105,900 research outputs found

    An Energy Efficient Semi-static Power Control and Link Adaptation Scheme in UMTS HSDPA

    Get PDF
    High speed downlink packet access (HSDPA) has been successfully applied in commercial systems and improves user experience significantly. However, it incurs substantial energy consumption. In this paper, we address this issue by proposing a novel energy efficient semi-static power control and link adaptation scheme in HSDPA. Through estimating the EE under different modulation and coding schemes (MCSs) and corresponding transmit power, the proposed scheme can determine the most energy efficient MCS level and transmit power at the Node B. And then the Node B configure the optimal MCS level and transmit power. In order to decrease the signaling overhead caused by the configuration, a dual trigger mechanism is employed. After that, we extend the proposed scheme to the multiple input multiple output (MIMO) scenarios. Simulation results confirm the significant EE improvement of our proposed scheme. Finally, we give a discussion on the potential EE gain and challenge of the energy efficient mode switching between single input multiple output (SIMO) and MIMO configuration in HSDPA.Comment: 9 pages, 11 figures, accepted in EURASIP Journal on Wireless Communications and Networking, special issue on Green Radi

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017

    Intelligent Coordination and Automation for Smart Home Accessories

    Get PDF
    Smarthome accessories are rapidly becoming more popular. Although many companies are making devices to take advantage of this market, most of the created smart devices are actually unintelligent. Currently, these smart home devices require meticulous, tedious configuration to get any sort of enhanced usability over their analog counterparts. We propose building a general model using machine learning and data science to automatically learn a user\u27s smart accessory usage to predict their configuration. We have identified the requirements, collected data, recognized the risks, implemented the system, and have met the goals we set out to accomplish

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    ATM in focus:a damage sensor and cancer target

    Get PDF
    The ability of a cell to conserve and maintain its native DNA sequence is fundamental for the survival and normal functioning of the whole organism and protection from cancer development. Here we review recently obtained results and current topics concerning the role of the ataxia-telangiectasia mutated (ATM) protein kinase as a damage sensor and its potential as therapeutic target for treating cancer. This monograph discusses DNA repair mechanisms activated after DNA double-strand breaks (DSBs), i.e. non-homologous end joining, homologous recombination and single strand annealing and the role of ATM in the above types of repair. In addition to DNA repair, ATM participates in a diverse set of physiological processes involving metabolic regulation, oxidative stress, transcriptional modulation, protein degradation and cell proliferation. Full understanding of the complexity of ATM functions and the design of therapeutics that modulate its activity to combat diseases such as cancer necessitates parallel theoretical and experimental efforts. This could be best addressed by employing a systems biology approach, involving mathematical modelling of cell signalling pathways

    The role of simulations in consumer experiences and behavior: insights from the grounded cognition theory of desire

    Get PDF
    What are the mechanisms by which extrinsic and environmental cues affect consumer experiences, desires, and choices? Based on the recent grounded cognition theory of desire, we argue that consumption and reward simulations constitute a central mechanism in these phenomena. Specifically, we argue that appetitive stimuli, such as specific product cues, can activate simulations of consuming and enjoying the respective products, based on previous learning experiences. These consumption and reward simulations can lead to motivated behavior, and can be modulated by state and trait individual differences, situational factors, and product-extrinsic cues. We outline the role of simulations within the grounded theory of desire, offering a theoretical framework for understanding motivational processes in consumer behavior. Then we illustrate the theory with behavioral, physiological, and neuroimaging findings on simulations in appetitive behavior and sensory marketing. Finally, we outline important issues for further research and applications for stimulating healthy, prosocial, and sustainable consumer choices
    • …
    corecore