344 research outputs found

    Optical fibre local area networks

    Get PDF

    Issues in designing transport layer multicast facilities

    Get PDF
    Multicasting denotes a facility in a communications system for providing efficient delivery from a message's source to some well-defined set of locations using a single logical address. While modem network hardware supports multidestination delivery, first generation Transport Layer protocols (e.g., the DoD Transmission Control Protocol (TCP) (15) and ISO TP-4 (41)) did not anticipate the changes over the past decade in underlying network hardware, transmission speeds, and communication patterns that have enabled and driven the interest in reliable multicast. Much recent research has focused on integrating the underlying hardware multicast capability with the reliable services of Transport Layer protocols. Here, we explore the communication issues surrounding the design of such a reliable multicast mechanism. Approaches and solutions from the literature are discussed, and four experimental Transport Layer protocols that incorporate reliable multicast are examined

    The Xpress Transfer Protocol (XTP): A tutorial (short version)

    Get PDF
    The Xpress Transfer Protocol (XTP) is a reliable, light weight transfer layer protocol. Current transport layer protocols such as DoD's Transmission Control Protocol (TCP) and ISO's Transport Protocol (TP) were not designed for the next generation of high speed, interconnected reliable networks such as fiber distributed data interface (FDDI) and the gigabit/second wide area networks. Unlike all previous transport layer protocols, XTP is being designed to be implemented in hardware as a VLSI chip set. By streamlining the protocol, combining the transport and network layers, and utilizing the increased speed and parallelization possible with a VLSI implementation, XTP will be able to provide the end-to-end data transmission rates demanded in the high speed networks without compromising reliability and functionality. This tutorial briefly describes the operation of the XTP protocol and in particular, its error, flow and rate control; inter-networking addressing mechanisms; and multicast support features, as defined in the XTP Protocol Definition Revision 3.4

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Internet Engineering Task Force (IETF) S. Nadas, Ed. Request for Comments: 5798

    Get PDF
    This memo defines the Virtual Router Redundancy Protocol (VRRP) for IPv4 and IPv6. It is version three (3) of the protocol, and it is based on VRRP (version 2) for IPv4 that is defined in RFC 3768 and in "Virtual Router Redundancy Protocol for IPv6". VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN. The VRRP router controlling the IPv4 or IPv6 address(es) associated with a virtual router is called the Master, and it forwards packets sent to these IPv4 or IPv6 addresses. VRRP Master routers are configured with virtual IPv4 or IPv6 addresses, and VRRP Backup routers infer the address family of the virtual addresses being carried based on the transport protocol. Within a VRRP router, the virtual routers in each of the IPv4 and IPv6 address families are a domain unto themselves and do not overlap. The election process provides dynamic failover in the forwarding responsibility should the Master become unavailable. For IPv4, the advantage gained from using VRRP is a higher-availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host. For IPv6, the advantage gained from using VRRP for IPv6 is a quicker switchover to Backup routers than can be obtained with standard IPv6 Neighbor Discovery mechanisms. Status of This Mem

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Message-Bundle Converting in Intenet Protocol Multicast-Based High Level Architecture Exercises

    Get PDF
    The Department of Defense is pushing for more wide-spread and realistic interactive training simulations which increases the demand on network capacity and resources. While network bandwidth is a measurable resource, packet bandwidth, or the number of packets-per-second (Pk/s) a host can handle, is a shifting commodity. This research analyzes host performance characteristics under varying data loads. The hosts include SGI single and multi-processor systems and Intel Pentium platforms using both Windows 95 and Linux Operating Systems. The networking media covers Ethernet, ATM and FDDI. For the ATM network, both AAL5 and IP over ATM were analyzed. With the data from this research, a system is proposed and developed that takes individual messages and bundles them into multi-message packets. This bundling process overcomes the 5,000 Pk/s limitation, reduces the CPU network handling time and introduces a flow-control mechanism at the local network level. While the idea of bundling messages to increase CPU efficiency is not new, there are no current methods of bundling within the new High Level Architecture (HLA). This proposed process is a novel approach to introduce flow control, priority message handling and increase address space while utilizing bundled data delivery. For traditional network delivery, typical CPU usage from network data varies as a function of traffic load, ranging from 5% at 500 messages-per-second to over 80% at 4,000 messages-per-second. The new bundling process requires 10% at 500 messages-per-second but only increases to 13% at 4,000 messages-per-second

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Issues in providing a reliable multicast facility

    Get PDF
    Issues involved in point-to-multipoint communication are presented and the literature for proposed solutions and approaches surveyed. Particular attention is focused on the ideas and implementations that align with the requirements of the environment of interest. The attributes of multicast receiver groups that might lead to useful classifications, what the functionality of a management scheme should be, and how the group management module can be implemented are examined. The services that multicasting facilities can offer are presented, followed by mechanisms within the communications protocol that implements these services. The metrics of interest when evaluating a reliable multicast facility are identified and applied to four transport layer protocols that incorporate reliable multicast

    Marshall Avionics Testbed System (MAST)

    Get PDF
    Work accomplished in the summer of 1989 in association with the NASA/ASEE Summer Faculty Research Fellowship Program at Marshall Space Flight Center is summarized. The project was aimed at developing detailed specifications for the Marshall Avionics System Testbed (MAST). This activity was to include the definition of the testbed requirements and the development of specifications for a set of standard network nodes for connecting the testbed to a variety of networks. The project was also to include developing a timetable for the design, implementation, programming and testing of the testbed. Specifications of both hardware and software components for the system were to be included
    • …
    corecore