2,071 research outputs found

    Bounds for Invariance Pressure

    Get PDF
    This paper provides an upper for the invariance pressure of control sets with nonempty interior and a lower bound for sets with finite volume. In the special case of the control set of a hyperbolic linear control system in R^{d} this yields an explicit formula. Further applications to linear control systems on Lie groups and to inner control sets are discussed.Comment: 16 page

    Invariance Entropy of Hyperbolic Control Sets

    Full text link
    In this paper, we improve the known estimates for the invariance entropy of a nonlinear control system. For sets of complete approximate controllability we derive an upper bound in terms of Lyapunov exponents and for uniformly hyperbolic sets we obtain a similar lower bound. Both estimates can be applied to hyperbolic chain control sets, and we prove that under mild assumptions they can be merged into a formula

    Explicit approximate controllability of the Schr\"odinger equation with a polarizability term

    Full text link
    We consider a controlled Schr\"odinger equation with a dipolar and a polarizability term, used when the dipolar approximation is not valid. The control is the amplitude of the external electric field, it acts non linearly on the state. We extend in this infinite dimensional framework previous techniques used by Coron, Grigoriu, Lefter and Turinici for stabilization in finite dimension. We consider a highly oscillating control and prove the semi-global weak H2H^2 stabilization of the averaged system using a Lyapunov function introduced by Nersesyan. Then it is proved that the solutions of the Schr\"odinger equation and of the averaged equation stay close on every finite time horizon provided that the control is oscillating enough. Combining these two results, we get approximate controllability to the ground state for the polarizability system

    Systems control theory applied to natural and synthetic musical sounds

    Get PDF
    Systems control theory is a far developped field which helps to study stability, estimation and control of dynamical systems. The physical behaviour of musical instruments, once described by dynamical systems, can then be controlled and numerically simulated for many purposes. The aim of this paper is twofold: first, to provide the theoretical background on linear system theory, both in continuous and discrete time, mainly in the case of a finite number of degrees of freedom ; second, to give illustrative examples on wind instruments, such as the vocal tract represented as a waveguide, and a sliding flute

    Asymptotic ensemble stabilizability of the Bloch equation

    Full text link
    In this paper we are concerned with the stabilizability to an equilibrium point of an ensemble of non interacting half-spins. We assume that the spins are immersed in a static magnetic field, with dispersion in the Larmor frequency, and are controlled by a time varying transverse field. Our goal is to steer the whole ensemble to the uniform "down" position. Two cases are addressed: for a finite ensemble of spins, we provide a control function (in feedback form) that asymptotically stabilizes the ensemble in the "down" position, generically with respect to the initial condition. For an ensemble containing a countable number of spins, we construct a sequence of control functions such that the sequence of the corresponding solutions pointwise converges, asymptotically in time, to the target state, generically with respect to the initial conditions. The control functions proposed are uniformly bounded and continuous

    Geometric control of particle manipulation in a two-dimensional fluid

    Get PDF
    Manipulation of particles suspended in fluids is crucial for many applications, such as precision machining, chemical processes, bio-engineering, and self-feeding of microorganisms. In this paper, we study the problem of particle manipulation by cyclic fluid boundary excitations from a geometric-control viewpoint. We focus on the simplified problem of manipulating a single particle by generating controlled cyclic motion of a circular rigid body in a two-dimensional perfect fluid. We show that the drift in the particle location after one cyclic motion of the body can be interpreted as the geometric phase of a connection induced by the system's hydrodynamics. We then formulate the problem as a control system, and derive a geometric criterion for its nonlinear controllability. Moreover, by exploiting the geometric structure of the system, we explicitly construct a feedback-based gait that results in attraction of the particle towards the rigid body. We argue that our gait is robust and model-independent, and demonstrate it in both perfect fluid and Stokes fluid

    Delocalization of quasimodes on the disk

    Get PDF
    This note deals with semiclassical measures associated to {(sufficiently accurate)} quasimodes (uh)(u_h) for the Laplace-Dirichlet operator on the disk. In this time-independent set-up, we simplify the statements of our preprint arXiv:1406.0681 and their proofs. We describe the restriction of semiclassical measures to every invariant torus in terms of two-microlocal measures. As corollaries, we show regularity and delocalization properties for limit measures of ∣uh∣2dx|u_h|^2 dx: these are absolutely continuous in the interior of the disk and charge every open set intersecting the boundary.Comment: arXiv admin note: text overlap with arXiv:1406.068
    • …
    corecore