184,526 research outputs found

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    Variable Input Allocation: Why Heterogeneity Matters?

    Get PDF
    The allocation of variable inputs among crops is a common problem in applied studies that use farm accountancy data. Standard farm accounting information is typically restricted to aggregate or whole-farm input expenditures; there are usually no details on how these expenditures are split among crops. Most studies employing multi-crop econometric models with land as an allocable fixed input consider generally variable input uses at the farm level (Moore and Negri, 1992). However, the allocation of variable inputs among crops appears to be useful for several objectives, such as to analyze the evolution of gross margins at the crop level, to investigate the empirical validity of a multi-crop econometric model and to provide important information for extension agents or farmer advisors.Variable Input Allocation, heterogeneity, Agricultural and Food Policy, Agricultural Finance, Crop Production/Industries, Farm Management, Research Methods/ Statistical Methods,

    Endogeneity of acreage choices in input allocation equations: implied problems and a solution

    Get PDF
    Replaced with revised version of paper 07/10/09.input allocation, multi-output econometric model, control function approach, Crop Production/Industries, Production Economics,

    Aggregate constrained inventory systems with independent multi-product demand: control practices and theoretical limitations

    Get PDF
    In practice, inventory managers are often confronted with a need to consider one or more aggregate constraints. These aggregate constraints result from available workspace, workforce, maximum investment or target service level. We consider independent multi-item inventory problems with aggregate constraints and one of the following characteristics: deterministic leadtime demand, newsvendor, basestock policy, rQ policy and sS policy. We analyze some recent relevant references and investigate the considered versions of the problem, the proposed model formulations and the algorithmic approaches. Finally we highlight the limitations from a practical viewpoint for these models and point out some possible direction for future improvements

    An ESPC algorithm based approach to solve inventory deployment problem

    Get PDF
    Global competitiveness has enforced the hefty industries to become more customized. To compete in the market they are targeting the customers who want exotic products, and faster and reliable deliveries. Industries are exploring the option of satisfying a portion of their demand by converting strategically placed products, this helps in increasing the variability of product produced by them in short lead time. In this paper, authors have proposed a new hybrid evolutionary algorithm named Endosymbiotic-Psychoclonal (ESPC) algorithm to determine the amount and type of product to stock as a semi product in inventory. In the proposed work the ability of previously proposed Psychoclonal algorithm to exploit the search space has been increased by making antibodies and antigen more cooperative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results obtained, are compared with other evolutionary algorithms such as Genetic Algorithm (GA) and Simulated Annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained, and convergence time required to reach the optimal /near optimal value of the solution

    Simple econometric models for short term production choices in cropping systems

    Get PDF
    The aim of this article is to present new models of acreage choices to describe short term production choices. Its construction combines concepts developed in the Positive Mathematical Programming and Multicrop Econometric literatures. They consider land as an allocable fixed input and motivate crop diversification by decreasing returns to crop area and/or implicit costs generated by constraints on acreage choices and by limiting quantities of quasi-fixed factors. Attractive re-parametrization of the standard quadratic production function and different functional forms for cost function are proposed to have parameters easily interpretable and to define econometric models in a very simple way.Acreage share; Production function; Multicrop econometric model; Positive Mathematical Programming

    The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems

    Get PDF
    Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems
    • 

    corecore