935 research outputs found

    Hierarchical task control for aerial inspection

    Get PDF
    This paper presents a task oriented control strategy for aerial vehicles equipped with a robotic arm and a camera attached to its end-effector. With this setting the camera can reach a new set of orientations previously not feasible for the quadrotor. The over-actuation of the whole system is exploited with a hierarchical control law to achieve a primary task consisting on a visual servoing control, whilst secondary tasks can also be attained to minimize gravitational effects or undesired arm configurations. Results are shown in a Robot Operating System (ROS) simulation.Peer ReviewedPostprint (author’s final draft

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Mechanical Design, Modelling and Control of a Novel Aerial Manipulator

    Full text link
    In this paper a novel aerial manipulation system is proposed. The mechanical structure of the system, the number of thrusters and their geometry will be derived from technical optimization problems. The aforementioned problems are defined by taking into consideration the desired actuation forces and torques applied to the end-effector of the system. The framework of the proposed system is designed in a CAD Package in order to evaluate the system parameter values. Following this, the kinematic and dynamic models are developed and an adaptive backstepping controller is designed aiming to control the exact position and orientation of the end-effector in the Cartesian space. Finally, the performance of the system is demonstrated through a simulation study, where a manipulation task scenario is investigated.Comment: Comments: 8 Pages, 2015 IEEE International Conference on Robotics and Automation (ICRA '15), Seattle, WA, US

    Modeling and nonlinear adaptive control of an aerial manipulation system

    Get PDF
    Autonomous aerial robots have become an essential part of many civilian and military applications. The workspace and agility of these vehicles motivated great research interest resulting in various studies addressing their control architectures and mechanical configurations. Increasing autonomy enabled them to perform tasks such as surveillance, inspection and remote sensing in hazardous and challenging environments. The ongoing research promises further contributions to the society, in both theory and practice. To furthermore extend their vast applications, aerial robots are equipped with the tools to enable physical interaction with the environment. These tasks represent a great challenge due to the technological limitations as well as the lack of sophisticated methods necessary for the control of the system to perform desired operations in an efficient and stable manner. Modeling and control problem of an aerial manipulation is still an open research topic with many studies addressing these issues from different perspectives. This thesis deals with the nonlinear adaptive control of an aerial manipulation system (AMS). The system consists of a quadrotor equipped with a 2 degrees of freedom (DOF) manipulator. The complete modeling of the system is done using the Euler-Lagrange method. A hierarchical nonlinear control structure which consists of outer and inner control loops has been utilized. Model Reference Adaptive Controller (MRAC) is designed for the outer loop where the required command signals are generated to force the quadrotor to move on a reference trajectory in the presence of mass uncertainties and reaction forces coming from the manipulator. For the inner loop, the attitude dynamics of the quadrotor and the joint dynamics of the 2-DOF robotic arm are considered as a fully actuated 5-DOF unified part of the AMS. Nonlinear adaptive control has been utilized for the low-level controller where the changes in inertias have been considered. The proposed controller is tested on a high fidelity AMS model in the presence of uncertainties, wind disturbances and measurement noise, and satisfactory trajectory tracking performance with improved robustness is achieved

    A New Classification and Aerial Manipulation Q-PRR Design

    Get PDF
    International audienceThis paper presents a new designation and classification of system with UAV and robot manipulator where a new nomenclature is recognized as being the first contribution in the bibliography of design and systems. Several papers deal a problem of manipulation with a different unmanned aerial vehicle, robot arms and also with different naming of their systems, where the difficulty for locate and finding items and a good paper with its title or even by keywords, multirotor equipped with n-DoF robotic arm is the expression among the most widely used to describe that system. Aerial manipulation formula is presented and proved with a large example in the literature

    An adaptive hierarchical control for aerial manipulators

    Get PDF
    This paper addresses the trajectory tracking control problem for a quadrotor aerial vehicle, equipped with a robotic manipulator (aerial manipulator). The controller is organized in two layers: in the top layer, an inverse kinematics algorithm computes the motion references for the actuated variables; in the bottom layer, a motion control algorithm is in charge of tracking the motion references computed by the upper layer. To the purpose, a model-based control scheme is adopted, where modelling uncertainties are compensated through an adaptive term. The stability of the proposed scheme is proven by resorting to Lyapunov arguments. Finally, a simulation case study is proposed to prove the effectiveness of the approach
    • …
    corecore