6,895 research outputs found

    Active chatter control in high-speed milling processes

    Get PDF
    In present day manufacturing industry, an increasing demand for highprecision products at a high productivity level is seen. High-speed milling is a manufacturing technique which is commonly exploited to produce highprecision parts at a high productivity level for the aeroplane, automotive and mould and dies industry. The performance of a manufacturing process such as high-speed milling, indicated by the material removal rate, is limited by the occurrence of a dynamic instability phenomenon called chatter. The occurrence of chatter results in an inferior workpiece quality due to heavy vibrations of the cutter. Moreover, a high level of noise is produced and the tool wears out rapidly. Although different types of chatter exist, regenerative chatter is recognised as the most prevalent type of chatter. The occurrence of (regenerative) chatter has such a devastating effect on workpiece quality and tool wear that it should be avoidedat all times. The occurrence of chatter can be visualised in so-called stability lobes diagrams (sld). In an sld the chatter stability boundary between a stable cut (i.e. without chatter) and an unstable cut (i.e. with chatter) is visualised in terms of spindle speed and depth of cut. Using the information gathered in a sld, the machinist can select a chatter free operating point. In this thesis two problems are tackled. Firstly, due to e.g. heating of the spindle, tool wear, etc., the sld may vary in time. Consequently, a stable working point that was originally chosen by the machinist may become unstable. This requires a (controlled) adaptation of process parameters such that stability of the milling process is ensured (i.e. chatter is avoided) even under such changing process conditions. Secondly, the ever increasing demand for high-precision products at a high productivity level requires dedicated shaping of the chatter stability boundary. Such shaping of the sld should render working points (in terms of spindle speed and depth of cut) of high productivity feasible, while avoiding chatter. These problems require the design of dedicated control strategies that ensure stable high-speed milling operations with increased performance. In this work, two chatter control strategies are developed that guarantee high-speed chatter-free machining operations. The goal of the two chatter control strategies is, however, different. The first chatter control strategy guarantees chatter-free high-speed milling operations by automatic adaptation of spindle speed and feed (i.e. the feed is not stopped during the spindle speed transition). In this way, the high-speed milling process will remain stable despite changes in the process, e.g. due to heating of the spindle, tool wear, etc. To do so, an accurate and fast chatter detection algorithm is presented which predicts the occurrence of chatter before chatter marks are visible on the workpiece. Once the onset of chatter is detected, the developed controller adapts the spindle speed and feed such that a new chatter-free working point is attained. Experimental results confirm that by using this control strategy chatter-free machining is ensured. It is also shown experimentally that the detection algorithm is able to detect chatter before it is fully developed. Furthermore, the control strategy ensures that chatter is avoided, thereby ensuring a robust machining operation and a high surface quality. The second chatter control strategy is developed to design controllers that guarantee chatter-free cutting operations in an a priori defined range of process parameters (spindle speed and depth of cut) such that a higher productivity can be attained. Current (active) chatter control strategies for the milling process cannot provide such a strong guarantee of a priori stability for a predefined range of working points. The methodology is based on a robust control approach using µ-synthesis, where the most important process parameters (spindle speed and depth of cut) are treated as uncertainties. The proposed methodology will allow the machinist to define a desired working range (in spindle speed and depth of cut) and lift the sld locally in a dedicated fashion. Finally, experiments have been performed to validate the working principle of the active chatter control strategy in practice. Hereto, a milling spindle with an integrated active magnetic bearing is considered. Based on the obtained experimental results, it can be stated that the active chatter control methodology, as presented in this thesis, can indeed be applied to design controllers, which alter the sld such that a pre-defined domain of working points is stabilised. Results from milling tests underline this conclusion. By using the active chatter controller working points with a higher material removal rate become feasible while avoiding chatter. To summarise, the control strategies developed in this thesis, ensure robust chatter-free high-speed milling operations where, by dedicated shaping of the chatter stability boundary, working points with a higher productivity are attained

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas

    Full text link
    The main interest of this thesis consists of the study and implementation of postprocessors to adapt the toolpath generated by a Computer Aided Manufacturing (CAM) system to a complex robotic workcell of eight joints, devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R industrial manipulator mounted on a linear track and synchronized with a rotary table. To accomplish this main objective, previous work is required. Each task carried out entails a methodology, objective and partial results that complement each other, namely: - It is described the architecture of the workcell in depth, at both displacement and joint-rate levels, for both direct and inverse resolutions. The conditioning of the Jacobian matrix is described as kinetostatic performance index to evaluate the vicinity to singular postures. These ones are analysed from a geometric point of view. - Prior to any machining, the additional external joints require a calibration done in situ, usually in an industrial environment. A novel Non-contact Planar Constraint Calibration method is developed to estimate the external joints configuration parameters by means of a laser displacement sensor. - A first control is originally done by means of a fuzzy inference engine at the displacement level, which is integrated within the postprocessor of the CAM software. - Several Redundancy Resolution Schemes (RRS) at the joint-rate level are compared for the configuration of the postprocessor, dealing not only with the additional joints (intrinsic redundancy) but also with the redundancy due to the symmetry on the milling tool (functional redundancy). - The use of these schemes is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. Two innovative fuzzy inference engines actively adjust the weight of each joint in these tasks.Andrés De La Esperanza, FJ. (2011). Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10627Palanci

    Active fixturing: literature review and future research directions

    Get PDF
    Fixtures are used to fixate, position and support workpieces and represent a crucial tool in manufacturing. Their performance determines the result of the whole manufacturing process of a product. There is a vast amount of research done on automatic fixture layout synthesis and optimisation and fixture design verification. Most of this work considers fixture mechanics to be static and the fixture elements to be passive. However, a new generation of fixtures has emerged that has actuated fixture elements for active control of the part–fixture system during manufacturing operations to increase the end product quality. This paper analyses the latest studies in the field of active fixture design and its relationship with flexible and reconfigurable fixturing systems. First, a brief introduction is given on the importance of research of fixturing systems. Secondly, the basics of workholding and fixture design are visited, after which the state-of-the-art in active fixturing and related concepts is presented. Fourthly, part–fixture dynamics and design strategies which take these into account are discussed. Fifthly, the control strategies used in active fixturing systems are examined. Finally, some final conclusions and prospective future research directions are presented

    Design and Development of 3-Axis Benchtop CNC Milling Machine for Educational Purpose

    Get PDF
    The main factor in improving learning skills is providing students with hands-on laboratory experience, and the small-scale machine can accomplish academic programs requiring students to learn machining skills. This paper aims to design and develop a 3-axis CNC milling machine with a PC-based open architecture controller in a vertical position open frame structure. Some technical specifications were randomly selected based on the capabilities of similarly sized machines reviewed in previous work. The designed machine consisted of inexpensive off-the-shelf hardware components capable of machining the sample block with high cutting speed and reasonable precision. The accepted percentage error of circular and straightness test readings is below the set requirements. This machine is not intended for series production and precise machining. It can still effectively replace the high cost of commercial CNC machines and be used in any higher education institution offering technical courses

    Rationalization with ruled surfaces in architecture

    Get PDF

    Design and Development of 3-Axis Benchtop CNC Milling Machine for Educational Purpose

    Get PDF
    The main factor in improving learning skills is providing students with hands-on laboratory experience, and the small-scale machine can accomplish academic programs requiring students to learn machining skills. This paper aims to design and develop a 3-axis CNC milling machine with a PC-based open architecture controller in a vertical position open frame structure. Some technical specifications were randomly selected based on the capabilities of similarly sized machines reviewed in previous work. The designed machine consisted of inexpensive off-the-shelf hardware components capable of machining the sample block with high cutting speed and reasonable precision. The accepted percentage error of circular and straightness test readings is below the set requirements. This machine is not intended for series production and precise machining. It can still effectively replace the high cost of commercial CNC machines and be used in any higher education institution offering technical courses

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life
    corecore