51 research outputs found

    Modeling, analysis and control of robot-object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives

    Get PDF
    International audienceSo-called robot-object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an "object" and a "robot". Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, robotic systems that manipulate objects, tapping, pushing systems, kinematic chains with joint clearance, crawling, climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot-object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article

    A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

    Get PDF
    Es ist vorhersehbar, dass die Luftmanipulatoren in den nĂ€chsten Jahrzehnten fĂŒr viele Aufgaben eingesetzt werden, die entweder zu gefĂ€hrlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewĂ€ltigen. In dieser Arbeit wird eine neuartige Lösung fĂŒr die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform fĂŒr die DurchfĂŒhrung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewĂ€hrleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem kĂŒnstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz fĂŒr die Drohne erzielt. Außerdem wird die MotorsĂ€ttigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. FĂŒr die Beobachtung der externen KrĂ€fte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundĂ€re Aufgaben ausfĂŒhrt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests ĂŒberprĂŒft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusio

    Intelligent model-based control of complex three-link mechanisms

    Get PDF
    The aim of this study is to understand the complexity and control challenges of the locomotion of a three-link mechanism of a robot system. In order to do this a three-link robot gymnast (Robogymnast) has been built in Cardiff University. The Robogymnast is composed of three links (one arm, one torso, one leg) and is powered by two geared DC motors. Currently the robot has three potentiometers to measure the relative angles between adjacent links and only one tachometer to measure the relative angular position of the first link. A mathematical model for the robot is derived using Lagrange equations. Since the model is inherently nonlinear and multivariate, it presents more challenges when modelling the Robogymnast and dealing with control motion problems. The proposed approach for dealing with the design of the control system is based on a discrete-time linear model around the upright position of the Robogymnast. To study the swinging motion of the Robogymnast, a new technique is proposed to manipulate the frequency and the amplitude of the sinusoidal signals as a means of controlling the motors. Due to the many combinations of the frequency and amplitude, an optimisation method is required to find the optimal set. The Bees Algorithm (BA), a novel swarm-based optimisation technique, is used to enhance the performance of the swinging motion through optimisation of the manipulated parameters of the control actions. The time taken to reach the upright position at its best is 128 seconds. Two different control methods are adopted to study the balancing/stablising of the Robogymnast in both the downward and upright configurations. The first is the optimal control algorithm using the Linear Quadratic Regulator (LQR) technique with integrators to help achieve and maintain the set of reference trajectories. The second is a combination of Local Control (LC) and LQR. Each controller is implemented via reduced order state observer to estimate the unmeasured states in terms of their relative angular velocities. From the identified data in the relative angular positions of the upright balancing control, it is reported that the maximum amplitude of the deviation in the relative angles on average are approximately 7.5° for the first link and 18° for the second link. It is noted that the third link deviated approximately by 2.5° using only the LQR controller, and no significant deviation when using the LQR with LC. To explore the combination between swinging and balancing motions, a switching mechanism between swinging and balancing algorithm is proposed. This is achieved by dividing the controller into three stages. The first stage is the swinging control, the next stage is the transition control which is accomplished using the Independent Joint Control (IJC) technique and finally balancing control is achieved by the LQR. The duration time of the transition controller to track the reference trajectory of the Robogymnast at its best is found to be within 0.4 seconds. An external disturbance is applied to each link of the Robogymnast separately in order to study the controller's ability to overcome the disturbance and to study the controller response. The simulation of the Robogymnast and experimental realization of the controllers are implemented using MATLABŸ software and the C++ program environment respectively

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Nonlinear control and synchronization of multiple Lagrangian systems with application to tethered formation flight spacecraft

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 217-228).This dissertation focuses on the synchronization of multiple dynamical systems using contraction theory, with applications to cooperative control of multi-agent systems and synchronization of interconnected dynamics such as tethered formation flight. Inspired by stable combinations of biological systems, contraction nonlinear stability theory provides a systematic method to reduce arbitrarily complex systems into simpler elements. One application of oscillation synchronization is a fully decentralized nonlinear control law, which eliminates the need for any inter-satellite communications. We use contraction theory to prove that a nonlinear control law stabilizing a single-tethered spacecraft can also stabilize arbitrarily large circular arrays of tethered spacecraft, as well as a three-spacecraft inline configuration. The convergence result is global and exponential due to the nature of contraction analysis. The proposed decentralized control strategy is further extended to robust adaptive control in order to account for model uncertainties. Numerical simulations and experimental results validate the exponential stability of the tethered formation arrays by implementing a tracking control law derived from the reduced dynamics.(cont.) This thesis also presents a new synchronization framework that can be directly applied to cooperative control of autonomous aerospace vehicles and oscillation synchronization in robotic manipulation and locomotion. We construct a dynamical network of multiple Lagrangian systems by adding diffusive couplings to otherwise freely moving or flying vehicles. The proposed tracking control law synchronizes an arbitrary number of robots into a common trajectory with global exponential convergence. The proposed control law is much simpler than earlier work in terms of both the computational load and the required signals. Furthermore, in contrast with earlier work which used simple double integrator models, the proposed method permits highly nonlinear systems and is further extended to adaptive synchronization, partial-joint coupling, and concurrent synchronization. Another contribution of the dissertation is a novel nonlinear control approach for underactuated tethered formation flight spacecraft. This is motivated by a controllability analysis that indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor. This work reports the first propellant-free underactuated control results for tethered formation flight.(cont.) We also fulfill the potential of the proposed strategy by providing a new momentum dumping method. This dissertation work has evolved based on the research philosophy of balancing theoretical work with practicality, aiming at physically intuitive algorithms that can be directly implemented in real systems. In order to validate the effectiveness of the decentralized control and estimation framework, a new suite of hardware has been designed and added to the SPHERES (Synchronize Position Hold Engage and Reorient Experimental Satellite) testbed. Such recent improvements described in this dissertation include a new tether reel mechanism, a force-torque sensor and an air-bearing carriage with a reaction wheel. This thesis also introduces a novel relative attitude estimator, in which a series of Kalman filters incorporate the gyro, force-torque sensor and ultrasound ranging measurements. The closed-loop control experiments can be viewed at ...by Soon-Jo Chung.Sc.D

    Eigenstructure assignment in vibrating systems through active and passive approaches

    Get PDF
    The dynamic behaviour of a vibrating system depends on its eigenstructure, which consists of the eigenvalues and the eigenvectors. In fact, eigenvalues define natural frequencies, damping and settling time, while eigenvectors define the spatial distribution of vibrations, i.e. the mode shape, and also affect the sensitivity of eigenvalues with respect to the system parameters. Therefore, eigenstructure assignment, which is aimed at modifying the system in such a way that it features the desired set of eigenvalues and eigenvectors, is of fundamental importance in mechanical design. However, similarly to several other inverse problems, eigenstructure assignment is inherently challenging, due to its ill-posed nature. Despite the recent advancements of the state of the art in eigenstructure assignment, in fact, there are still important open issues. The available methods for eigenstructure assignment can be grouped into two classes: passive approaches, which consist in modifying the physical parameters of the system, and active approaches, which consist in employing actuators and sensors to exert suitable control forces as determined by a specified control law. Since both these approaches have advantages and drawbacks, it is important to choose the most appropriate strategy for the application of interest. In the present thesis, in fact, are collected passive, active, and even hybrid methods, in which active and passive techniques are concurrently employed. All the methods proposed in the thesis are aimed at solving open issues that emerged from the literature and which have applicative relevance, as well as theoretical. In contrast to several state-of-the-art methods, in fact, the proposed ones implement strategies that enable to ensure that the computed solutions are meaningful and feasible. Moreover, given that in modern mechanical design large-scale systems are increasingly common, computational issues have become a major concern and thus have been adequately addressed in the thesis. The proposed methods have been developed to be general and broadly applicable. In order to demonstrate the versatility of the methods, in the thesis it is provided an extensive numerical assessment, hence diverse test-cases have been used for validation purposes. In order to evaluate without bias the performances of the proposed methods, it has been chosen to employ well-established benchmarks from the literature. Moreover, selected experimental applications are presented in the thesis, in order to determine the capabilities of the developed methods when critically challenged. Given the focus on these issues, it is expected that the methods here proposed can constitute effective tools to improve the dynamic behaviour of vibrating systems and it is hoped that the present work could contribute to spread the use of eigenstructure assignment in the solution of engineering design problems

    Trajectory Optimization and Machine Learning to Design Feedback Controllers for Bipedal Robots with Provable Stability

    Full text link
    This thesis combines recent advances in trajectory optimization of hybrid dynamical systems with machine learning and geometric control theory to achieve unprecedented performance in bipedal robot locomotion. The work greatly expands the class of robot models for which feedback controllers can be designed with provable stability. The methods are widely applicable beyond bipedal robots, including exoskeletons, and prostheses, and eventually, drones, ADAS, and other highly automated machines. One main idea of this thesis is to greatly expand the use of multiple trajectories in the design of a stabilizing controller. The computation of many trajectories is now feasible due to new optimization tools. The computations are not fast enough to apply in the real-time, however, so they are not feasible for model predictive control (MPC). The offline “library” approach will encounter the curse of dimensionality for the high-dimensional models common in bipedal robots. To overcome these obstructions, we embed a stable walking motion in an attractive low-dimensional surface of the system's state space. The periodic orbit is now an attractor of the low-dimensional state-variable model but is not attractive in the full-order system. We then use the special structure of mechanical models associated with bipedal robots to embed the low-dimensional model in the original model in such a manner that the desired walking motions are locally exponentially stable. The ultimate solution in this thesis will generate model-based feedback controllers for bipedal robots, in such a way that the closed-loop system has a large stability basin, exhibits highly agile, dynamic behavior, and can deal with significant perturbations coming from the environment. In the case of bipeds: “model-based” means that the controller will be designed on the basis of the full floating-base dynamic model of the robot, and not a simplified model, such as the LIP (Linear Inverted Pendulum). By “agile and dynamic” is meant that the robot moves at the speed of a normal human or faster while walking off a curb. By “significant perturbation” is meant a human tripping, and while falling, throwing his/her full weight into the back of the robot.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145992/1/xda_1.pd
    • 

    corecore