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Computational burden reduction in Min-Max

MPC

D.R. Ramirez ∗, T. Alamo, E.F. Camacho 1,

Departamento de Ingenieŕıa de Sistemas y Automática, Universidad de Sevilla,
Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n, 41092

Sevilla, Spain

Abstract

Min-Max Model Predictive Control (MMMPC) is one of the strategies used to
control plants subject to bounded uncertainties. The implementation of MMMPC
suffers a large computational burden due to the complex numerical optimization
problem that has to be solved at every sampling time. This paper shows how to
overcome this by transforming the original problem into a reduced min-max prob-
lem whose solution is much simpler. In this way, the range of processes to which
MMMPC can be applied is considerably broadened. Proofs based on the properties
of the cost function and simulation examples are given in the paper.

1 Introduction

Model Predictive Control (MPC) is one of the few advanced control strategies
with a significant success in the industrial community ([9]). MPC is able to
take into account constraints in the computation of the control law. It can
also handle multivariable processes without resorting to decoupler schemes.
The tuning process is intuitive and the control effort or economic objectives
can be taken into account. The effect of process model uncertainties can also
be considered in the control law. The inherent robustness of MPC is enhanced
with different approaches such as terminal costs, dual control laws, terminal
constraints often designed using set invariance concepts and more recently by
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means of tube-based formulations [28,37,35]. Another strategy used to improve
performance under model uncertainties (thus enhancing the robustness of the
control law) is worst case design. This is usually accomplished using the Min-
Max MPC formulation [10].

In Min-Max MPC controllers ([9,10]), the value of the control signal to be
applied is found by minimizing the worst case of a performance index (usu-
ally quadratic) which is in turn computed by maximizing over the possible
expected values of disturbances and uncertainty. Solving these problems can
be very time consuming as they are of the NP-hard kind ([42,24,40]). Thus,
the implementation of this type of control is severely compromised leading to
a lack of experimental results. Only a few applications to plants with slow
dynamics ([8]) or complex simulated models ([21]) have been reported. For
moderate fast dynamics the min-max problem can be solved numerically only
when the number of extreme realizations of the uncertainty is relatively low.
This is the case when the prediction horizon is small. When fast dynamics
are to be controlled the min-max problem cannot be solved numerically, and
approximate solutions have to be used ([33]). However, these techniques im-
pose great rigidity in the controller parameters, as well as a certain degree of
approximation error.

The MMMPC control law, traditionally regarded as highly nonlinear, has
proven to be piecewise affine when a quadratic ([34]) or 1-norm based crite-
rion ([5,20]) is used as the cost function. With these results, together with
those obtained when multiparametric mathematical programming is applied
([5]), explicit forms of the control law can be built. Algorithms to obtain the
explicit formulation of MMMPC controllers based on quadratic cost functions
and linear models have been given in [31,30], in [14] where experimental re-
sults are also presented and in [6] in which LPV systems are considered. An
approximate explicit description of MMMPC with nonlinear prediction model
can be found in [16]. However, in explicit formulations of MPC or MMMPC
controllers, the number of regions in which the state space has to be parti-
tioned grows with the prediction horizon in a combinatorial explosion. Thus,
storage requirements and searching time for the appropiate region can be very
high for practical values of the prediction and control horizons. A search tree
structure has been proposed to reduce the searching time in the MPC context
([18,41]). Hash tables have been also used for this in [3]. If the process model
or the controller parameters change, however, the computation of the regions
has to be done again. Also, different robust predictive controllers based on
multiparametric programming have appeared in [38,39]. On the other hand,
explicit formulations of predictive controllers not based on multiparametric
programming can be found in [43]. A different approach that uses an offline
robustification of an explicit predictive controller is presented in [36]. The
reader is referred to [2] for a detailed survey in explicit model predictive con-
trol.

2



Often the computational burden issue is solved by using a bound of the worst
case cost instead of computing it explicitly ([32]). The use of such upper
bounds, turns the control law different as that of a MMMPC, but the on-
line implementation can be easier. The upper bound can be computed using
LMI techniques such as in [22] or [11,27,13]. In these strategies the control
law takes the form of a fixed state feedback gain along the prediction horizon.
This state feedback gain is computed from an LMI problem that minimizes
the upper bound of the worst case cost. In [44], the strategy of [22] is im-
proved by moving most of the computations offline using an algorithm based
on asymptotically stable invariant ellipsoids (the online computations are re-
duced to a search in a lookup table). More recently, in [15] this strategy has
been improved in two ways, first by using nominal performance cost in sub-
stitution of worst-case one, such that feasibility can be improved and, second,
by using a heuristic varying-horizon formulation in which the feedback gains
are obtained in a backward manner. Other approximation to lower the com-
putational burden of LMI based strategies like [22] is that of [12], in which
uncertain norm-bounded linear systems are considered instead of the usual
polytopic systems, resulting in a number of LMIs that grows only linearly
with the control horizon. On the other hand, the use of fixed state feedback
along the prediction horizon is a restriction on the feasible control signals val-
ues. This limits the achievable performance and the size of the allowable set
of initial conditions. These problems have been tackled in [23]. In that work,
extra degrees of freedom are introduced through the use of perturbations on
the fixed state-feedback law. Also, most of the computational burden is moved
to an offline feasibility problem. A generalization of this approach with greater
domain of attraction was presented in [17] where a in general non-convex (but
often convex) optimization problem has to be solved offline together with a
very efficient online optimization. Note however, that none of these control
strategies are true MMMPC controllers because no min-max problem is really
solved. On the other hand, the use of an upper bound of the worst case cost
can result in a more conservative controller.

This paper shows a way of implementing MMMPC that requires only a frac-
tion of the time required by the usual min-max solvers. The method is based on
transforming the original min-max problem into an equivalent reduced prob-
lem whose solution is much simpler. Thus, for many processes in which time
constants are measured in seconds or minutes, the reduced min-max problem
can be solved on-line using standard numerical algorithms. This approach has
been used in a previous work by the authors ([1]). However, solving a nonlinear
optimization problem and a QP problem at each sampling time was required
to obtain the reduced min-max problem. Thus, the computational efficiency
improvement was greatly reduced. In this paper a more efficient way to obtain
such a reduced problem using the solution of the min-max problem solved
in the previous sampling time is presented. Although this work deals with
unconstrained MMMPC, a constrained MMMPC controller which can be effi-
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ciently implemented is also presented. It uses the solution of the unconstrained
controller in a constrained min-max formulation with a related convex (and
therefore tractable) optimization problem.

The paper is organized as follows: Section 2 presents the basic Min-Max MPC
with bounded global uncertainties algorithm. The efficient implementation
strategy is introduced in Section 3. The strategy to get a reduced min-max
problem equivalent to the original problem to be solved is presented in Section
4. This strategy is illustrated in Section 5. Section 6 presents conclusions and
questions to be addressed in future works. Finally, in appendix A the efficient
constrained min-max formulation is presented.

2 Min-Max MPC with bounded additive uncertainties

The bounded additive uncertainties approach assume that all modelling errors
are globalized in a vector of parameters, such that the plant can be described
by the following family of models:

x̂(t + 1) = f̂(x(t) , u(t)) + θ(t + 1, x(t), u(t), ς(t)), (1)

‖θ(t, x(t), u(t), ς(t))‖∞ ≤ ε

where f̂(·) is the nominal model (in this work only linear models are consid-
ered) and θ(·) is the additive uncertainty which can depend on time, process
state or inputs or any amplitude bounded signal that may be generated by
any deterministic or stochastic process. It may be argued that these types
of uncertainties are rather conservative and more disturbances than uncer-
tainties, because they seem to work as external perturbations. However, the
only assumption made is that they are bounded, thus they represent the total
contribution of the uncertainty to the process state evolution. Also, this strat-
egy can be compared favorably with the parametric uncertainty approach in
the sense that it does not suppose that the process to be controlled can be
described exactly by an unknown linear model. Furthermore, the type of un-
certainty description used in this paper can be understood better by control
practitioners, as they only have to consider which is the maximum error of
their model for the next sampling time. This maximum error can be easily ob-
tained from any identification algorithm (such as least squares identification),
and thus, models for systems with bounded additive uncertainties are easy to
obtain. Conservativeness can also be adjusted by considering a lower ε in the
controller design.

The results presented in this paper are valid for linear systems, either for state
space models with bounded additive uncertainties:
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x(t + 1) = Ax(t) + Bu(t) + Dθ(t + 1, x(t), u(t), ς(t)) (2)

y(t) = Cx(t)

with ‖θ(·)‖∞ ≤ ε, or by input-output models like CARIMA models with
bounded additive uncertainties:

Ã(z−1)y(t) = z−dB(z−1)∆u(t− 1) + θ(t, x(t− 1), u(t− 1), ς(t− 1)) (3)

where ‖θ(·)‖∞ ≤ ε, Ã(z−1) = ∆A(z−1), ∆ = 1 − z−1 being y(t) and u(t) the
output and control signals of the plant. Note that in this prediction model
the error concept present in CARIMA models (commonly used in GPC) is
extended to incorporate the effect of modelling uncertainties and disturbances.
Also, in this case, the state can be considered to be formed by the present
values of process outputs and finite series of past input increments and past
output signals.

A cost function J is used in Min-Max MPC to indicate how well the process
follows the desired trajectory over the time interval t to t + N , where N
is called the prediction horizon. That cost function depends on the present
process state, present and future control signals and uncertainties and also the
present and future values of the setpoint. An usual form of this cost function
is a quadratic criterion given by:

J(θ,u, x) =
N∑

j=1

x(t + j|t)T Qjx(t + j|t) +
Nu∑

j=1

u(t + j − 1)T Rju(t + j − 1) (4)

where N is the prediction horizon, Nu is called the control horizon, θ =
[θ(t + 1, . . .), · · · , θ(t + N, . . .)] is the sequence of the future uncertainty val-
ues 2 , u = [u(t), · · · , u(t + Nu − 1)] is the sequence of future control sig-
nals and x(t + j|t) is the prediction of the state at t + j made at time t
taking into account θ, u and x. On the other hand, Qj = QT

j ≥ 0 and
Rj = RT

j > 0 are used as weighting parameters. Note that this cost function
allows the inclusion of a quadratic terminal cost x(t+N)T Px(t+N) by mak-
ing QN = P . In input-output models like (3), it is usual to consider a setpoint
and also, the sequence u is composed by the future control increments, i.e.,
u = [∆u(t), · · · , ∆u(t + Nu − 1)]. Then, the cost function is given by:

J(θ,u, x) =
N∑

j=1

(y(t + j|t)− r(t + j))2 + λ
Nu∑

j=1

(∆u(t + j − 1))2 (5)

2 Note that θ is unknown, but this is not a problem as the worst case cost is
attained at the extreme realizations of θ (that is, the vertices of the set of possible
uncertainty sequences), which are known.
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where λ > 0 is called the control effort penalty factor, r(t + j) is the set point
value for time t+ j and y(t+ j|t) is the prediction of the output at t+ j made
at time t taking into account θ, u and x. In both cases, the control horizon is
always Nu ≤ N and the control signal is assumed to be constant in the time
interval t + Nu to t + N .

The objective of MPC control is to compute the future control sequence
u(t), u(t + 1), . . . , u(t + Nu − 1) in such a way that the optimal j-step ahead
predictions of the process output y(t + j|t) or process state x(t + j|t) are
driven close to the desired set point sequence over the prediction horizon.
When bounded uncertainties are considered explicitly, there are experimental
evidences [9,14], that a better performance can be obtained if the controller
minimizes the objective function for the worst situation. Also, the local mar-
gin of stability is increased [26]. Thus, the optimal control sequence will be
computed solving the following min-max problem:

u(x) = arg min
u

max
θ∈Θ

J(θ,u, x) (6)

where Θ = {θ ∈ RL : ‖θ‖∞ ≤ ε} is the set of possible uncertainty sequences,
and L is N · dim(y) in an input-output description or N · dim(x) in a state-
space approach. The optimal cost function (that is the minimum maximum
cost) of the resulting min-max problem can be written as:

Js(x) = min
u

max
θ∈Θ

J(θ,u, x) = min
u

J∗(u, x)

where

J∗(u, x) = max
θ∈Θ

J(θ,u, x) (7)

is the worst case cost function.

The properties of the min-max problem depend on the structure and properties
of the cost function J(θ,u, x) which in turn is closely related to the model
structure used to predict the future evolution of the process state. It can be
seen ([9]) that the predicted values of x(t) and y(t) using models (2) and (3)
depend on the process uncertainties, inputs and state in an affine way 3 , i.e.:

ξ = Guu + Gθθ + Fxx(t) (8)

3 This is also true for other types of convolution models like FIR and finite step
response models. In this case, the state can be considered to be formed by the
present value of process output and finite series (normally much longer than in
transfer function models) of past inputs. Thus, the results in this paper can also be
used with MMMPC based on these models.
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where ξ can be either the vector of predictions of process state or output over
the prediction horizon ([9]). Assume without loss of generality a zero reference.
Taking into account (8), the cost functions (4) and (5) can be rewritten as
([9]):

J(θ,u, x) = uT Mu + 2(Nx + n(θ))Tu + xT Cx + 2d(θ)T x + h(θ) (9)

In the case of (5) the matrices of (9) are M = GT
u Gu + λI, C = F T

x Fx,
N = GT

u Fx, n(θ) = GT
u Gθθ, d(θ) = F T

x Gθθ, h(θ) = θT GT
θ Gθθ. On the other

hand, for the state space model: M = GT
uQGu+R, C = F T

x QFx, N = GT
uQFx,

n(θ) = GT
uQGθθ, d(θ) = F T

x QGθθ, h(θ) = θT GT
θ QGθθ, where Q and R are

diagonal matrices

Q =




Q1

. . .

QN




, R =




R1

. . .

RNu




Recall that λ > 0 and that Rj = RT
j > 0, thus M > 0 for both cost functions.

On the other hand, h(θ) ≥ 0. These conditions imply that J is convex on θ
and strictly convex on u. Thus the maximum of J(θ,u, x) will be attained at
least at one of the 2L vertices of the polytope Θ ([4]). Each of these vertices
will be related to an extreme realization of the uncertainty sequence θ, being
an extreme realization a sequence in which all its components are either −ε
or ε. Also, any local minimizer of J∗(u, x) will be the global minimizer ([4])
and the solution of the min-max problem (6) is unique.

Taking into account that the maximum of J(θ,u, x) always will be attained
at least at one of the vertices θi it is clear that the original min-max problem
(6) is equivalent to:

Js(x) = min
u

max
θi∈vertices(Θ)

J(θi,u, x) = min
u

J∗(u, x)

with:

J∗(u, x) = max
θi∈vertices(Θ)

J(θ,u, x)

where vertices(Θ) is the set of the 2L vertices of Θ.

In the following, Ji(u, x) denotes J(θi,u, x), where θi is the uncertainty ex-
treme realization related to vertex i. Thus,

Ji(u, x) = uT Mu + 2(Nx + ni)
Tu + xT Cx + 2dT

i x + hi (10)
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where M , N and C are the same matrices as in (9) and ni, di, hi are equal to
n(θi), d(θi), h(θi). Thus, the optimal control sequence can be computed by
solving:

u(x) = arg min
u

max
i∈[1,···,2L]

Ji(u, x) (11)

Note that, in order to solve problem (11), for each candidate solution u of the
outer minimization problem, the cost function J must be evaluated at all the
2L vertices of Θ 4 . This is the cause of the great computational burden required
to obtain the optimal control signal u(x). In fact, problem (11) is NP-hard, and
usually cannot be solved in real time for reasonable values of the prediction
horizon or sampling time. A possible solution to this problem would be to
reduce the number of vertices considered in the inner maximization problem.
The following sections present a strategy to reduce the computational burden
of (11) based on this idea.

3 Efficient implementation strategy

In this section the main ideas of the efficient implementation strategy are
introduced. This strategy is based on the reduction of the number of vertices
to be explored in the maximization part of the min-max problem. Solving
such a reduced min-max problem would involve a much lower computational
burden than that of the original problem. Thus, the range of processes to
which MMMPC can be applied would be considerably broadened.

A main concept in this paper is that of active vertices. As stated in Section
2, due to the convexity of the cost function on θ, the maximum cost for any
given u, will be attained at least at one or more vertices of Θ. This also holds
for the optimal solution of the min-max problem, u(x). Thus for u = u(x)
there will be one or more vertices of Θ for which it holds that:

Js(x) = Ji(u(x), x) (12)

where i is any of the vertices in which the maximum cost is attained for
u = u(x). Those vertices that satisfy (12), i.e., those that give the maximum
cost at the solution of the min-max problem, are called active vertices. To
illustrate the concept of active vertices let us consider the simplest of all
examples, that is a system in which dim(y) = 1, Nu = N = 1. In this case
Θ has only two vertices, θ1 = {−ε} and θ2 = {ε}. Those vertices are related

4 Note that in input-output models, L = N · dim(y), thus the order of the system
has no effect in the complexity of the min-max problem.
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Fig. 1. Types of solutions of min-max problem with two quadratic functions
(Nu = N = 1): (a) One active vertex. (b) Two active vertices.

to two quadratic cost functions J1(u, x), J2(u, x). Also, in this case the active
vertices can be either θ1 or θ2 or both. Figure 1a shows the value of J1 and
J2 for a given x. Note that both J1 and J2 give the maximum cost for some
values of u, but the minimum maximum cost, that is the min-max, is attained
only at J1. Thus in this case the active vertex is θ1. Now consider Figure 1b.
In this case, the min-max is attained at an intersection of J1 and J2, that is,
both θ1 and θ2 are active vertices.

For a given system and state x, the solution of (6) can be characterized by the
active vertices. At any of the active vertices the cost function will be equal to
the optimal cost Js(x). Thus, the following definition can be given:

Definition 1 I(x), the set of active vertices is given by:

I(x) = {i : Ji(u(x), x) = Js(x)} (13)

It is easy to see that the solution of (6) is also the solution of a reduced
min-max problem given by:

u(x) = arg min
u

max
i∈I(x)

Ji(u, x) (14)

The reason is that those quadratic functions that are related to not active
vertices do not contribute to the solution of the min-max problem. Thus, they
can be discarded. This situation is illustrated in Figure 2. Figure 2a shows the
quadratic functions for a min-max problem with dim(y) = 1, Nu = 1, N = 2.
That is, there are four vertices θ1 = {−ε,−ε}, θ2 = {−ε, ε}, θ3 = {ε,−ε},
θ4 = {ε, ε}. Note that the maximum cost takes place only three of them (those
related to J1, J2 and J4) for any value of u. It is clear that J3 can be dropped

9
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Fig. 2. Two min-max problems with the same solution: (a) Full min-max with all
cost functions. (b) Reduced min-max with cost functions related to active vertices.

from the min-max problem as the solution cannot be at θ3. But J1 can also
be dropped, because the minimum maximum cost does not occur on it. That
is, the active vertices in this case are θ2 and θ4. Now consider Figure 2b, in
which it is shown how solving a min-max problem with just J2 and J4 (the
active vertices of the original min-max problem) yields the same solution of
the original problem of Figure 2a. Thus, the solution of a min-max problem
can be obtained taking into account only the active vertices. As the number
of active vertices is generally much lower than the total number of vertices,
problem (14) can be solved with little computational burden.

If the process state changes from x to x + ∆x the active vertices set also
changes so that I(x + ∆x) 6= I(x). Although I(x + ∆x) cannot be obtained
without solving the min-max problem for x + ∆x, it will be shown in this
paper that a conservative estimation of I(x+∆x) can be efficiently computed
using I(x) and ∆x. This estimation, which will be denoted as Ie(x + ∆x),
satisfies that I(x + ∆x) ⊆ Ie(x + ∆x). Thus, the reduced min-max problem
(14) for x + ∆x can be substituted by the following reduced problem:

u(x + ∆x) = arg min
u

max
i∈Ie(x+∆x)

Ji(u, x + ∆x) (15)

which is also equivalent to the original min-max problem. As the number of
vertices included in Ie will be a small fraction of the whole 2L vertices, the
computational burden will be accordingly much lower.

The procedure to obtain Ie will be given in the next section. A preliminary
proposition that characterizes the change in a quadratic function Ji(u, x) when
its parameters are perturbed is stated in the following:

Proposition 1 Given Ji(u, x) as in (10) the value of Ji(u+∆u, x+∆x) can
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be expressed as:

Ji(u + ∆u, x + ∆x) = Ji(u, x) + Qi(∆u, ∆x) (16)

where Qi(∆u, ∆x) is a quadratic function given by:

Qi(∆u, ∆x) = ∆uT M∆u + 2gT
u,i∆u + 2gT

x,i∆x + 2∆xT NT ∆u (17)

+∆xT C∆x

where gu,i = (Mu + Nx + ni) and gx,i = (NTu + Cx + di).

4 On-line estimation of the set of active vertices

This section shows how to build an estimation of the set of active vertices for
a given process state by means of the known solution of another value of the
process state. This strategy can be used to estimate I(x(t)) using u(x(t− 1))
and I(x(t − 1)) both available at sampling time t. With this estimation of
I(x(t)), which will be denoted as Ie(x + ∆x), the min-max problem to be
solved at sampling time t can be replaced by an equivalent reduced min-
max problem. The following theorem presents a strategy to build such an
estimation.

Theorem 1 Given a known x and its corresponding optimal solution u =
u(x), ∆x and γ defined as follows:

γ = J∗(u, x + ∆x)− J∗(u, x) (18)

For each pair of vertices k, i, where i is an active vertex for x and k is a vertex
candidate to be active for x + ∆x, define Rk,i as follows:

Rk,i = max
z

Qk(z, ∆x)−Qi(z, ∆x) (19)

s.t.

Qi(z, ∆x) ≤ γ

gT
u,iz ≥ 0

The extended set of active vertices, Ie, is defined as follows:

Ie(x + ∆x) =

{
k : Js(x)− Jk(u, x) ≤ max

i∈I(x)
Rk,i

}
(20)

11



Then it holds that I(x + ∆x) ⊆ Ie(x + ∆x)

Proof : Let ∆u = u(x + ∆x)−u(x) be the change of the solution of problem
6 when the process state changes from x to x+∆x. Let j be any of the active
vertices for x, that is j ∈ I(x). Being j an active vertex for x it is true that:

Jj(u, x) = J∗(u, x) = Js(x) (21)

Moreover it holds that:

Js(x + ∆x) = max
i
{Ji(u + ∆u, x + ∆x)} ≥ Jj(u + ∆u, x + ∆x) (22)

In fact, if j ∈ I(x+∆x) then, inequality (22) turns into an equality. Otherwise
it is a strict inequality due to the fact that the maximum is not attained at
Jj.

Let us suppose that k ∈ I(x + ∆x). Then:

Jk(u + ∆u, x + ∆x) = Js(x + ∆x) ≥ Jj(u + ∆u, x + ∆x) (23)

Using Proposition 1:

Jk(u + ∆u, x + ∆x) = Jk(u, x) + Qk(∆u, ∆x)

Jj(u + ∆u, x + ∆x) = Jj(u, x) + Qj(∆u, ∆x)
(24)

therefore, from (23):

Jk(u, x) + Qk(∆u, ∆x) ≥ Jj(u, x) + Qj(∆u, ∆x) = Js(x) + Qj(∆u, ∆x) (25)

which yields:

Js(x)− Jk(u, x) ≤ Qk(∆u, ∆x)−Qj(∆u, ∆x) (26)

Then, every k ∈ I(x + ∆x) must verify (26), thus this inequality can be used
to build the active vertex set for x + ∆x. However, the exact value of ∆u is
unknown, so an estimation has to be found. Using such an estimation of ∆u a
conservative estimation of I(x + ∆x) can be built, as shown in the following.

Taking into account Proposition 1 and (21) Jj(u+∆u, x+∆x) can be expressed
as:

12



Jj(u + ∆u, x + ∆x) = Jj(u, x) + Qj(∆u, ∆x) (27)

= J∗(u, x) + Qj(∆u, ∆x)

= J∗(u, x + ∆x) + Qj(∆u, ∆x)− (J∗(u, x + ∆x)

−J∗(u, x))

= J∗(u, x + ∆x) + Qj(∆u, ∆x)− γ (28)

Moreover, taking into account (22) it holds that:

Js(x + ∆x) ≥ J∗(u, x + ∆x) + Qj(∆u, ∆x)− γ (29)

But, from the definition of Js and J∗ and because u can be suboptimal for
x + ∆x, it can be seen that:

Js(x + ∆x) ≤ J∗(u, x + ∆x) (30)

This implies that Qj(∆u, ∆x)− γ in (29) must be less or equal to zero, thus:

Qj(∆u, ∆x) ≤ γ (31)

Constraint (31) states a condition to be fulfilled by all active vertices for x,
and it is a conservative bound for ∆u.

From Proposition 1 it is inferred that 2gu,m is the gradient of Jm(u, x) with
respect to u. At the minimizer of J∗(u, x), for any ∆u (and in particular for
∆u = bu(x + ∆x) − u(x)), there is at least one vertex m ∈ I(x) such that
([34]):

gT
u,m∆u ≥ 0 (32)

Let m be such an active vertex. Then, ∆u verifies (31) and (32). Thus, from
the definition of Rk,m (19):

Qk(∆u, ∆x)−Qm(∆u, ∆x) ≤ Rk,m ≤ max
i∈I(x)

Rk,i (33)

On the other hand, taking into account (26) (which hold for any active vertex
k) and (33):

Js(x)− Jk(u, x) ≤ max
i∈I(x)

Rk,i (34)

will hold for all k ∈ I(x + ∆x). Then, the set of all k for which (34) holds will
contain all the active vertices for I(x + ∆x), thus I(x + ∆x) ⊆ Ie(x) and this
completes the proof. ¤
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Theorem 1 can be used to provide a conservative estimation of I(x + ∆x).
However, solving (19) can be time consuming, so a more efficient way of com-
puting Ie has to be developed.

It can easily be seen that if z satisfies Qi(z, ∆x) ≤ γ and gT
u,iz ≥ 0 then it also

verifies:

Qi(z, ∆x)− 2gT
u,iz ≤ γ (35)

which can be expressed as (recall Proposition 1):

zT Mz + 2∆xT NT z + ∆xT C∆x + 2gT
x,i∆x ≤ γ (36)

On the other hand:

Qk(z, ∆x)−Qi(z, ∆x) = cT
k,iz + dk,i (37)

where ck,i = 2(gu,k − gu,i) = 2GT
u Gθ(θk − θi) and dk,i = 2(gx,k − gx,i)

T ∆x =
2(θk − θi)

T GT
θ Fx∆x.

Constraint (36) can be used to get a conservative bound of the Rk,i in (19) as
shown below:

Rk,i≤max
z

cT
k,iz + dk,i (38)

s.t.

zT Mz + 2∆xT NT z + ∆xT C∆x + 2gT
x,i∆x− γ ≤ 0

The estimation of I(x + ∆x) obtained using (38) is more conservative than
the one obtained using (19) as it can include more vertices in Ie(x + ∆x).
However, problem (38) can be solved very efficiently, and a closed solution
can be provided as it is shown in the following.

Applying a known result ([7]), the quadratic constraint of (38) can be ex-
pressed as an ellipsoid:

(z − ai)
T A−1(z − ai) ≤ 1 (39)

where:

A = (∆xT NT M−1N∆x−∆xT C∆x− 2gT
x,i∆x + γ)M−1 (40)

= σiM
−1

ai =−M−1N∆x (41)
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It is noteworthy that for small ∆x, γ is small (due to the continuity of J∗).
Also, all terms multiplied by ∆x in σi are small for small ∆x. This implies that
the ellipsoid containing ∆u is small, so an estimation of I(x+∆x) with a low
degree of conservativeness will be obtained. Ellipsoid (39) can be described as:

(z − ai)
T M

σi

(z − ai) ≤ 1 (42)

A new variable, µ, is defined as follows:

µ
.
=

M
1
2√

σi

(z − ai) (43)

thus:

z =
√

σiM
− 1

2 µ + ai (44)

using (43) and (44), problem (38) can be rewritten as:

Rk,i≤max
µ

cT
k,i(
√

σiM
− 1

2 )µ + cT
k,iai + dk,i (45)

s.t.

µT µ ≤ 1

Problem (45) can be solved analytically and its solution becomes:

µ∗ =
M− 1

2 ck,i√
cT
k,iM

−1ck,i

(46)

Substituting into (45):

Rk,i ≤
√

σicT
k,iM

−1ck,i + cT
k,iai + dk,i (47)

With this bound of Rk,i a more conservative, but easily computable, estimation
of I(x + ∆x) can obtained as stated in the following corollary:

Corollary 1 A computationally efficient estimation of I(x + ∆x) (that is
I(x+∆x) ⊆ I∗e (x+∆x)) can be obtained using the following rejection criterion:

I∗e (x + ∆x) =

{
k : Js(x)− Jk(u, x) ≤ max

i∈I(x)

√
σicT

k,iM
−1ck,i + cT

k,iai + dk,i

}
(48)
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where u is the optimal solution for x (usually the optimal solution for the
previous sampling time), ck,i, dk,i are computed as in (37), and σi and ai are
computed from (40) and (41) respectively.

Finally it follows a simple analysis of the expected performance of this strategy.
Suppose that the number of vertices contained in Ie(x+∆x) is 1

α
2L. Extensive

simulation tests shows that α is usually between 20 and 90. Moreover, it
is assumed that the estimated number operations for a min-max problem
depends mainly on the number of vertices to be considered 5 . For the full
min-max problem (2L vertices) let that number be CP1. Thus, for the reduced
min-max problem, the number of operations can be approximated by CP1

α
. In

the case of the efficient approach described in this paper, it has to be taken
into account CIe operations necessary to compute I∗e (x + ∆x). So the speed
up factor between the original formulation and the efficient approach will be:

speed up =
CP1

CP1

α
+ CIe

(49)

In many different simulations it has been found that the time required to
obtain Ie is always lower than that required to solve the reduced min-max
problem. Thus a conservative estimation for CIe is CP1

α
leading to:

speed up ≥ α

2
(50)

Moreover, it can happen that almost all vertices are rejected, e.g. if ∆x is small.
In this case, the computational burden of the reduced problem is very little
and the number of operations required for the efficient approach is dominated
by CIe. It can be seen from (48) that the number of operations needed to
compute CIe is of the same order of a single evaluation of J∗, thus the speed up
factor will depend on the number of evaluations needed by the minimization
algorithm to solve the min-max problem (it depends on the method used).
These results will be illustrated in the example presented in the next section.

Remark 1 Although simulation tests show that α is usually greater than 35,
there is no guarantee that the number of rejected vertices will be enough. If
α becomes too low to allow the realtime solution of the min-max problem a
simple workaround can be used. Instead of solving one min-max problem for

5 The complexity of a min-max problem like that of Min-Max MPC lies in the
inner maximization problem, which is in itself NP-hard (and must be solved for
every candidate solution of the outer minimization problem). In this maximization
problem, operational and stability constraints do not take part, so its computational
burden depends only on the number of vertices to be explored. This imply that the
speed-up should be computed only in terms of the vertices that are not rejected.

16



I∗e (x + ∆x), a serie of successive approximations from x to x + ∆x can be
used, computing at each one I∗e and solving a simpler min-max subproblem.
This can be improved even more if a historian with previous values of x and
its associated {u(x), I(x)} is kept. In this case some of the subproblems (closer
to x + ∆x) could be picked from those that are already solved.

5 Example

The results obtained in Section 4 will be illustrated with a simulation example.
The example chosen is that of a very typical case in the process industry, an
integrating process, which can be found for example in temperature control of
the liquid in a tank. This kind of processes are usually harder to control than
those that are open-loop stable. The prediction model for this example is:

G(s) =
1

s(2s + 1)
(51)

An integrated uncertainties prediction model is obtained sampling (51) with a
sampling time of 0.2. In this case the process state is defined by [yk yk−1 ∆uk−1 ]T .
The controller parameters were Nu = 7, N = 15, λ = 5 and ε = 0.2. The con-
troller has been applied using both the standard formulation and the proposed
strategy. Figure 3 shows the plant output, the percentage of rejected vertices
at each sampling time (i.e., those vertices not in I∗e ) and the ratio (tr) between
the computation time of the original formulation and the proposed strategy.
In the simulation a random disturbance has been added to the plant output
to simulate more realistic conditions. At sampling time t = 75 a stationary
step disturbance suddenly hits the process output, causing the great deviation
from the set point seen in the output plot. In this case the percentage of re-
jected vertices is always higher than 90%. The average value of α is 43.4. The
average computation time using the proposed strategy is 50 times lower than
that using the standard formulation (well over the lower bound for the speed
up factor). Thus, the proposed strategy achieves a remarkable improvement
over the standard formulation of MMMPC. Note that the ratio of rejected
vertices is lower when ∆x is greater.

Also, the proposed Min-Max MPC has been compared with a regular MPC.
An error of −15% in the estimation of the process gain has been considered
together with a random plus step disturbance. The results are shown in Figure
4. Note that the controller parameters and the disturbance are the same for
both controllers. It can be seen that the results of the MMMPC are better,
especially when the step disturbance hits the process output at sampling time
t = 200. Note how the MMMPC is able to react faster to the uncertainty
or disturbance effects obtaining a better performance with just a moderately
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Fig. 3. Results of the simulation example.

higher level of the control signal. Other comparisons between MMMPC and
MPC with simulated or experimental results can be found in [33] and [14].
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regular MPC (dotted plots). Disturbance is the same for both controllers.
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Description Transfer function Ts N=10 N=12 N=14 N=16

First order system 10
100s+1

10 37.6 71.1 121.4 262.7

Integrator system 1
s

1 33.7 55 115.5 226.5

Inverse response system −200s+7
1000s2+110s+1

13 37.8 54.9 173.8 257.9

Undamped system with 53% overshoot 26
s2+2s+26

0.05 34.7 46.3 90.1 206.4

Double integrator 1
s2 1 27.9 41.7 71.5 147.1

Induction motor position control [25] 168.0436
s(s2+25.921s+168.0436)

0.05 35.2 74.1 144.3 203.2

Table 1
Average value of α for different test systems and different values of the prediction
and control horizons (it has been assumed N = Nu). The strategy described in
Remark 1 has not been used. Sampling time Ts expressed in seconds.

Finally, the proposed strategy has been applied to different test systems and
the average value of α for different prediction and control horizons can be seen
in Table 1. For that simulation tests, the parameters are the same as in the
previous example, except the sampling time (which cannot be the same for
all systems) and the prediction and control horizons. It is noteworthy that α
increases with higher values of N meaning that the cardinal of I∗e does not
grow at the same rate of that of vertices(Θ). On the other hand, the values
of α are lower for systems that are more difficult to control (such a double
integrator), but even in these cases, α is high enough to ensure that more than
95% of the vertices of Θ are rejected.

6 Conclusions

An efficient implementation of the MMMPC control law has been presented.
The results presented in this paper broaden the range of processes to which, in
practice, MMMPC can be applied. The strategy proposed in this work ensures
much lower computational burden in most cases. This is achieved by reducing
the number of vertices to be considered in the min-max problem. Simulation
results show that the number of vertices can be reduced between 40 and 90
times on typical values of the prediction and control horizons.

However, some open questions remain to be addressed. The strategy presented
here is based on a conservative estimation of the set of active vertices for the
current process state. The less conservative the estimation, the more efficient
the implementation. So, it is worth investigating how a tighter estimation of
I(x + ∆x) can be obtained.
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A Constraint handling

This paper deals with the efficient implementation of unconstrained Min-Max
MPC. The optimization problem structure is different for the constrained for-
mulation and the procedures presented here cannot be applied to it. However,
both strategies are strongly related.

Here a min max controller which takes into account constraints is proposed.
The corresponding optimization problem is convex and can be solved efficiently
with existing optimization methods.

This controller is based on evaluating the control correction effort that makes
the optimal solution for the unconstrained problem feasible and minimizes
an upper bound of the min max cost function. The future control inputs
are defined as u = uE(x) + v where uE(x) is the optimum solution for the
unconstrained problem and v = [vk · · · vk+Nu−1]

T are the control correction
efforts. Furthermore, suppose that Θ = {∀θ ∈ RL : ‖θ‖∞ ≤ ε}.

By definition:

uE(x) = arg min
u

max
θ∈Θ

J(θ,u, x)

Js(x) = min
u

max
θ∈Θ

J(θ,u, x) = max
θ∈Θ

J(θ,uE(x), x)

The original constrained optimization problem can be posed as:

min
u

max
θ∈Θ

J(θ,u, x)

s.t. Γuu + Γxx + Γθθ ≤ q, ∀θ ∈ Θ

Notice that this formulation allows the inclusion of a terminal region con-
straint, and so may include all the ingredients for stability design and analysis
of MPC controllers (see [29]).

The optimum solution for the unconstrained problem can be used to pro-
pose a modified problem with guaranteed performance. Taking into account
Proposition 1:

J(θ,uE(x) + v, x) = J(θ,uE(x), x) + vT Mv + 2vT (Nx + MuE(x) + GT
u Gθθ)

20



An upper bound for the max function can then be found:

max
θ∈Θ

J(θ,u, x) ≤ max
θ∈Θ

J(θ,uE(x), x) + max
θ∈Θ

vT Mv

+2vT (Nx + MuE(x) + GT
u Gθθ)

and both functions can be evaluated on-line using the solution of the uncon-
strained problem.

max
θ∈Θ

J(θ,u, x) ≤ Js(x) + vT Mv + 2vT (Nx + MuE(x)) + 2ε‖GT
θ Guv‖1

Then, the max function is bounded by a convex function that can be easily
evaluated. It is also important to note that when v is equal to zero, u = uE(x)
satisfies the constraints and the exact value of the max function is obtained.

Note that VE(x) does not depends on v so the proposed problem is:

min
v

vT Mv + 2vT Nx + 2vT MuE(x) + 2ε‖GT
θ Guv‖1

s.t. Γuv + Γxx + Γθθ ≤ q − ΓuuE(x) ∀θ ∈ Θ

Using standard techniques for robust constraint satisfaction (see [19]) the pro-
posed constrained problem can be posed as:

min
v

vT Mv + 2vT GT
u Fxx + 2vT MuE(x) + 2ε‖GT

θ Guv‖1

s.t. Γuv + Γxx ≤ q − ΓuuE(x)− dε
(A.1)

where only the constraints have been changed and the components of d are the
1-norm of the corresponding rows of Γθ. Therefore, the proposed constrained
min-max problem can be solved efficiently by computing the solution of the
unconstrained problem (using the approach presented in this paper) and then
solving the QP problem (A.1). Note that using standard QP solvers, the com-
putational burden of a QP problem like (A.1) is little compared to that of the
min-max problem.
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