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Abstract

The closed loop formulation of the robust MPC has been shown to be a control technique capable of robustly stabilize

uncertain nonlinear systems subject to constraints. Robust asymptotic stability of these controllers has been proved when

the uncertainties are decaying. In this paper we extend the existing results to the case of uncertainties that decay with

the state but do not tend to zero. This allows us to consider both plant uncertainties and external disturbances in a less

conservative way.

First, we provide some results on robust stability under the considered kind of uncertainties. Based on these, we

prove robust stability of the min-max MPC. In the paper we show how the robust design of the local controller is

translated to the min-max controller and how the persistent term of the uncertainties determines the convergence rate of

the closed-loop system.

1 Introduction

MPC is a control technique based on an associated optimization problem, which deals with constraints on the states and

the inputs. This fact has provided a meaningful success in process industries. Furthermore, the theoretical framework to

analyze topics as stability, robustness, optimality, etc. has been developed recently. See (Chen & Allgöwer 1998, Mayne,

Rawlings, Rao & Scokaert 2000) for a survey, or (Camacho & Bordons 1999) for process industry application issues.

Model predictive control is a receding horizon strategy that requires the solution of a finite-horizon optimization

problem at each sample time. This one can be posed as a mathematical programming problem. It is well known that

considering a terminal cost and a terminal constraint in the optimization problem, the MPC stabilizes asymptotically the

constrained system (Mayne et al. 2000). However, the system that is controlled by an MPC must be slow enough to

compute the control action in one sampling time. Thus, recent papers are focused on reducing the computational burden

of this problem (Scokaert, Mayne & Rawlings. 1999, Bemporad, Morari, Dua & Pistikopoulos 2002, Limon, Alamo &

Camacho 2003).

If the system is uncertain, then the stabilizing properties of the MPC provides certain degree of robustness (Scokaert,

Rawlings & Meadows 1997, Limon , Alamo & Camacho 2002b). One of the approaches to the design of MPC controllers
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incorporating the uncertainty is the so-called open loop formulations (Michalska & Mayne 1993, Limon , Alamo &

Camacho 2002a). These controllers guarantee robust stability and constraint satisfaction but, they ends up being very

conservative since they are likely to have a very small feasible region.

This conservativeness was overcome thanks to the closed-loop formulations (Scokaert & Mayne 1998, Mayne 2001,

Kerrigan & Maciejowski 2004). In this case a sequence of control laws is computed instead of a sequence of control

actions. By doing this, the reaction of the controller to the uncertainty is incorporated in the prediction and the conserva-

tiveness is mitigated. The closed-loop formulation of min-max MPC has been analyzed in (Mayne 2001). In that paper,

sufficient conditions to design an stabilizing min-max MPC in case of uncertainties that decay with the state are given.

In our paper, we extend that result to the case of uncertainties that decay with the state, but tending to a constant.

This allows us to model any bounded uncertainty: model mismatches as well as persistent disturbances. When the

uncertainties are modelled as bounded, some controllers, as the min-max MPC, compute the control action considering

the worst expected uncertainty. This fact makes the control law depend on the modelled bound of the uncertainties.

Consider, for instance, a system with an external disturbance modelled as persistent and bounded byµ > 0. If the

disturbance never appears (and consequently there are not mismatches between the prediction model and the real plant),

then the closed loop system does not evolve to the origin.

This property makes that the existing results on stability such as input to state stability can not be applied. Conse-

quently, new sufficient conditions on the notion of robust Lyapunov function are established to achieve robust stability for

this kind of systems. The main difference of the proposed conditions is that it is not necessary that the Lyapunov function

is zero at the origin. Based on this result, the main contribution of this paper is given: sufficient conditions for robust

stability of min-max MPC with bounded uncertainties. It is done assuming that the terminal cost is a robust Lyapunov

function and proving that the optimal cost is also a robust Lyapunov function.

The paper is organized as follows: in section 2, some preliminary results are presented. In section 3 sufficient

conditions for robust stability are given. The closed-loop min-max MPC is presented in section 4. The paper finishes

with the proposed sufficient conditions of robust stability of min-max MPC under bounded uncertainties, which is the

main contribution of the paper.

2 Preliminary results

2.1 Some definitions and properties

In this section, we present some well-established definitions and properties which will be used later.

Definition 1

• A continuous functionα : IR+ 7→ IR+ is aK -function ifα(0) = 0, α(s) > 0 for all s> 0 and it is strictly increasing.

• A continuous functionα : IR+ 7→ IR+ is a K∞-function if is aK -function andα(s)→ ∞ whens→ ∞.

• A continuous functionβ : IR+×Z+ 7→ IR+ is a K L-function if β(s, t) is a K -function ins for any t ≥ 0 and it is

strictly decreasing int for any s> 0.
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In what follows θ1 ◦ θ2(s) denotes the functionθ1(θ2(s)) and θk(s) = θ ◦ θk−1(s), with θ0(s) = s. This class of

functions satisfy the following properties:

Property 1 Let θ1 : [0,a1] 7→ IR+ and θ2 : [0,a2] 7→ IR+ be K -functions, letθ3(·) and θ4(·) be K∞-functions and let

β(·, ·) be aK L-function , then

1. θ−1
1 (·) is a K -function defined in[0,θ1(a1)].

2. θ1◦θ2(·) is a K -function defined in[0,b], with b = min(a2,θ−1
2 (a1)).

3. θ−1
3 (·) is a K∞-function .

4. θ3◦θ4(·) is a K∞-function .

5. θ1◦β(·) is a K L-function .

6. max(θ1(s),θ2(s)) is a K -function defined in[0,b] with b = min(a1,a2).

7. max(θ3(s),θ4(s)) is a K∞-function .

8. min(θ1(s),θ2(s)) is a K -function defined in[0,b] with b = min(a1,a2).

9. min(θ3(s),θ4(s)) is a K∞-function .

10. θ1(s1 +s2)≤ θ1(2 ·s1)+θ1(2 ·s2) for all s1,s2 ∈ [0,a1/2]

11. θ1(s1)+θ2(s2)≤ θ5(s1 +s2), whereθ5(s) = θ1(s)+θ2(s), for all s1 +s2 ≤min(a1,a2).

12. θ1(s1)+ θ2(s2) ≥ θ6(s1 + s2), whereθ6(s) = min(θ1(s/2),θ2(s/2)), for all s1 ∈ [0,a1] ands2 ∈ [0,a2] such that

s1 +s2 ≤ 2·min(a1,a2).

13. There exists aK∞-functionθ7(s) such thatθ7(s)≤ θ3(s) for all s≥ 0 andθ8(s) = s−θ7(s) is a K -function .

Note thatK∞-functions are a class ofK -functions; hence all the properties of theK -functions (as properties 10, 11 and

12) can be extended toK∞-functions.

2.2 System description

Consider a system described by an uncertain nonlinear time-invariant discrete time model

x+ = f (x,u,w) (1)

wherex ∈ IRn is the system state,u ∈ IRm is the current control vector, the disturbance inputw ∈ IRq models the

uncertainty andx+ is the successor state. It is assumed that the uncertainty is contained in a compact set,

w∈W (2)

which may depend on the state and contains the origin. We consider that the uncertaintyw is modelled by

‖w‖ ≤ γ(‖x‖)+µ (3)
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whereγ(·) is a K -function . This description is suitable for modelling both plant uncertainties and persistent external

disturbances.

The system is subject to constraints on both the state and the control action. These constraints are given by

u∈U (4)

x∈ X (5)

whereX andU are compact sets containing the origin.

In the sequel,xk anduk will denote the state and the control action applied to the system at sampling timek. Effective

control in the presence of uncertainties requires a feedback structure. So, a sequence of control lawsπ(x) to be applied

to the system at current statex must be considered. This control policy for a prediction horizonN is given by

π(x) = {µ0(x),µ1(·), · · · ,µN−1(·)}.

Note that, for a given statex, the first term is a control action, so it may be denoted asu(0).

The evolution of the system controlled byπ(x) depends on the future values of the uncertainties. This sequence of

future disturbances is denoted as future realization of uncertaintiesw. The realizationw is a possible realization ofN

uncertainties ifw ∈WN, whereWN = W×W×·· ·×W, N times.

The solution to (1) at timej when the initial state isx at time 0, the uncertainty realization isw and the control policy

π is applied will be denoted asx( j) = φ( j;x,π,w).

2.3 Some concepts on invariant sets

In this section, some well established definitions and results on invariant sets used in the paper are shown. See (Blanchini

1999, Kerrigan & Maciejowski 2000) for a compilation of definitions and results in set invariance theory.

Definition 1 Consider the uncertain systemx+ = F (x,w), wherew∈ IRq models the uncertainty andw∈W. Then the

setΩ⊂ IRn is a robust positively invariant set ifF (x,w) ∈Ω, for all x∈Ω and for allw∈W.

Definition 2 A setΩ ⊂ IRn is a robust control invariant set for the system (1) subject to constraint (4) if for allx∈ Ω,

there exists an admissible inputu = u(x) ∈U such thatf (x,u,w) ∈Ω for all w∈W.

Definition 3 Let Ω ⊂ IRn be a robust positively (or control) invariant set for system (1) subject to constraints (4) and

(5), then the i-step robust stabilizable setXi(Ω) is the set of admissible states which can be steered to the target setΩ in

i steps or less by a sequence of admissible control lawsπ(x) for all possible realization of the uncertaintyw ∈Wi . This

set is given by

Xi(Ω) = {x∈ IRn : ∃π(x) | µk(x(k)) ∈U, x(k) ∈ X, ∀k = 0, · · · , i−1, andx(i) ∈Ω,∀w(k) ∈W}

wherex(k) = φ(k;x,π,w).

This set satisfies thatXi(Ω)⊇ Xi−1(Ω) and moreoverXi(Ω) is a robust control invariant set, fori ≥ 0.
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3 Sufficient conditions for robust stability

Consider a system given by

xk+1 = F (xk,wk) (6)

wherexk is the state of the system, andwk is the uncertainty vector described by (3). Note that system (1) controlled by

a given control law can be expressed by (6).

Definition 2 The system (6) is robustly stable if there are aK L-functionβ(·, ·) and aK -functionδ(·) such that

‖xk‖ ≤ β(‖x0‖,k)+δ(µ)

for all ‖wk‖ ≤ γ(‖xk‖)+µ.

This definition of stability is closely related with the notion of Input to State Stability (ISS) (Jiang & Wang 2001), but

there exists some differences. In the given definition, the effect of the uncertainty depends on the modelled bound of

uncertaintiesµ but not on the current disturbancewk. This fact makes that if the uncertainty is modelled as tending to

zero when the system tends to the origin (that is,µ= 0) then robust stability implies asymptotic stability (as the input to

state stability). But if we consider thatµ > 0, then the system might not evolve to the origin despite the evolution of the

uncertaintywk.

In the following definition, a robust Lyapunov function which provides a sufficient condition for robust stability is

presented.

Definition 3 Consider system (6) and suppose that the uncertainties vectorw is bounded as in (3). A functionV(·) :

IRn 7→ IR+ is called a robust Lyapunov function if there are someK∞-functionsα1(·), α2(·), α3(·) and σ(·) and a

K -functionρ(·) such that

α1(‖x‖)≤V(x)≤ α2(‖x‖)+σ(µ)

V(F (x,w))−V(x)≤−α3(‖x‖)+ρ(µ)

for all ‖w‖ ≤ γ(‖x‖)+µ.

Note that the robust Lyapunov function may not be bounded above by aK∞-function of the state. This happens, for

instance, when the value ofV(0) is not zero because it depends on the modelled bound of the uncertainties.

Based on the previous definition, sufficient conditions for robust stability can be shown. Before stating these condi-

tions, some technical lemmas are necessary.

Lemma 1 Consider aK -functionψ(s) = s−θ(s) whereθ(·) is a K∞-function . Consider aK -function given byφ(s) =

s−1/2·θ(s), thenψ(s1 +s2)≤ φ(s1)+φ(s2).

Proof: First, we have that

θ(s1 +s2) = 1/2 ·θ(s1 +s2)+1/2·θ(s1 +s2)≥ 1/2·θ(s1)+1/2 ·θ(s2)

Based on this result, we derive that

ψ(s1 +s2) = s1 +s2−θ(s1 +s2)≤ s1 +s2−1/2·θ(s1)−1/2 ·θ(s2) = φ(s1)+φ(s2)
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Lemma 2 Let φ(·) be aK -function such thatφ(s) < s for all s> 0, then the functionδ(s,k) = φk(s) is a K L-function .

Proof: It is immediate thatφk(s) is a K -function ins. The fact thatφk(s) is decreasing ink for all s> 0 is proved by

induction: by assumption,φ1(s) = φ(s) < s= φ0(s). Assume thatφi(s) < φi−1(s), then

φi+1(s) = φ◦φi(s) < φ◦φi−1(s) = φi(s)

which completes the proof.

Using these lemmas, we state sufficient conditions for robust stability in the following theorem.

Theorem 1 If system (6) admits a robust Lyapunov function, then it is robustly stable.

Proof:

Consider aK∞-functionᾱ2(s) = α2(s)+σ(s). With this choice of̄α2(·), it results thatα2(‖x‖)+σ(µ)≤ ᾱ2(‖x‖+µ).

Therefore,V(x)≤ ᾱ2(‖x‖+µ) and hence,‖x‖+µ≥ ᾱ−1
2 (V(x)).

Let ε(·) be a givenK∞-function, and consider theK∞-function given byα3(s) = min(α3(s/2),ε(s/2)), then

α3(‖x‖)+ ε(µ)≥ α3(‖x‖+µ)≥ α3◦ ᾱ−1
2 (V(x)) = α4(V(x))

whereα4(s) = α3◦ ᾱ−1
2 (s) is aK∞-function . Then, we have that

V(F (x,w))≤V(x)−α3(‖x‖)+ρ(µ)≤V(x)−α4(V(x))+ ε(µ)+ρ(µ)

In virtue of property 1, there exists aK∞-functionα5(s) such thatα5(s) ≤ α4(s) for all s≥ 0 andψ(s) = s−α5(s) is a

K -function . Then, denotingγ(µ) = ε(µ)+ρ(µ), we have that

V(F (x,w))≤ ψ(V(x))+ γ(µ) (7)

Consider theK -function given byφ(s) = s−1/2 ·α5(s), and consider that the initial state of the system isx0, then

we are going to prove that

V(xk+1)≤ φk+1(V(x0))+δk+1(µ) (8)

whereδk(µ) = φ(δk−1(µ))+ γ(µ) with δ1(µ) = γ(µ). This is proved by induction: in virtue of (7) and lemma 1 we have

that

V(x1)≤ ψ(V(x0))+ γ(µ)≤ φ(V(x0))+δ1(µ)

Assume thatV(xk)≤ φk(V(x0))+δk(µ), then in virtue of lemma 1 we have that

V(xk+1) ≤ ψ(V(xk))+ γ(µ)

≤ ψ(φk(V(x0))+δk(µ))+ γ(µ)

≤ φ(φk(V(x0)))+φ(δk(µ))+ γ(µ)

= φk+1(V(x0)))+δk+1(µ))

We are going to show that the sequenceδk(µ) is strictly increasing for allµ> 0 and it is bounded above, which implies

that it is convergent. First, we have thatδ2(µ) = φ◦δ1(µ)+ γ(µ) > γ(µ) = δ1(µ). Assume thatδk(µ) > δk−1(µ), then

δk+1(µ) = φ◦δk(µ)+ γ(µ) > φ◦δk−1(µ)+ γ(µ) = δk(µ)
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Moreover the sequence is bounded by aK∞-functionθ(s) = α−1
5 (2·γ(s)). It is proved by induction: sinceα5(s) < s, then

α−1
5 (s) > s and henceθ(µ)≥ 2· γ(µ)≥ δ1(µ); assume thatδk(µ)≤ θ(µ), then

δk+1(µ) = φ◦δk(µ)+ γ(µ)

≤ φ◦θ(µ)+ γ(µ)

= θ(µ)−1/2·α5◦θ(µ)+ γ(µ)

= θ(µ)

From this result and equation (8) we have that

α1(‖xk‖)≤V(xk)≤ φk(V(x0))+θ(µ)

From properties of theK -functions and lemma 1 we derive that

α1(‖xk‖) ≤ φk(α2(‖x0‖)+σ(µ))+θ(µ)

≤ φk(2·α2(‖x0‖))+φk(2 ·σ(µ))+θ(µ)

≤ φk(2·α2(‖x0‖))+2 ·σ(µ)+θ(µ)

From this inequality we have that

‖xk‖ ≤ α−1
1

(
φk(2·α2(‖x0‖))+2·σ(µ)+θ(µ)

)

≤ α−1
1

(
2·φk(2·α2(‖x0‖))

)
+α−1

1 (4·σ(µ)+2 ·θ(µ))

= β(‖x0‖,k)+ϕ(µ)

From properties ofK -functions, it is easy to see thatβ(‖x0‖,k) is a K L-function andϕ(µ) is a K -function , which

completes the proof.

From this result, it is easy to see that if a system is ISS then it is robustly stable. Moreover, a given ISS-Lyapunov

function is a robust Lyapunov function. However, a robustly stable system may not be ISS because the Lyapunov function

may be not zero at the origin and because the convergence condition depends on the modelled bound of the uncertainty.

4 Robust model predictive control

As it is well known, the MPC control technique is able to asymptotically stabilize constrained systems under mild

assumptions (Mayne et al. 2000). If the system to be controlled is uncertain, then stability and constraint satisfaction are

not guaranteed. For uncertainties that are small enough, the MPC stabilizes the system in a neighborhood of the origin

(Limon et al. 2002b). If this is not the case, it is necessary to use a robust formulation of the controller, that is, the

effect of the uncertainties must be taken into account in the design of the controller. An approach to this problem is the

so-called open loop robust MPC. In this case, a sequence of control actions is computed so that it guarantees both robust

constraint satisfaction and convergence (Michalska & Mayne 1993, Limon et al. 2002a). This approach is based on the

solution of a nonlinear mathematical programming problem, as in the nominal case. However, the open loop nature of

the predictions makes the controller very conservative.
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To overcome this drawback, the closed loop formulation is proposed (Scokaert & Mayne 1998, Mayne 2001, Kerrigan

& Mayne 2002). In this case, a sequence of control laws is computed instead of a sequence of control actions. By doing

this, the reaction of the controller to the uncertainty is incorporated in the prediction and the conservativeness is mitigated.

The cost associated to the future evolution of the system depends on the control policy and the future realization of

the uncertainties

JN(x,π,w) =
N−1

∑
i=0

`(x(i),µi(x(i)))+F(x(N))

wherex(i) = φ(i;x,π,w), π = {µi(·)}, and the stage cost`(·, ·) is a definite positive function. The control policy is derived

from the solution of an optimization problemPN(x,Ω) given by

J∗N(x) = min
π

max
w

JN(x,π,w)

s.t. µi(x(i)) ∈U, x(i) ∈ X, i = 0, . . . ,N−1, ∀w ∈WN

x(N) ∈Ω, ∀w ∈WN

Due to the receding horizon policy, the min-max MPC controller is given byKN(x) = µ0(x).

This problem is feasible in the regionXN(Ω). If the terminal setΩ is a robust invariant set, then robust feasibility all

the time and hence robust constraint satisfaction are guaranteed. However, additional assumptions must be considered

to ensure robust stability. In (Mayne 2001) sufficient conditions for asymptotic stability for the closed loop min-max

controller in case of decaying uncertainties are given. It is proved that it suffices to choose an admissible robust invariant

set as terminal setΩ and a terminal cost function such that

F( f (x,h(x),w))−F(x)≤−`(x,h(x)) ∀x∈Ω, ∀w∈W (9)

whereu = h(x) is an admissible robustly stabilizing local control law inΩ.

5 Robust stability analysis

In this paper we extend the results presented in (Mayne 2001) to the case of not decaying uncertainties described by (3).

This constitutes the main contribution of the paper.

Assumption 1 Consider system (1) and suppose that the uncertainties vectorw is modelled by (3). LetΩ be an admis-

sible robust invariant set for the system controlled by the control lawu = h(x) such that the origin is in its interior. Let

F(x) be an associated robust Lyapunov function such that for allx∈Ω and for all‖w‖ ≤ γ(‖x‖)+µ we have that

α1(‖x‖)≤ F(x)≤ α2(‖x‖)+σ(µ)

F( f (x,h(x),w))−F(x)≤−`(x,h(x))+ρ(µ)

whereα1(·), α2(·) , σ(·) and ρ(·) are K∞-functions and the stage cost satisfies`(x,u) ≥ α3(‖(x,u)‖), beingα3(·) a

K∞-function

First, an upper bound of the optimal cost is obtained in the following lemmas.
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Lemma 3 Consider system (1) and suppose that the uncertainties vectorw is modelled by (3). LetΩ andF(x) satisfy

assumption 1, then for allx∈Ω we have that

J∗N(x)≤ F(x)+N·ρ(µ)

Proof: Let πh(x) be a control policy obtained from the local control law, that is,µi(x) = h(x). From assumption 1 we

have that

F(x(k+1))−F(x(k))≤−`(x(k),h(x(k)))+ρ(µ)

wherex(k) = φ(k;x,πh,w). Summing this inequality fromk = 0 to N−1 we have

F(x(N))−F(x)≤−
N−1

∑
i=0

`(x(k),h(x(k)))+N ·ρ(µ)

and hence

F(x)≥
N−1

∑
i=0

`(x(k),h(x(k)))+F(x(N))−N ·ρ(µ)

In virtue of assumption 1, the control policyπh is feasible. By optimality, it is derived that

F(x)≥ J∗N(x)−N ·ρ(µ)

Based on this lemma, an upper bound of the optimal cost is obtained for allx∈ XN(Ω).

Lemma 4 Consider system (1) and suppose that the uncertainty vectorw is modelled by (3). LetΩ and F(x) satisfy

assumption 1, then there exists a couple ofK∞-functionsαJ
s(·) andσJ(·) such that

J∗N(x)≤ αJ
2(‖x‖)+σJ(µ)

for all x∈ XN(Ω) and for all‖w‖ ≤ γ(‖x‖)+µ.

Proof: The compactness ofX andU implies thatx(k), the predicted evolution of the system, andu(k), the feasible control

action, are bounded. This fact and assumption 1 guarantee that the optimal cost is upper bounded, that is, there exists a

finite real numberJ̄N such thatJ∗N(x)≤ J̄N for all x∈ XN(Ω).

Let Br ⊂ IRn be a ballBr = {x∈ IRn : ‖x‖ ≤ r} such thatBr ⊆Ω. Note that this ball exists since the origin is in the

interior of Ω.

Let ε be a positive constantε = max(1, J̄N/α2(r)). Consider theK∞-functions given byαJ
2(s) = ε ·α2(s) andσJ(s) =

σ(s)+N·ρ(s). Two cases must be taken into account:

• If x∈Ω, then based on the previous lemma we have that

J∗N(x)≤ F(x)+N ·ρ(µ)≤ α2(‖x‖)+σ(µ)+N ·ρ(µ)≤ αJ
2(‖x‖)+σJ(µ)

• If x 6∈Ω, thenx 6∈ Br and henceα2(‖x‖) > α2(r). Hence

J∗N(x)≤ J̄N ≤ J̄N · α2(‖x‖)
α2(r)

≤ αJ
2(‖x‖)+σJ(µ)
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In the following theorem, we present the main result of the paper: the optimal cost of the min-max MPC controller is

a robust Lyapunov function. Hence, robust stability of the min-max MPC is proved.

Theorem 2 Consider system (1) and suppose that the uncertainty vectorw is modelled by (3). LetΩ andF(x) satisfy

assumption 1. Then the uncertain system controlled by the min-max MPC controlleru = KN(x) is robustly stable for any

initial statex0 ∈XN(Ω) and for any uncertainty‖wk‖ ≤ γ(‖xk‖)+µ. Furthermore, the optimal cost is a robust Lyapunov

function.

Proof: We are going to check that the optimal cost is a robust Lyapunov function. In virtue of the previous lemmas we

have that

α3(‖x‖)≤ `(x,KN(x))≤ J∗N(x)≤ αJ
2(‖x‖)+σJ(µ)

which is the first property of the robust Lyapunov function. The decreasing property of the optimal cost is proved in what

follows by means of the dynamic programming approach to the min-max problem (in an analogous way to the proof

presented in (Mayne 2001)).

Thanks to the invariance of the terminal set, the feasible region of the controllerXN(Ω) is a robust invariant set for

the closed loop system and the controller is well defined all the time (Mayne 2001, Kerrigan & Maciejowski 2001).

Define the optimal cost ini-steps:

J∗i (x) = min
u∈U

{
max
w∈W

{`(x,u)+J∗i−1( f (x,u,w))} such thatf (x,u,w) ∈ Xi−1(Ω), ∀w∈W
}

whereJ∗0(x) = F(x) defined inX0(Ω) = Ω. Defineu = Ki(x) as the argument of the optimal solution to this optimization

problem.

For allx∈Ω, it easy to check that

J∗1(x)−J∗0(x) = min
u∈U

{
max
w∈W

{`(x,u)+F( f (x,u,w))} such thatf (x,u,w) ∈Ω∀w∈W
}
−F(x)

≤ max
w∈W

{`(x,h(x))+F( f (x,h(x),w))}−F(x)

≤ ρ(µ)

Assume thatJ∗i (x)−J∗i−1(x)≤ ρ(µ) for all x∈ Xi−1(Ω). Consider anyx∈ Xi(Ω), then

J∗i+1(x)−J∗i (x) = min
u∈U

{
max
w∈W

{`(x,u)+J∗i ( f (x,u,w))}such thatf (x,u,w) ∈ Xi(Ω), ∀w∈W
}
−J∗i (x)

Sincex∈ Xi(Ω), the control actionu = Ki(x) is well defined and it is feasible for the optimization problem ini +1 steps

since f (x,Ki(x),w) ∈ Xi−1(Ω)⊆ Xi(Ω). Then it follows that

J∗i+1(x)≤max
w∈W

{`(x,Ki(x))+J∗i ( f (x,Ki(x),w))}

and we have that

J∗i+1(x)−J∗i (x) ≤ max
w∈W

{`(x,Ki(x))+J∗i ( f (x,Ki(x),w))}−J∗i (x)

= max
w∈W

{`(x,Ki(x))+J∗i ( f (x,Ki(x),w))}−max
w∈W

{`(x,Ki(x))+J∗i−1( f (x,Ki(x),w))}
≤ max

w∈W

{ {`(x,Ki(x))+J∗i ( f (x,Ki(x),w))}−{`(x,Ki(x))+J∗i−1( f (x,Ki(x),w))}}

= max
w∈W

{
J∗i ( f (x,Ki(x),w))−J∗i−1( f (x,Ki(x),w))

}

≤ ρ(µ)
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Hence, by induction it is inferred thatJ∗i+1(x)−J∗i (x)≤ ρ(µ) for all i ≥ 0 andx∈ Xi(Ω).

Consider that the state of the system isxk and that the min-max MPC control lawuk = KN(xk) is applied, then the

system evolves toxk+1 = f (xk,KN(xk),wk). Sincexk ∈ XN(Ω), it is clear thatxk+1 ∈ XN(Ω).

Based on the monotonicity result, it follows that

J∗N(xk+1)−J∗N(xk) ≤ J∗N(xk+1)−min
u∈U

{
max
w∈W

{`(xk,u)+J∗N−1( f (xk,u,w))} such thatf (xk,u,w) ∈ XN−1(Ω), ∀w∈W
}

= J∗N(xk+1)−max
w∈W

{`(xk,KN(xk))+J∗N−1( f (xk,KN(xk),w))}
≤ J∗N(xk+1)− `(xk,KN(xk))−J∗N−1( f (xk,KN(xk),wk))

= J∗N(xk+1)− `(xk,KN(xk))−J∗N−1(xk+1)

≤ −`(xk,KN(xk))+ρ(µ)

Consequently, the optimal cost is a robust Lyapunov function, and hence the closed loop system is robustly stable.

It is interesting to see that the robustness of the design of the terminal cost is translated to robustness of the optimal

cost of the MPC: the effect of the decaying part of the uncertainties does not appear explicitly in the bounds of the robust

Lyapunov function, and hence in the convergence rates derived from it; only the term of persistent disturbances (which is

induced by the constant boundµ) has an effect on them. Moreover, the effect of the persistent uncertainty on the optimal

cost is the same that the one on the terminal cost.
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