1,710 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Study and comparison of discontinuous modulation for modular multilevel converters in motor drive applications

    Get PDF
    Discontinuous modulation applied to modular multilevel converters is an effective method for reducing the capacitor voltage ripples. In this paper, the discontinuous modulation is adapted and used in a motor drive application. For proper operation of the converter, a new energy controller is presented, which is suitable for operation with nonsinusoidal reference signals. Experimental results comparing the discontinuous modulation with other techniques operating at low motor speeds are shown. The results demonstrate the effectiveness of the discontinuous modulation on reducing capacitor voltage ripples and power losses.Postprint (published version

    Design and Simulation of Modular Multilevel Converter Fed Induction Motor Drive

    Get PDF
    Traditional modular multilevel converter (MMC) applications in medium voltage induction motor drive are difficult, particularly at low speeds because of the higher magnitude of the voltage ripple of the sub-module capacitor. This paper uses a hybrid MMC, particularly at low frequencies, to achieve a lower peak-to-peak voltage ripple of the sub-module capacitor. The vector control strategy with the closed-loop speed control indicates an accurate and wide-speed range. MATLAB / Simulink is used to simulate and obtain the simulation results of hybrid and traditional MMC with induction motor drive and compare from the standpoint of capacitor voltage ripple. The results are shown the reduction of peak-to-peak voltage ripple of the sub-module capacitor as the hybrid MMC is operated

    High-performance motor drives

    Get PDF
    This article reviews the present state and trends in the development of key parts of controlled induction motor drive systems: converter topologies, modulation methods, as well as control and estimation techniques. Two- and multilevel voltage-source converters, current-source converters, and direct converters are described. The main part of all the produced electric energy is used to feed electric motors, and the conversion of electrical power into mechanical power involves motors ranges from less than 1 W up to several dozen megawatts

    Common-Mode Voltage Elimination in Multilevel Power Inverter-Based Motor Drive Applications

    Get PDF
    [EN] The industry and academia are focusing their efforts on finding more efficient and reliable electrical machines and motor drives. However, many of the motors driven by pulse-width modulated converters face the recurring problem of common-mode voltage (CMV). In fact, this voltage leads to other problems such as bearing breakdown, deterioration of the stator winding insulation and electromagnetic interferences (EMI) that can affect the lifespan and correct operation of the motors. In this sense, multilevel converters have proven to be a useful tool for solving these problems and mitigating CMV over the past few decades. Among other reasons, because they provide additional degrees of freedom when comparing with two-level converters. However, although there are several proposals in the scientific literature on this topic, no complete information has been reviewed about the CMV issues and the different multilevel alternatives that can be used to solve it. In this context, the objective of this work is to determine how multilevel power converters provide additional degrees of freedom to make the reduction of the CMV possible by using specific modulation techniques, making it easier for engineers and scientists in this field to find solutions to this problem. This document consists of a descriptive study that collects the strengths and weaknesses of most important multilevel power converters, with special emphasis on how CMV affects each of them. In addition, the differences of modulation techniques aimed to the CMV reduction are explained in terms of output voltage, operating linear range, and generated CMV. Considering this last, it is recommended to use those modulation techniques that allow the generation of CMV levels of 0 V in order to be able to completely eliminate said voltage.This work was supported in part by the Government of the Basque Country within the Fund for Research Groups of the Basque University System under Grant IT978-16; in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077; in part by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya; in part by the Ministerio de Ciencia, Innovacion y Universidades of Spain under Project PID2019-111420RB-I00 and Project PID2020-115126RB-I00; and in part by the FEDER Funds

    A review of modular electrical sub-systems of electric vehicles

    Get PDF
    Climate change risks have triggered the international community to find efficient solutions to reduce greenhouse gas (GHG) emissions mainly produced by the energy, industrial, and transportation sectors. The problem can be significantly tackled by promoting electric vehicles (EVs) to be the dominant technology in the transportation sector. Accordingly, there is a pressing need to increase the scale of EV penetration, which requires simplifying the manufacturing process, increasing the training level of maintenance personnel, securing the necessary supply chains, and, importantly, developing the charging infrastructure. A new modular trend in EV manufacturing is being explored and tested by several large automotive companies, mainly in the USA, the European Union, and China. This modular manufacturing platform paves the way for standardised manufacturing and assembly of EVs when standard scalable units are used to build EVs at different power scales, ranging from small light-duty vehicles to large electric buses and trucks. In this context, modularising EV electric systems needs to be considered to prepare for the next EV generation. This paper reviews the main modular topologies presented in the literature in the context of EV systems. This paper summarises the most promising topologies in terms of modularised battery connections, propulsion systems focusing on inverters and rectifiers, modular cascaded EV machines, and modular charging systems

    Modular Multilevel Converter for Electric Motor Drive Applications

    Get PDF
    In this master thesis the topic of Modular Multilevel Converters (MMC) has been studied. The working principle of the converter is presented with advantageous attributes such as a multilevel waveform, a modular realization and cost saving features. Vital control objectives are active and reactive power control, DC link voltage control, submodule capacitor voltage control and current control. A level-shifted pulse-width modulation (PWM) switching scheme was found to have relatively low total harmonic distortion (THD), thus used in the upcoming simulations. In order to ensure balancing of the converter capacitors, a voltage balancing algorithm was presented, sorting the capacitors based on their voltage level, and giving a state command accordingly. The thesis has examined the challenges of using MMC for electric motor drive applications. It has been found that the low frequency operation causes large voltage ripple in the capacitors, thus a large circulating current. Through a literature search, different measures where found in order to reduce the circulating current, including circulating current suppressing and manipulation. In addition an introduction of a common mode voltage was presented as a possible measure. After developing the one-phase model of the project thesis into a three-phase model, the circulating current suppressing controllers (CCSC) were tested, first at 50Hz, and then at 25Hz. At 50Hz, all three controllers worked as intended, reducing the circulating current by up to 72% and the voltage ripple was reduced from ∆vc = 10V to ∆vc = 6V . At 25Hz, all the controllers maintained their ability to reduce the circulating current. Nonetheless, it was concluded that further measures must be studied, as all controllers increased the capacitor voltage ripple at f =25Hz
    corecore