67 research outputs found

    Compliant control of Uni/ Multi- robotic arms with dynamical systems

    Get PDF
    Accomplishment of many interactive tasks hinges on the compliance of humans. Humans demonstrate an impressive capability of complying their behavior and more particularly their motions with the environment in everyday life. In humans, compliance emerges from different facets. For example, many daily activities involve reaching for grabbing tasks, where compliance appears in a form of coordination. Humans comply their handsâ motions with each other and with that of the object not only to establish a stable contact and to control the impact force but also to overcome sensorimotor imprecisions. Even though compliance has been studied from different aspects in humans, it is primarily related to impedance control in robotics. In this thesis, we leverage the properties of autonomous dynamical systems (DS) for immediate re-planning and introduce active complaint motion generators for controlling robots in three different scenarios, where compliance does not necessarily mean impedance and hence it is not directly related to control in the force/velocity domain. In the first part of the thesis, we propose an active compliant strategy for catching objects in flight, which is less sensitive to the timely control of the interception. The soft catching strategy consists in having the robot following the object for a short period of time. This leaves more time for the fingers to close on the object at the interception and offers more robustness than a âhardâ catching method in which the hand waits for the object at the chosen interception point. We show theoretically that the resulting DS will intercept the object at the intercept point, at the right time with the desired velocity direction. Stability and convergence of the approach are assessed through Lyapunov stability theory. In the second part, we propose a unified compliant control architecture for coordinately reaching for grabbing a moving object by a multi-arm robotic system. Due to the complexity of the task and of the system, each arm complies not only with the objectâs motion but also with the motion of other arms, in both task and joint spaces. At the task-space level, we propose a unified dynamical system that endows the multi-arm system with both synchronous and asynchronous behaviors and with the capability of smoothly transitioning between the two modes. At the joint space level, the compliance between the arms is achieved by introducing a centralized inverse kinematics (IK) solver under self-collision avoidance constraints; formulated as a quadratic programming problem (QP) and solved in real-time. In the last part, we propose a compliant dynamical system for stably transitioning from free motions to contacts. In this part, by modulating the robot's velocity in three regions, we show theoretically and empirically that the robot can (I) stably touch the contact surface (II) at a desired location, and (III) leave the surface or stop on the surface at a desired point

    Improving Scalability of Evolutionary Robotics with Reformulation

    Get PDF
    Creating systems that can operate autonomously in complex environments is a challenge for contemporary engineering techniques. Automatic design methods offer a promising alternative, but so far they have not been able to produce agents that outperform manual designs. One such method is evolutionary robotics. It has been shown to be a robust and versatile tool for designing robots to perform simple tasks, but more challenging tasks at present remain out of reach of the method. In this thesis I discuss and attack some problems underlying the scalability issues associated with the method. I present a new technique for evolving modular networks. I show that the performance of modularity-biased evolution depends heavily on the morphology of the robot’s body and present a new method for co-evolving morphology and modular control. To be able to reason about the new technique I develop reformulation framework: a general way to describe and reason about metaoptimization approaches. Within this framework I describe a new heuristic for developing metaoptimization approaches that is based on the technique for co-evolving morphology and modularity. I validate the framework by applying it to a practical task of zero-g autonomous assembly of structures with a fleet of small robots. Although this work focuses on the evolutionary robotics, methods and approaches developed within it can be applied to optimization problems in any domain

    Virtual Reality

    Get PDF
    At present, the virtual reality has impact on information organization and management and even changes design principle of information systems, which will make it adapt to application requirements. The book aims to provide a broader perspective of virtual reality on development and application. First part of the book is named as "virtual reality visualization and vision" and includes new developments in virtual reality visualization of 3D scenarios, virtual reality and vision, high fidelity immersive virtual reality included tracking, rendering and display subsystems. The second part named as "virtual reality in robot technology" brings forth applications of virtual reality in remote rehabilitation robot-based rehabilitation evaluation method and multi-legged robot adaptive walking in unstructured terrains. The third part, named as "industrial and construction applications" is about the product design, space industry, building information modeling, construction and maintenance by virtual reality, and so on. And the last part, which is named as "culture and life of human" describes applications of culture life and multimedia-technology

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    Get PDF
    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems

    Fabricate 2020

    Get PDF
    Fabricate 2020 is the fourth title in the FABRICATE series on the theme of digital fabrication and published in conjunction with a triennial conference (London, April 2020). The book features cutting-edge built projects and work-in-progress from both academia and practice. It brings together pioneers in design and making from across the fields of architecture, construction, engineering, manufacturing, materials technology and computation. Fabricate 2020 includes 32 illustrated articles punctuated by four conversations between world-leading experts from design to engineering, discussing themes such as drawing-to-production, behavioural composites, robotic assembly, and digital craft

    The 29th Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    • …
    corecore