3,553 research outputs found

    Technical Report: Control of Nonlinear Systems with Explicit-MPC-like Controllers

    Get PDF
    This paper describes synthesis of controllers involving Quadratic Programming (QP) optimization problems for control of nonlinear systems. The QP structure allows an implementation of the controller as a piecewise affine function, pre-computed offline, which is a technique extensively studied in the field of explicit model predictive control (EMPC). The nonlinear systems being controlled are assumed to be described by polynomial functions and the synthesis also generates a polynomial Lyapunov function for the closed-loop system involving the obtained controller. The synthesis is based on a sum-of-squares (SOS) stability verification for polynomial discrete-time systems, described in continuous-time in this paper. The presented synthesis method allows a design of EMPC controllers with closed-loop stability guarantees without relying on a terminal cost and/or constraint, and even without using the prediction horizon concept to formulate the control optimization problem. In particular, for a specified QP structure the method directly searches for the stabilizing coefficients in the cost and/or the constraint set. The method involves two phases, where the first searches for stabilizing controllers by minimizing a polynomial slack function introduced to the SOS stability condition and the second phase optimizes some user-specified performance criteria. The two phases are formulated as optimization problems which can be tackled by using a black-box optimization technique such as Bayesian optimization, which is used in this paper. The synthesis is demonstrated on a numerical example involving a bilinear model of a permanent magnet synchronous machine (PMSM), where in order to demonstrate the modeling flexibility of the proposed synthesis method a QP-based controller for speed regulation of PMSM is synthesized that is robust to parametric uncertainty coming from the temperature-dependent stator resistance of the PMSM

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de EduaciĂłn y Ciencia DPI2007-66718-C04-01Ministerio de EduaciĂłn y Ciencia DPI2008-0581

    Computational burden reduction in Min-Max MPC

    Get PDF
    Min–max model predictive control (MMMPC) is one of the strategies used to control plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the complex numerical optimization problem that has to be solved at every sampling time. This paper shows how to overcome this by transforming the original problem into a reduced min–max problem whose solution is much simpler. In this way, the range of processes to which MMMPC can be applied is considerably broadened. Proofs based on the properties of the cost function and simulation examples are given in the paper

    Min–max MPC using a tractable QP problem

    Get PDF
    Min–max model predictive controllers (MMMPC) suffer from a great computational burden that is often circumvented by using approximate solutions or upper bounds of the worst possible case of a performance index. This paper proposes a computationally efficient MMMPC control strategy in which a close approximation of the solution of the min–max problem is computed using a quadratic programming problem. The overall computational burden is much lower than that of the min–max problem and the resulting control is shown to have a guaranteed stability. A simulation example is given in the paper

    Robust stability of min-max MPC controllers for nonlinear systems with bounded uncertainties

    Get PDF
    Sixteenth International Symposium on Mathematical Theory of Networks and Systems 05/07/2004 Leuven, BĂ©lgicaThe closed loop formulation of the robust MPC has been shown to be a control technique capable of robustly stabilize uncertain nonlinear systems subject to constraints. Robust asymptotic stability of these controllers has been proved when the uncertainties are decaying. In this paper we extend the existing results to the case of uncertainties that decay with the state but do not tend to zero. This allows us to consider both plant uncertainties and external disturbances in a less conservative way. First, we provide some results on robust stability under the considered kind of uncertainties. Based on these, we prove robust stability of the min-max MPC. In the paper we show how the robust design of the local controller is translated to the min-max controller and how the persistent term of the uncertainties determines the convergence rate of the closed-loop system.Ministerio de Ciencia y TecnologĂ­a DPI-2001-2380-03-01Ministerio de Ciencia y TecnologĂ­a DPI-2002-4375-C02-0

    Energy-aware MPC co-design for DC-DC converters

    Get PDF
    In this paper, we propose an integrated controller design methodology for the implementation of an energy-aware explicit model predictive control (MPC) algorithms, illustrat- ing the method on a DC-DC converter model. The power consumption of control algorithms is becoming increasingly important for low-power embedded systems, especially where complex digital control techniques, like MPC, are used. For DC-DC converters, digital control provides better regulation, but also higher energy consumption compared to standard analog methods. To overcome the limitation in energy efficiency, instead of addressing the problem by implementing sub-optimal MPC schemes, the closed-loop performance and the control algorithm power consumption are minimized in a joint cost function, allowing us to keep the controller power efficiency closer to an analog approach while maintaining closed-loop op- timality. A case study for an implementation in reconfigurable hardware shows how a designer can optimally trade closed-loop performance with hardware implementation performance

    Fast Non-Parametric Learning to Accelerate Mixed-Integer Programming for Online Hybrid Model Predictive Control

    Full text link
    Today's fast linear algebra and numerical optimization tools have pushed the frontier of model predictive control (MPC) forward, to the efficient control of highly nonlinear and hybrid systems. The field of hybrid MPC has demonstrated that exact optimal control law can be computed, e.g., by mixed-integer programming (MIP) under piecewise-affine (PWA) system models. Despite the elegant theory, online solving hybrid MPC is still out of reach for many applications. We aim to speed up MIP by combining geometric insights from hybrid MPC, a simple-yet-effective learning algorithm, and MIP warm start techniques. Following a line of work in approximate explicit MPC, the proposed learning-control algorithm, LNMS, gains computational advantage over MIP at little cost and is straightforward for practitioners to implement
    • …
    corecore