value. If we allow the time to be greater than the minimal controllability
one, then there exists an infinite number of such controls. Therefore, it is natural to
consider only the intervals larger than the minimal time and searching for controls
satisfying additional special requirements. The numerical construction of a control
function steering the beam from one position of rest to another was given in 2000 for
a time of movement large enough, in the form of a piecewise constant function [8].
In the work, we consider another problem. Namely, we want to construct a control
that is optimal in the sense of minimal energy (i.e., fuel) consumption during the
movement, steering the beam from one assigned position of rest to another, given the
time is greater than the minimal controllability time. The idea of the framework is
to observe that the optimal function lies in a closure of a specific linear span, which
allows to rewrite the control as a solution of an appropriate moment problem. The
moment problem obtained in this way is non-Fourier—the eigenvalues of a related
operator are simple, however they come in pairs asymptotically close to each other.
It still appears to be possible to approximate such pairs of related moment generating
functions corresponding to close eigenvalues by some divided differences. Besides,
those functions are close to periodic ones, and this fact allows us to approximate the
moment problem by another infinite moment problem of a special type. Such an idea
was used for solving a certain problem of optimal control of a string in [9]. In the end
we obtain the finite set of linear equations. The approach of replacing an infinite set of
equations of some non-Fourier moment problem by a finite set is used, for example,
in [10,11]. A similar idea for a non-homogeneous string was presented lately in [12].
We also show that the speed of convergence of the presented method is essentially
better than the one obtained in the classical truncation method [13].

2 Optimal Control Problem as a Moment Problem

We consider the linearized model from [1] of a Timoshenko beam slowly rotating in
a horizontal plane. The left end of the beam is clamped to the disk of a driving motor.
We denote by r > 0 the radius of that disk and let θ = θ(t) be the rotation angle
considered as a function of time (t ≥ 0). Further on, we denote some of the physical
properties of the beam: E—the flexural rigidity, K—shear stiffness and A—cross
section area; the length of the beam is assumed to be 1. We denote by w(x, t) the
deflection of the center line of the beam and by ξ(x, t) the rotation angle1 of the cross
section area at the location x and at the time t . Then the linearized model of behavior
of w and ξ is given (see [14] and the references therein) in the form of the following

1 Note that some authors use another notation for the angle variable, namely ψ = −ξ .
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system of two partial differential equations:

ẅ(x, t) − w′′(x, t) − ξ ′(x, t) = −θ̈ (t)(r + x),
ξ̈ (x, t) − γ 2ξ ′′(x, t) + w′(x, t) + ξ(x, t) = θ̈ (t)

(1)

with x ∈]0, 1[ and t > 0, where γ 2 = E A
K , ẏ(x, t) = ∂

∂t y(x, t), y
′(x, t) = ∂

∂x y(x, t).
In addition to (1), we impose boundary conditions given by

w(0, t) = ξ(0, t) = w′(1, t) + ξ(1, t) = ξ ′(1, t) = 0 (2)

for t ≥ 0, which mean that there is no deformation at the clamped end and the energy
balance law holds on the other end. We also assume that the radius r of the disk is non-
singular [14]. The beam will be controlled by the angular acceleration of the motor
disk, that is by θ̈ .

From now on we assume that γ = 1. Let time T > 0 (large enough) and position
θT ∈ R be given. We steer the beam by angular acceleration of the disk, that is by θ̈ .
For our convenience let us denote u(t) = θ̈ (T − t) and assume that T = 2M , M ∈ N,
M > 2. We want to find a control u ∈ L2[0, T ] such that it moves the beam from the
position of rest at time t = 0 and angle θ = 0, i.e.,

w(x, 0) = ẇ(x, 0) = 0,

ξ(x, 0) = ξ̇ (x, 0) = 0,

θ(0) = θ̇ (0) = 0, (3)

x ∈ [0, 1], to the position of rest at time t = T and angle θT , i.e.,

w(x, T ) = ẇ(x, T ) = 0,

ξ(x, T ) = ξ̇ (x, T ) = 0,

θ̇ (T ) = 0, θ(T ) = θT , (4)

x ∈ [0, 1]. Moreover, we want u to be optimal in the following sense:

min
u

∫ T

0
u2(t)dt. (5)

It is shown [1] that if T ≥ 4 the problem of finding a rest to rest control (1)–(4) is
solvable, and the solution is a real function. It is proven that it is equivalent to solving
the following moment problem

∫ T

0
ei

√
λn t u(t)dt = 0, n ∈ Z,

∫ T

0
u(t)dt = 0,

∫ T

0
tu(t)dt = θT ,

(6)
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where for n > 0, λn is an eigenvalue of the operator connected with the beam equation
(1), and for n ≤ 0 we put λ−n = −λn+1. In [2] an analysis of values λn is given, in
particular it is shown that for n > 0 we have

√
λn =

{ 2k−1
2 π − εn for n = 2k − 1,

2k−1
2 π + εn for n = 2k, εn = O( 1n ).

(7)

Themoment problem (6) has amajor disadvantage—its generating family contains two
families of exponential functions with exponents that approach one another, therefore
it does not constitute a Riesz basis. We will work this out by considering an equivalent
moment problem. It is easy to see that each pair of moment equations from (6),
corresponding to the eigenvalues close to each other, that is

∫ T

0
ei

√
λ2k−1t u(t)dt = 0,

∫ T

0
ei

√
λ2k t u(t)dt = 0,

is equivalent to a pair of equations

∫ T

0
ei

√
λ2k−1t u(t)dt = 0,

∫ T

0

ei
√

λ2k t − ei
√

λ2k−1t

√
λ2k t − √

λ2k−1t
u(t)dt = 0,

which allows us to rewrite the original moment problem (6) as

∫ T

0
ei

√
λk t u(t)dt = 0, −N + 1 ≤ 2k − 1 < N ,

∫ T

0
ei

√
λ2k−1t u(t)dt = 0, −N + 1 > 2k − 1 or 2k − 1 > N ,

∫ T

0

ei
√

λ2k t − ei
√

λ2k−1t

√
λ2k t − √

λ2k−1t
u(t)dt = 0, −N + 1 > 2k − 1 or 2k − 1 > N ,

∫ T

0
u(t)dt = 0,

∫ T

0
tu(t)dt = θT ,

(8)

for a fixed even integer N , with generating functions constituting a Riesz basis (see
[5]).

3 Classical Truncation Method

In a general Hilbert (separable) space setting, solving an infinite moment problem of
the form

〈u, z j 〉 = c j , j ∈ N (9)

(ofwhich (8) is a special case), is not an easy task.One of themost common approaches
consists in truncating the system into a finite number of equations (see, for example,
[13] or the monograph [15]). Let us discuss it in details.
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Following the notation from [15], consider the truncated moment problem

〈u, z j 〉 = c j , j ∈ {1, . . . , N } (10)

for an arbitrary N ∈ N. Providing the sequence (z j ) is linearly independent, there
exists exactly one solution uN of (10) of the form

uN :=
N∑
j=1

ξ N
j z j ,

and uN has the smallest possible norm ‖uN‖ among all solutions of (10). Moreover,
if we assume that

lim
N→∞ inf

{
‖u‖ ∣∣ u solves (10)

}
< ∞,

then there is exactly one solution u = u∞ of (9) with the least norm, given by

u∞ := lim
N→∞ uN .

The truncating method has no bound though for the convergence speed of the
solutions uN of (10) to the solution u∞ of (9), and this speed can be made arbitrarily
slow. Let us consider a following example. Let e0, e1, . . . be an orthonormal basis,
choose z0 �= e0 such that 〈e0, z0〉 = 1. Now consider a following moment problem:

〈u, e0〉 = 1, 〈u, ẽk〉 = 0, k ∈ N, (11)

where ẽk = ek − 〈z0, ek〉e0. The generating family of (11), that is e0, ẽ1, ẽ2, . . ., is in
fact a biorthogonal set to z0, e1, e2, . . ., therefore it constitutes a Riesz basis. One can
easily observe that this system has a unique solution, namely u∞ = z0. Now consider
a truncation of (11), that is

〈u, e0〉 = 1, 〈u, ẽk〉 = 0, k ∈ {1, . . . , N }. (12)

Observe that for the solution uN of (12) holds the following:

uN = z0 +
∞∑

k=N+1

〈
uN , ẽk

〉
ek = z0 −

∞∑
k=N+1

〈z0, ek〉ek,

so uN converges to z0, but the speed of convergence is arbitrarily slow, depending on
z0.

In our case, a moment problem (8) is very similar to (11), we also need to find a
vector z0 biorthogonal to e0(t) = t . We deal with a much more complicated set of
generating vectors though, they are not biorthogonal to each other. The classical gen-
eral methods, like truncation or Galerkin approximation, do not use any properties of
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a moment problem generating vectors. In case of not biorthogonal generating vectors,
the resulting speed of convergence may be even less predictable. Here we propose
another approach. The moment problem in question, (8), is generated by some spe-
cial functions. We exploit the fact that the exponents

√
λn have a special asymptotic

behavior, given by (7). This means that those exponential functions are in fact close
to trigonometric functions—at least for large indices. Knowing this we try not to trun-
cate the problem, but to find the orthogonal complement subspace, and to seek for the
approximation of the optimal solution in this subspace. The speed of convergence of
the obtained approximations is significantly better than of the one obtained by general
methods.

4 Approximation of a Moment Problem

In this section we show that the optimal solution of moment problem (8) can be
approximated by a solution that is optimal in the sense of (5) of

∫ T

0
ei

√
λn t u(t)dt = 0,

⌊−N − 2

2

⌋
≤ n ≤

⌊
N + 1

2

⌋
,

∫ T

0
ei

2n+1
2 π t u(t)dt = 0,

⌊−N − 2

2

⌋
≥ n or n ≥

⌊
N + 1

2

⌋
,

∫ T

0
tei

2n+1
2 π t u(t)dt = 0,

⌊−N − 2

2

⌋
≥ n or n ≥

⌊
N + 1

2

⌋
,

∫ T

0
u(t)dt = 0,

∫ T

0
tu(t)dt = θT ,

(13)

where N ∈ 2N is large enough2.
To do this we will use the notion of quadratically close Riesz bases and some results

from [12], which we recollect here briefly.
We say that two families (ϕk) and (ϕ′

k) of a separable Hilbert space are quadratically
ε-close if

∑
k

‖ϕk − ϕ′
k‖2 < ε.

We will use the following two lemmas later, the first one is an essential theorem from
[16].

Lemma 4.1 (cf. [16]) Assume (ψk) and (ψ ′
k) are Riesz bases biorthogonal to (ϕk)

and (ϕ′
k) respectively. If (ϕk) and (ϕ′

k) are quadratically ε-close then (ψk) and (ψ ′
k)

are quadratically ε-close.

2 From now on we will write “|n| ≤ N” instead of “
⌊−N−2

2

⌋
≤ n ≤

⌊
N+1
2

⌋
” and “|n| > N” instead of

“
⌊−N−2

2

⌋
≥ n or n ≥

⌊
N+1
2

⌋
” for simplicity.
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Next lemma was stated in [12].

Lemma 4.2 Denote by L and LN the closures of linear spans of (ϕk) and (ϕN
k )

respectively, and by L⊥ and L⊥
N the orthonormal complements of L and LN . Let (xk)

be the orthonormal basis of L⊥ and let P : L⊥ → L⊥
N be a projection. There exist

a positive constant C such that for any sufficiently small ε > 0 the systems (xk) and
(Pxk) are quadratically Cε-close, provided (ϕk) and (ϕN

k ) are quadratically ε-close.

Proof Given x ∈ L⊥ we write x = Px +Qx , where Q : L⊥ → LN is the projection.
Then, because (ϕN

n ) is a Riesz basis, there exists a constantC such that for any y ∈ LN

the inequality

‖y‖2 ≤ C
∑
n

∣∣∣〈y, ϕN
n 〉

∣∣∣2

holds [17] and because (ϕN
n ) is quadratically ε−close to (ϕn), for sufficiently small

ε, C can be chosen universally for all N ≥ N0. Then we have

∑
k

‖xk − Pxk‖2 =
∑
k

‖Qxk‖2 ≤ C
∑
k,n

|〈Qxk, ϕ
N
n 〉|2

= C
∑
k,n

∣∣∣〈xk, ϕN
n 〉

∣∣∣2 = C
∑
k,n

∣∣∣〈xk, ϕN
n − ϕn〉

∣∣∣2.

Because (xk) constitutes an orthonormal set, the last expression is less or equal to

C
∑
n

‖ϕN
n − ϕn‖2.

It follows that

∑
k

∥∥∥xk − Pxk
∥∥∥2 ≤ C

∑
n

∥∥∥ϕN
n − ϕn

∥∥∥2 < Cε.

The proof is complete. ��
Given a fixed even integer N , define (ϕk) to be a sequence of functions generating

the moment problem (8), i.e., ei
√

λk t (|k| ≤ N ), ei
√

λ2k−1t (|k| > N ),
ei

√
λ2k t−ei

√
λ2k−1 t√

λ2k t−√
λ2k−1t

(|k| > N ), 1 and t , with ϕ0(t) = t , and define (ϕN
k ) to be a sequence

of functions generating the moment problem (13), i.e., ei
√

λk t (|k| ≤ N ), ei
2k+1
2 π t

(|k| > N ), tei
2k+1
2 π t (|k| > N ), 1 and t , with ϕN

0 (t) = t . The family of sequences
(ϕN

k ) approximates the initial one, (ϕk), in the sense of the following theorem.

Theorem 4.1 For any ε > 0 there exists N0 such that for N ≥ N0 the families (ϕk)

and (ϕN
k ) are quadratically ε-close.
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Proof It suffices to prove that two series,

∑
|n|>N

∥∥∥ei√λ2n−1t − ei
2n−1
2 π t

∥∥∥2

and

∑
|n|>N

∥∥∥∥∥
ei

√
λ2n t − ei

√
λ2n−1t

√
λ2nt − √

λ2n−1t
− tei

2n+1
2 π t

∥∥∥∥∥
2

,

should be as small as needed for sufficiently large N . We know that ε2n−1 = 2n−1
2 π −√

λ2n−1 = O( 1n ) by (7) and therefore we can rewrite the n-th term of the first series
as

∥∥∥ei√λ2n−1t − ei
2n−1
2 π t

∥∥∥2 =
∥∥∥ei(nπ−ε2n−1)t − einπ t

∥∥∥2

= 2
∫ T

0
dt − 2

∫ T

0
cos(ε2n−1t)dt = O

(
1

n2

)
,

which means that for an arbitrary ε > 0 we can find such a large N1 that for any
N > N1 the following inequality holds:

∑
|n|>N

∥∥∥ei√λ2n−1t − ei
2n−1
2 π t

∥∥∥2 <
ε

2
.

Using the same method, one can see that there exists such a large N2 that for any
N > N2,

∑
|n|>N

∥∥∥∥∥
ei

√
λ2n t − ei

√
λ2n−1t

√
λ2nt − √

λ2n−1t
− tei

2n+1
2 π t

∥∥∥∥∥
2

<
ε

2
.

Hence we obtain

∑
k

∥∥∥ϕk − ϕN
k

∥∥∥2 < ε

for any N > max{N1, N2} which completes the proof. ��
Lemma 4.1 implies that not only the families (ϕk) and (ϕN

k ) are quadratically ε-
close, but their biorthogonal families (ψk) and (ψN

k ) are also quadratically ε-close.
Now we are ready to state the following
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Theorem 4.2 Let

uN :=
∑
k

〈
uN , ϕN

k

〉
ψN
k , u0 :=

∑
k

〈
u0, ϕk

〉
ψk,

where ϕN
k , ψN

k , ϕk and ψk are defined above. Then

lim
N→∞ ‖uN − u0‖ = 0.

In consequence, the sequence of optimal solutions of moment problems (13) converges
to the optimal solution of a moment problem (6).

Proof Define
(
ψξ

) := (ψk) ∪ (xk) and
(
ψN

ξ

)
:= (

ψN
k

) ∪ (Pxk). Because
(
ψξ

)
and(

ψN
ξ

)
are Riesz bases in H = L2[0, T ] we may write

uN =
∑
ξ

〈
uN , ϕN

ξ

〉
ψN

ξ , u0 =
∑
ξ

〈
u0, ϕξ

〉
ψξ .

Let ε > 0 be given. By Theorem 4.1 there exists N1 such that for any N > N1 the
families (ϕk) and (ϕN

k ) are quadratically ( ε2

2θ2T
)-close, from Lemma 4.1 we see that the

families (ψk) and (ψN
k ) are also quadratically ( ε2

2θ2T
)-close. Lemma 4.2 implies that

there exists N2 such that for any N > N2 the families (xk) and (Pxk) are quadratically
( ε2

2θ2T
)-close, too, therefore we see that the inequality

∑
n

∥∥∥ψN
n − ψn

∥∥∥2 <
ε2

θ2T

holds for N > N0 = max{N1, N2}, which in particular means that

∥∥∥ψN
0 − ψ0

∥∥∥ <
ε

|θT | .

Then for N > N0 we have

‖uN − u0‖ =
∥∥∥∥∥
∑
n

〈uN , ϕN
n 〉ψN

n −
∑
n

〈u0, ϕn〉ψn

∥∥∥∥∥
=

∥∥∥θT (ψN
0 − ψ0)

∥∥∥ < ε.

Therefore (uN ) converges to u0. ��
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We have shown that limN→∞ ‖uN − u0‖ = 0. Using the following theorem one
can see that even a stronger claim

lim
N→∞ N‖uN − u0‖ = 0

holds. To this end observe that the proof ofTheorem4.1 shows not only that the families
(ϕk) and (ϕN

k ) are quadratically ε-close, but their differences admit the following
representation:

ϕk(x) − ϕN
k (x) = 1

k
ϕk(x)

(
gk(x) + 1

k
hk(x)

)
,

where (gk) is a uniformly bounded family, that is ‖gk(x)‖ ≤ M . Now we can proceed
with

Theorem 4.3 Let uN , u0, ϕk , ψk , ϕN
k and ψN

k be as in Theorem 4.2. Then we have
not only limN→∞ ‖uN − u0‖ = 0 as before, but even

lim
N→∞ N‖uN − u0‖ = 0.

Proof For simplicity of the proof we assume that the family (gk) consists of one
function only, gk(x) = g(x). From previous considerations we know that

uN = u0 +
∞∑

k=N+1

〈
uN , ϕk

〉
ψk +

∑
m

〈
uN , Pxm

〉
xm,

because uN is a solution of (13), and

uN =
N∑

k=0

αkϕk +
∞∑

k=N+1

αN
k ϕN

k

for some αk , αN
k ’s, because we assumed that uN belongs to cl (Lin{(ϕk)}). Thus we

can write

N (uN − u0) = N
∞∑

k=N+1

〈
uN , ϕk − ϕN

k

〉
ψk + N

∞∑
k=N+1

∑
m

〈
αN
k (ϕN

k − ϕk), Pxm
〉
xm,
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where again we used the fact that uN is a solution of (13). We will estimate the first
sum only, the second one can be done in a similar way. We have

N 2

∥∥∥∥∥
∞∑

k=N+1

〈uN , ϕk − ϕN
k 〉ψk

∥∥∥∥∥
2

≤ M1

∞∑
k=N+1

N 2

k2
|〈uN , gϕk〉|2

+M1

∞∑
k=N+1

N 2

k2

∣∣∣∣〈uN ,
1

k
hkϕk〉

∣∣∣∣
2

.

Now we observe that both summands tend to zero (when N → ∞), namely

∞∑
k=N+1

N 2

k2

∣∣∣〈uN , gϕk〉
∣∣∣2 ≤

∞∑
k=N+1

∣∣∣〈uN , gϕk〉
∣∣∣2

≤
∞∑

k=N+1

∣∣∣〈u0g, ϕk〉
∣∣∣2 +

∞∑
k=N+1

∣∣∣〈(uN − u0)g, ϕk〉
∣∣∣2

≤
∞∑

k=N+1

∣∣∣〈u0g, ϕk〉
∣∣∣2 +

∥∥∥(uN − u0)g
∥∥∥2 → 0

because the rest of a convergent series (of coefficients of u0g in basis (ψk)) tends to
zero, and uN → u0, and

∞∑
k=N+1

N 2

k2

∣∣∣∣〈uN ,
1

k
hkϕk〉

∣∣∣∣
2

≤
∞∑

k=N+1

1

k2
|〈uN , hkϕk〉|2

≤ ‖uN‖ sup ‖hk‖ sup ‖ϕk‖
∞∑

k=N+1

1

k2
→ 0

by similar arguments. Summarizing we obtain that

lim
N→∞ N‖uN − u0‖ = 0.

��
We have shown that the sequence of solutions uN of the approximate moment

problems (13) is not only convergent to the solution u0 of the original moment problem
(6), but the speed of convergence is considerably fast, better than any general methods
could provide without taking into account the essential, individual properties of the
families appearing in the moment problem in question.

5 Numerical Solution of an Approximated Moment Problem

Now after establishing the fact that the original moment problem (6) can be approxi-
mated by another moment problem (13) we will try to find an equivalent formulation
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of the latter, but now in a form of a finite number of equations. This in the end will
enable the numerical analysis of the problem of construction of the optimal control.

At first let us observe that the set

SN :=
{
1, t, ei

√
λn t (|n| ≤ N ), ei

2n+1
2 π t (|n| > N ), tei

2n+1
2 π t (|n| > N )

}

is anL-basis of L2[0, T ] = L2[0, 2M], that is it is a Riesz basis in closure of its linear
span V = cl (LinSN ). Any control u ∈ L2[0, 2M] can be written in the unique form
u = u1 + u2, where u1 ∈ V and u2 ∈ V⊥. Since we have ‖u‖2 = ‖u1‖2 + ‖u2‖2
then due to the nature of our moment problem (13), which is generated by elements
of SN , we see that the solution u has the least norm (i.e., it fulfills (5)) if and only if
‖u2‖ = 0, that is if and only if u ∈ V . This allows us to express the (unique) optimal
solution u as

u(t) =
∑

|n|≤N

αne
i
√

λn t +
∑

|n|>N

βne
i 2n+1

2 π t +
∑

|n|>N

γnte
i 2n+1

2 π t + A + Bt,

where αn , βn , γn , A, B ∈ C are (unknown) constants. Further on we rewrite

∑
|n|>N

βne
i 2n+1

2 π t = ei
π
2 tζ(t),

∑
|n|>N

γnte
i 2n+1

2 π t = ei
π
2 t tη(t),

where ζ , η ∈ L2[0, 2M] are (unknown) functions periodic on [0, 2]. Thus

u(t) =
∑

|n|≤N

αne
i
√

λn t + ei
π
2 tζ(t) + ei

π
2 t tη(t) + A + Bt. (14)

Directly from the definitions of ζ, η we see that

∫ 2

0
ζ(t)einπ tdt = 0, |n| ≤ N ,∫ 2

0
η(t)einπ t = 0, |n| ≤ N .

(15)

Now we want to change our time interval from [0, 2M] to [0, 2], where selected
summands of (14) are either periodic or close to periodic. To this end we define

f̂ (s) :=
M−1∑
k=0

f (s + 2k), s ∈ [0, 2]

for any f ∈ L2[0, 2M]. In long formulas we will write [ f (s)]∧ instead of f̂ (s).
Substituting (14) into second line of (13) and using (15) we obtain
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0 =
∫ 2M

0
ei

2n+1
2 π t u(t)dt =

M−1∑
k=0

∫ 2k+2

2k
ei

2n+1
2 π t u(t)dt

=
∫ 2

0
einπs

⎡
⎣ei

π
2 sM

⎛
⎝ 1

M

∑
|n|≤N

αn

[
(−1)kei

√
λns

]∧

+ei
π
2 s

(
ζ(s) + sη(s) + (M − 1)η(s)

)
+ (̂−1)k

(
A + Bs + (M − 1)B

))]
ds

for all |n| > N , therefore we can rewrite the expression in the square brackets as∑
|p|≤N

ape
i pπs with some unknown constants ap ∈ C, |p| ≤ N . Proceeding the same

way with third line of (13) we express a similar term as
∑

|p|≤N

bpe
i pπs with some

unknown constants bp ∈ C, |p| ≤ N . Using those we can derive formulas for ζ and
η, namely

η(s) = 3

M(M2 − 1)

⎛
⎝−

∑
|m|≤N

αm

[
(−1)ksei

√
λms

]∧
e

−iπs
2

+(M + s − 1)
∑

|m|≤N

αm

[
(−1)kei

√
λms

]∧
e

−iπs
2

+Ae
−iπ
2

(
−(−1)M−1

(
M − 1

2

)
+ 1

2
+ 1 − (−1)M

2
(M − 1)

)

+Be
−iπs
2

(
−1 − (−1)M

2
− 2M(M − 1)s − 4(−M + 1)

M

2

+(M + s − 1)

(
1 − (−1)M

2
s + (−1)M−1

(
M − 1

2

)
− 1

2

))

+
∑

|p|≤N

bpe
i pπse−iπs −

∑
|p|≤N

ap(M + s − 1)ei pπse−isπ

⎞
⎠ ,

and

ζ(s) = − 1

M

∑
|m|≤N

[
(−1)kei

√
λms

]∧
e

−isπ
2 − 1

M
A
1 − (−1)M

2
e

−isπ
2

− 1

M
Be

−isπ
2

(
1 − (−1)M

2
s + (−1)M−1

(
M − 1

2

)
− 1

2

)

+ 1

M

∑
|p|≤N

ape
i pπse−isπ − (M + s − 1)η(s).

Now using all above and the remaining (first, fourth and fifth) lines of (13) we finally
obtain 6N + 2 linear equations of the following form:
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∫ 2

0
e−inπs

⎛
⎝−

∑
|m|≤N

αm

[
(−1)ksei

√
λms

]∧
e

−iπs
2

+
∑

|m|≤N

αm

[
(−1)kei

√
λms

]∧
e

−iπs
2 (M + s − 1)

+Ae
−iπ
2

(
−(−1)M−1

(
M − 1

2

)
+ 1

2
+ 1 − (−1)M

2
(M − 1))

)

+Be
−iπs
2

(
−1 − (−1)M

2
− 2M(M − 1)s − 4(−M + 1)

M

2

+(M+s−1)

(
1−(−1)M

2
s+(−1)M−1

(
M− 1

2

)
− 1

2

))

+
∑

|p|≤N

bpe
i pπse−iπs

⎞
⎠ ds = 0, |n| ≤ N ,

∫ 2

0

⎛
⎝− 1

M

∑
|m|≤N

[
(−1)kei

√
λms

]∧
e

−isπ
2 − 1

M
A
1 − (−1)M

2
e

−isπ
2

− 1

M
Be

−isπ
2

(
1 − (−1)M

2
s + (−1)M−1

(
M − 1

2

)
− 1

2

)

−(M + s − 1)η(s) + 1

M

∑
|p|≤N

ape
i pπse−isπ

⎞
⎠ ds = 0, |n| ≤ N ,

∑
|m|≤N

αm

∫ 2M

0
ei(

√
λm+√

λn)tdt +
∫ 2M

0
ei

π
2 tζ(t)ei

√
λn tdt

+
∫ 2M

0
ei

π
2 t tη(t)ei

√
λn tdt + A

∫ 2M

0
ei

√
λn tdt + B

∫ 2M

0
tei

√
λn tdt = 0, |n| ≤ N ,

∑
|m|≤N

αm

∫ 2M

0
ei

√
λmtdt +

∫ 2M

0
ei

π
2 tζ(t)dt +

∫ 2M

0
ei

π
2 t tη(t)dt + A2M + B2M2

= 0,

and

∑
|m|≤N

αm

∫ 2M

0
tei

√
λmtdt +

∫ 2M

0
ei

π
2 t tζ(t)dt +

∫ 2M

0
ei

π
2 t t2η(t)dt

+A2M2 + B
8

3
M3 = θT .
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After a careful investigation (which we do not present here due to a sheer complication
of its form in the general case) one can easily eliminate ζ and η from above equations
and in the end obtain a Cramer system of 6N +2 linear equations with exactly 6N +2
unknown values, namely αm (|m| ≤ N ), ap (|p| ≤ N ), bp (|p| ≤ N ), A and B.

This way we showed that solving the approximate optimal moment problem (13)
can be reduced to solving a finite number of linear equations which in turn can be
solved numerically. Note that entries of Cramer matrix of this system depend on
the first N eigenvalues λn , which also have to be found numerically, but using the
analytic formulas from [2] that can be done with any required level of precision. Thus
we reduced the infinite dimensional problem of optimal control (1)–(5) to solving a
system of a finite number of linear equations.

Remark 5.1One should notice that the method presented herein uses only one approx-
imation step—replacing the moment problem (8) by a close one (13)—and the latter
can be solved without any further discretization errors.

6 Conclusions

In the paper, we constructed the optimal control for a slowly rotating Timoshenko
beam. Basing on the specific character of the moment problem, corresponding to our
optimal control problem, we presented a new method of approximating the original
problem by another, special moment problem.We also showed that our approximation
converges to the optimal solution with essentially faster speed than the one obtained
by the classical truncation method. In the end, using special periodicity properties of
the family of functions appearing in the approximated moment problem, we presented
a method of reducing the system of infinite number of equations to the equivalent
Kramer system of a finite number of equations. The whole process of constructing the
optimal control function uses only one approximation step—replacing the moment
problem in question by a close one—and the latter can be solved without any further
discretization errors.

Themethods introduced in the present paper can be also used in analysis of different
control problems for other models, which spectral functions are close to periodic, e.g.,
vibrating strings, beams, and plates.
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